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Rock Mechanics

To describe rock, or any other 
mechanical system, we need to discuss:

Measures of deformation (strain)

Measures of forces (stress)

Relation between them (constitutive 
equation, Hooke’s law)

We have already looked into these 
topics in Geol335, and here, we start by 
reviewing them again 
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Stress

Consider the interior of a deformed body:

At point P, force dF acts on 
any infinitesimal area dS. 
dF is a projection of  stress 
tensor, s, onto n:

Stress s
ij
is measured in [Newton/m2], or 

Pascal (unit of pressure).

dF can be decomposed into two components 
relative to the orientation of the surface, n:

Parallel (normal stress)

Tangential (shear stress, traction)

i ij jdF σ n dS=

( ) (projection of  onto )n i i kj k ji
dF n  = n σ n n dS=  F n

Note 
summation 

over k and j
τ nd = d d−F F F
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Forces acting 
on a small cube 

Consider a small parallelepiped                 
(dx dydz=dV) within the elastic body

Exercise 1: show that the force applied to 

the parallelepiped from the outside is:

(This is simply minus divergence (“convergence”) of 
stress!)

Exercise 2: Show that torque applied to the 

cube from the outside is:

i j ijF σ dV= −

i ijk jkL σ dV= −

Keep in mind

implied summations 
over repeated indices
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Symmetry of stress tensor

Thus, L is proportional to dV: L = O(dV)

The moment of inertia for any of the axes is 
proportional to dVlength2:

and so it tends to 0 faster than dV: I = o(dV).

Angular acceleration: q = L/I, must be finite as     
dV → 0. Therefore, the torque must be zero:

Consequently, the stress tensor is symmetric:        
s

ij
= s

ji

s
ji
has only 6 independent parameters out of 9:

( )2 2

x

dV

I y + z ρdV= 

/ 0i ijk jkL dV σ= − =

Big “O”

Little “o”
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Principal stresses

The symmetric stress matrix can always be 
diagonalized by properly selecting the (X, Y, Z) 
directions (principal axes)

For these directions, the stress force F is 
orthogonal to dS (that is, parallel to 
directional vectors n)  

With this choice of coordinate axes, the 
stress tensor is diagonal: 

Negative values 

mean pressure,
positive - tension

For a given stress tensor s, the principal axes 
and stresses can be found by solving for 
eigenvectors of matrix s:

i i iλ=σe e

Principal stress

Principal direction vector
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Mohr's circle

It is easy to show that in 2D, when the two 
principal stresses equal s1 and s2, the normal 
and tangential (shear) stresses on a surface 
oriented at angle q equal:

Mohr (1914) gave a diagram to evaluate these 
formulas graphically:
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Mohr's circle (cont.)

Two ways to use the Mohr’s circle:

1) If knowing the principal stresses and angle q, 
start by drawing points s1, s2, and find sn

and s
t
.

2) If knowing the stress tensor (s
xx
, s

xy
, and s

yy
), 

start from points A and B, and find s1, s2, 
and the angle q  of the principal direction s1.

yy
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Strain

◼ Strain is a measure of deformation of a body, 
i.e., variation of relative displacement as 
associated with a particular direction within 
the body

◼ Therefore, strain is also a tensor

Represented by a matrix

Like stress, it is decomposed into normal

and shear components

◼ Seismic waves yield strains of 10-10 to 10-6

So we can rely on infinitesimal strain 

theory 
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Elementary Strain

When a body is deformed, displacements (U) 
of its points depend on coordinates (x,y,z), and 

consist of:

Translation (blue arrows below)

Deformation (red arrows) 

Elementary strain is:  i
ij

j

U
e

x


=





GEOL882.3GEOL483.
3

Stretching and Rotation

Exercise 1: Derive the elementary strain 
associated with a uniform stretching of the 
body:

1 0

0 1

x' + γ x

y' + γ y

     
=    

     

Exercise 2: Derive the elementary strain 
associated with rotation by a small angle a:

Note that the off-diagonal part of this strain matrix is 
anti-symmetric (has opposite signs of equal-magnitude 
values)

cos sin

sin cos

x' α α x

y' α α y

     
=    

−     
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Strain Components

Anti-symmetric e
ij

yield rotations of the body 

without changing its shape:

For example, deformations in which                 

represent pure rotations about the ‘Y' axis

The opposite case                   is called pure shear

(no rotation of the elementary volume)

To characterize deformation, only the symmetric

part of the elementary strain is used:

xz
UU

x z


= −

 

xz
UU

x z


=
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Dilatational Strain 
(relative volume change during 
deformation)

Original volume: V=xyz

Deformed volume: 

V+V=(1+
xx

)(1+
yy

)(1+
zz

)xyz

Thus, we have several equivalent formulas for 

the dilatational strain, denoted D:

Note that shearing (deviatoric) strain does 
not change the volume.

( )( )( )1 1 1 1xx yy zz xx yy zz

ii i i

δV
+ ε +ε +ε ε +ε +ε

V

ε U div

D = = − 

D = =  = = U U
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Deviatoric Strain 
(pure shear)

Strain without change of volume: 

3
ij ij ij  

D
= −

( ) ( )Trace Trace 0
3

ij kk ij  
D

= = D − =

➢ Can you confirm this relation? 
What is the trace of ij (identity 
matrix)?
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Constitutive equation

The “constitutive equation” describes the 
relation of stress to strain:

F = -kx for an ordinary spring (1-D)

s ~  (in some sense) for a 'linear’ and 'elastic' 

3-D solid. This is what these terms mean:

For a general (anisotropic) medium, there 
are 36 coefficients of proportionality between 
six independent s

ij
and six 

ij
:

ij ij,kl kl=s 

We will discuss 
this later, in 

“viscoelasticity”
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Hooke's Law
(isotropic medium)

For  isotropic medium, the instantaneous
strain/stress relation is described by just two 
constants:

s
ij

= D
ij
 + 

ij


ij
is the “Kronecker symbol” (unit tensor) 

equal 1 for i =j and 0 otherwise;

 and  are elastic material properties 

called the Lamé constants (or moduli).

Question: what are the units for  and ?
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Elastic moduli

Although  and  provide a natural 
mathematical parametrization for s(), they 

are typically intermixed in practical 
applications

Their combinations, called “elastic 
moduli” are typically measured or affect 
seismic waves

For example, P-wave speed is sensitive 
to M =  + 2 , which is called the         

“P-wave modulus”

Two important practical elastic moduli are:

Young’s modulus and Poisson’s ratio

Bulk and shear

“P-wave modulus” M
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Young’s modulus and 
Poisson’s ratio

Young’s modulus and Poisson’s ratio occur in 
an experiment with unidirectional 
compression or tension

Consider a cylindrical rock sample 
uniformly compressed along axis X:

Note: The Poisson's ratio is also often denoted s

It measures the ratio of  and : 1
1

2

μ

λ 
= −

( )3 2
xx

xx

μ λ+ μ
E

λ+ μ

s


= =

( )2

zz

xx

λ
ν

λ+ μ





−
= =
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Bulk and Shear Moduli

To obtain the bulk modulus, K, consider a 
cube subjected to hydrostatic pressure 

The Lame constant  complements K in 

describing the shear rigidity of the medium. 
Thus,  is also called the 'rigidity modulus'

For rocks:

• Generally, 10 GPa <  < K < E < 200 GPa

• 0 <  < ½ always; for rocks, 0.05 <  < 0.45, for 
most “hard” rocks,  is near 0.25.

• For wet sedimentary rock,  is above 0.3

For fluids, = ½ and =0 (no shear resistance)
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P-wave Modulus

As we will see later (and may recall from 
Geol335), velocities of P waves are 
determined by a combination of  and 
called the “P-wave modulus”:

4
2

3
M K  = + = +


