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Seismic waves

Recap of theory which you have seen in Geol335:

Equations of motion

Wave equations

P- and S-waves

New topics:

Seismic impedance

Wave potentials

Energy of a seismic wave

Reading:

➢ Telford et al., Section 4.2

➢ Shearer, 3

➢ Sheriff and Geldart, Sections 2.1-4
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Forces acting 

on a small cube 

Consider a small volume (dx dydz=dV) within the 

elastic body

Force applied to the parallelepiped from all 

directions is due to the variation (gradient) of 

stress s in space

The net force is proportional to the volume of the 

small body: 
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(Summation over ‘j’
implied as usual)
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Equations of Motion
(Motion of the elastic body with time)

Uncompensated net force will result in acceleration

(second Newton's law): 

Therefore, the

equations of motion 

for the components 

of U: 
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Reminder of notation “nabla” – it is a 

vector of differentiation operators 

(giving gradient of ‘f’) :
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Nabla squared is the “Laplacian” –sum 

of second derivatives of a function:
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Wave potentials
Compressional and Shear waves

The above equations describe two types of waves

These waves can be separated by noting a general 

property of vector fields (“Lamé theorem”):

An arbitrary vector field can be represented by a sum 

of a gradient of some scalar field f and a curl of some 

vector field y

Exercise: substitute the above f and y into the 

equation of motion from preceding slide:

and show this:

(or                                       )
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ψ Because there are 4 components 

in y and f only 3 in U, we need to constrain y

P-wave (scalar) potential.

S-wave (vector) potential.

f=  + U ψ i i ijk j kU f  y=  + 
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Wave velocities
Compressional and Shear waves

These are wave equations; compare to the general 

form of  equation describing wave processes:

Compressional (P) wave velocity:

Shear (S) wave velocity:

VS < VP

for n = 0.25:

Note that the VP/VS depends on the Poisson's ratio 

alone:
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Wave Polarization

Elastic solid supports two types of body waves 

(arrows show particle motions within the wave):

Note that this is still an ISOTROPIC reflector.

In general, reflection will intermix 

the S-wave polarization modes,

and P-wave will convert into SV upon reflection. 

P

S
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Notes on the use 

of potentials

Wave potentials are very useful for solving elastic 

wave problems

Just take f or y satisfying the wave equation, e.g.:

...and use the equations for potentials to derive the 

displacements:

...and stress from Hooke's law:    

s
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ij

Units for wave potentials are 

Displacement Distance

For a harmonic wave, if you find the potential, you 
can obtain:

Displacement amplitude = w(potential amplitude)/V

f=  + U ψ
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Example:

Compressional (P) wave

Scalar potential for plane harmonic wave:

Displacement:

note that the displacement is always along n

Strain:

Dilatational strain:

Stress: 
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Impedance

In general, the acoustic Impedance, Z, is a 

measure of the “amount of resistance to particle 

motion” 

What does this mean? This is not so easy to 

say

Rigorously, in the theory of elasticity, wave 
impedance is the ratio of stress to particle velocity

Thus, for a given applied stress, particle 

velocity is inversely proportional to impedance

From the preceding page, For P wave, in the 
direction of its propagation, the impedance is:

➔ This is your familiar formula: impedance
equals the product of density and wave 

velocity

➔ impedance does not depend on frequency 

but depends on the wave type and propagation 

direction
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Elastic Energy Density

Recall that for a deformed elastic medium, the

energy density is:

1
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For a plane wave:

...and therefore:

For P- and S-waves, this gives:

Thus, at any point within a wave, strain energy 

always equals the kinetic energy

Energy travels at the same speed as the wave 

pulse 

Elastic Energy Density
in a wave
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Unlike in an oscillation of a pendulum,
mechanical energy is NOT conserved locally in a wave!


