Elements of Rock Mechanics (advanced topics)

Also not for exam but interesting topics:

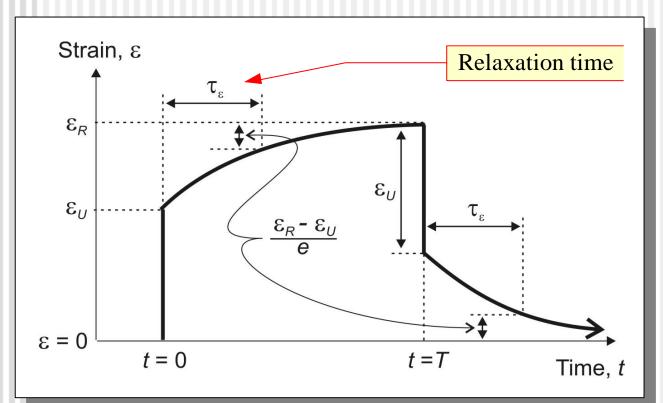
- Creep
- Anelasticity and viscoelasticity
- Lagrangian mechanics (used in Lab #3)
 - Reading:
 - Shearer, 3

Creep

 $\theta(t)$ here is the "step function" here: $\theta(t) = 0$ for t < 0, $\theta(t) = 1$ for $t \ge 0$

• When step-function stress $\sigma(t) = \sigma_0 \theta(t)$ is applied to a solid, it does nit deform instantaneously but exhibits *creep* (delayed, flow-like behaviour):

$$\varepsilon(t) = \frac{\sigma_0}{M_U} \left[1 + \psi(t) \right]$$
"Unrelaxed modulus"



Viscoelasticity

- It is thought that creep-like (time-dependent) processes also explain:
 - Attenuation of seismic waves (at frequencies 0.002 100 Hz)
 - Attenuation of Earth's free oscillations (periods ~1 hour)
 - Chandler wobble (oscillation of the rotation axis of the Earth with period of ~433 days)
- The general viscoelastic model states that stress depends on the time history of strain rate

$$\sigma(t) = \int_{-\infty}^{t} M(t-\tau)\dot{\varepsilon}(\tau)d\tau$$
Viscoelastic modulus

Instead of the Hooke's law relating strain to stress as $\sigma = M \varepsilon$, the viscoelastic constitutive equation for the "standard linear solid" (Zener, 1949) relates strain, stress, and also their rates of change with time:

$$\sigma + \tau_{\sigma} \dot{\sigma} = M \left(\varepsilon + \tau_{\varepsilon} \dot{\varepsilon} \right)$$

Elastic Energy Density

- Mechanical work is required to deform an elastic body. As a result, elastic energy is accumulated in the strain/stress field
- When released, this energy gives rise to earthquakes and seismic waves
- For a loaded spring (1-D elastic body), $E=\frac{1}{2}kx^2=\frac{1}{2}Fx$
- Similarly, for a deformed elastic medium, the elastic energy density is:

$$E_{elastic} = \frac{1}{2} \sigma_{ij} \varepsilon_{ij}$$

Energy Flux in a Wave

 Later, we will see that in a wave, the kinetic energy density equals the elastic energy:

$$\frac{1}{2}\sigma_{ij}\varepsilon_{ij} = \frac{1}{2}\rho\dot{u}^2$$

and so the total energy density:

$$E = \frac{1}{2}\sigma_{ij}\varepsilon_{ij} + \frac{1}{2}\rho\dot{u}^2 = \rho\dot{u}^2$$

The energy propagates with wave speed V, and so the average energy flux equals:

$$J = VE = \rho V \left\langle \dot{u}^2 \right\rangle = \frac{1}{2} Z A_v^2$$

where $Z = \rho V$ is called the impedance, and A_{ν} is the particle-velocity amplitude

Lagrangian mechanics

Instead of equations of motion, modern (i.e., 18^{th} century!) "analytical mechanics" is described in terms of energy functions of generalized coordinates x and velocities \dot{x} :

• Kinetic: (for example)
$$E_k = \frac{1}{2}m\dot{x}^2$$

• Potential:
$$E_p = \frac{1}{2}kx^2$$

These are combined in the Lagrangian function:

$$L(x,\dot{x}) = E_k - E_p$$

Equations of motion in all cases become:

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{x}} \right) - \frac{\partial L}{\partial x} = 0$$

 Exercise: Show that with the above expressions for the kinetic and elastic energies, this equation gives the usual second Newton's law:

$$m\frac{d}{dt}(\dot{x}) = -kx$$

(that is: "mass times acceleration equals applied elastic force")

Lagrangian mechanics of elastic medium

Lagrangian of isotropic elastic field:

$$L(u,\dot{u}) = \int dV \left[\frac{1}{2} \rho \dot{u}_i \dot{u}_i - \left(\frac{1}{2} \lambda \varepsilon_{ii}^2 + \mu \varepsilon_{ij} \varepsilon_{ij} \right) \right]$$

These are the only two second-order combinations of ε that are scalar and invariant with respect to rotations

- This shows the true meanings of Lamé parameters
 - They correspond to the contributions of two different types of deformation (compression and shear) to the potential energy
- Exercise: use the Hooke's law to show that

$$E_{elastic} = \frac{1}{2}\sigma_{ij}\varepsilon_{ij}$$

is indeed equivalent to:

$$E_{elastic} = \frac{1}{2} \lambda \varepsilon_{ii}^{2} + \mu \varepsilon_{ij} \varepsilon_{ij}$$