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Elements of 
Rock Mechanics 

(advanced topics)

Also not for exam but interesting topics:

Creep

Anelasticity and viscoelasticity

Lagrangian mechanics (used in Lab #3)

Reading:

➢ Shearer, 3



GEOL882.3GEOL483.
3

Creep

When step-function stress s(t) = s0q(t) is applied to a 

solid, it does nit deform instantaneously but 
exhibits creep (delayed, flow-like behaviour):
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“Creep function”

“Unrelaxed modulus”

Relaxation time

q(t) here is the 
“step function” 
here: q(t) = 0

for t < 0, 

q(t) =1 for t  0
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Viscoelasticity

It is thought that creep-like (time-dependent) 
processes also explain:

Attenuation of seismic waves (at frequencies 0.002 –
100 Hz)

Attenuation of Earth's free oscillations (periods ~1 
hour)

Chandler wobble (oscillation of the rotation axis of the 
Earth with period of ~433 days)

The general viscoelastic model states that stress 
depends on the time history of strain rate

Instead of the Hooke’s law relating strain to stress 

as s = Me , the viscoelastic constitutive equation 

for the “standard linear solid” (Zener, 1949) relates 
strain, stress, and also their rates of change with 
time:

Viscoelastic modulus
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Elastic Energy Density

Mechanical work is required to deform an elastic 
body. As a result, elastic energy is accumulated in 
the strain/stress field

When released, this energy gives rise to 

earthquakes and seismic waves

For a loaded spring (1-D elastic body),              

E= ½kx2=½Fx

Similarly, for a deformed elastic medium, the

elastic energy density is:

1

2
elastic ij ijE σ ε=
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Energy Flux in a Wave

Later, we will see that in a wave, the kinetic 
energy density equals the elastic energy:
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ij ij us e =

The energy propagates with wave speed V, and 
so the average energy flux equals:
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and so the total energy density:

2 21 1

2 2
ij ijE u us e  = + =

where Z = V is called the impedance, and A
v
is 

the particle-velocity amplitude
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Lagrangian mechanics

Instead of equations of motion, modern (i.e., 18th

century!) “analytical mechanics” is described in 
terms of energy functions of generalized 
coordinates x and velocities         :

Kinetic: (for example)

Potential:

These are combined in the Lagrangian function:

Equations of motion in all cases become:
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Exercise: Show that with the above expressions 
for the kinetic and elastic energies, this equation 
gives the usual second Newton’s law:

( )
d

m x kx
dt

= −

(that is: “mass times acceleration equals applied 
elastic force”)
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Lagrangian mechanics
of elastic medium

Lagrangian of isotropic elastic field:

This shows the true meanings of Lamé parameters

They correspond to the contributions of two different 
types of deformation (compression and shear) to the 
potential energy 

( ) 21 1
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i i ii ij ijL u,u dV ρu u λε + με ε

  
= −   

  


These are the only two 

second-order combinations of e 
that are scalar and 

invariant with respect to rotations

Exercise: use the Hooke's law to show that

is indeed equivalent to:

1

2
elastic ij ijE σ ε=

21

2
elastic ii ij ijE λε + με ε=


