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Geol 483.3 

 

Lab project #4  

Analysis of a 2D refraction dataset from 2022 
Geophysics field school 

 

In this lab, you will analyze first-arrival travel times from one of the lines recorded along 

the upper trail along the Saskatchewan Crescent we collected during the Geophysics field school 

in 2022.  This was a small 2-D survey (about 200 m long) using a rolling 96-channel receiver 

spread.  

I performed the initial editing of the dataset. The complete dataset can be found in directory 

/data/morozov/Riverbank_2022_Refr/ on Linux computer named sura 

(sura.usask.ca). This computer is located on the right side of Geology room 135, and it is 

also available remotely. For this lab, you will need to use the SEGY (seismic data) file 

data_line02.sgy from this directory. A copy of this file is here and some Matlab/Octave 

codes are included in this archive file. I may update this file as we progress with the lab project. 

Refraction data analysis will consist of several steps: 

1) Loading the SEGY file into a commercial software package called TomoPlus by 

GeoTomo. This software is designed for analysis and inversion of near-surface seismic 

records. In this software, you will display the seismic line, examine its parameters, 

evaluate data quality, and try various types of filtering and display. 

2) Picking first arrivals in TomoPlus and exporting them into ASCII tables for Matlab. 

3) Plotting the travel times in several forms in Matlab; 

4) Inverting the first-arrival travel times using Matlab programs which we will develop 

during this lab. Methods of this inversion are outlined in section “Methods” below. 

Because of limited time remaining in this term, you may not achieve the complete inversion 

but you will still obtain intermediate results which will be useful for deriving a model of the 

shallow subsurface beneath the University Drive. 

Prior to starting this lab, you will need to set up your Linux account as on any of the Linux 

computers in room 135. The procedure is explained under link “Linux setup for labs” on the web 

site. You will only need to do this once. After this setup is complete, you should be able to login 

onto any of our machines and use it to run GeoTomo and other programs. Computer 

sura.usask.ca can be used remotely from on and off campus after performing the 

appropriate VPN setup. 

During and after this setup, you will need to learn about basic Unix shell commands:  

• pwd (print work directory),  

• cd (change directory),  

• ls (list file names),  

• mkdir (create directory),  

• cp (copy files), mv (move or rename files), rm (delete files)  

• man (view manual about any command, with many options),  

lab4_data_line01.sgy
lab4.zip
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• scp (secure copy of files or directories from any machine over the network) 

• more or less (display contents of text files), 

and other. 

Methods  

Inversion of first-arrival travel times consist in finding a model of the subsurface which 

would predict travel times for head waves close to those picked from the dataset. Below, I define 

the various components of this inversion. 

Model 

We will use a layered model of the subsurface in a delay time (sometimes also called “time 

term”) form. In this form, head wave delay times are used instead of the depths of the refracting 

boundaries. Between the boundaries, model velocities are constant vertically and smoothly 

variable horizontally. Thus, the n-th boundary (n = 1..Nb) is described by two smooth functions of 

the horizontal coordinate x: 

                            delay time ( )nt x  and slowness below the refractor pn(x). (1) 

The refractor depths are related to delay times as 
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where ( ) ( )1n nV x p x=  is the velocity above the refractor, and ( )1arcsinn n np V −=  is the 

critical angle for the refractor (this formula is simply an inverse of the expression for the delay 

time for a stack of layers we saw in class). These depths should be measured relative to some 

smooth datum surface. As the datum, we will select a smooth line below the minimum surface 

elevation. 

The uppermost near-surface layer (n = 0) also contains model parameters given in eq. (1). 

For this layer, function t0(x) has the meaning of delay time within a very thin near-surface layer, 

and p0(x) give the variations of the direct-wave velocity. 

For numerical inversion, the continuous functions and ( )nt x  and pn(x) need to be 

discretized. They can be discretized by selecting several control points (these points may be 

different for the depth-related functions ( )nt x  and for velocity-related functions. Between 

these points, the values of functions will be determined by interpolation. Interpolation of discrete 

points can be represented by summations: 
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where tni and pni are the model parameters at the discrete points, and i(x) is a “sawtooth”-shape 

basis function centered on the ith control point xi.  The numbers of control points Nt and Np can 

be different. Usually, Np (number of points at which the layer velocities are defined) is small (2 

to 5), although in the midpoint method described below, Np can be large. The number Nt controls 

the detail of depth variation of the layers, and this number would usually be larger than Np. 
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Thus, matrices tni and pni contain all parameters of the model we will need to invert for. If 

these parameters are known, the model can be plotted and all travel times can be predicted.   

Travel time prediction 

The complete predicted travel-time model that we will use for matching the observed travel 

times is 

             ( ) ( ) ( ) ( )pred rec elev elev model

0 0, ,n S Sn Rn S R n S Rt S R t t t t x t x t S R t t= + + + + + + + , (4) 

where S denotes the source, R denotes the receiver, and n is branch of the wave (direct or 

refracted on the nth boundary). In eq. (4): 

1)  
rec

St  is the reciprocal-time correction applied to each source (explained in the next 

subsection);  

2) Elevation-related terms 
elev

Snt  and 
elev

Rnt  representing additional delay times of the source 

and receiver locations due to their elevations relative to the datum:  
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3) Zero-offset time terms ( )0 St x  and ( )0 Rt x  due to a possible very low velocity, thin near-

surface layers. These terms are “surface consistent”, which means that they relate to the 

surface locations x only and are equal for source and receiver located at the same point. 

4) Term ( )model ,nt S R  is the travel time predicted by a layered subsurface model, with the 

source and receiver located on the datum; 

5) The last terms tS and tR account for small source- and receiver related travel-time 

variations which are not accounted for by the 2-D model. These terms are also described 

in the next subsections.  

For a given layer number n ≥ 0, the travel time ( )model ,nt S R from source S to receiver R is 

predicted by the delay-time relation: 
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With n = 0, this equation gives the direct-wave travel times and with n > 0 – head wave travel 

times. Using eq. (3), the integral in this expression is transformed into a sum: 
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function along the source-receiver path. These integrals are easily calculated analytically using 

the known piecewise-linear functions i(x), and so eq. (4) represents a matrix product and 

summation which can be easily evaluated in Matlab. 

Inversion 

Inversion of the observed travel times consists in finding the subsurface model and the 

additional terms in eq. (4) so that ( ) ( )pred obs, ,nt S R t S R  in the least-squares sense. This 

inversion can be performed in the order of terms shown in eq. (4), as described below. 

Reciprocity-based corrections of source times 

First, you will invert the mismatches of all reciprocal times for the source time 

errors.  For each source S1, consider all other sources S2 such that each of them has the travel 

times picked in the vicinity of the other source. Any velocity structure has the reciprocity 

property ( ) ( )model model

1 2 2 1, ,t S S t S S= , and therefore the difference of these reciprocal travel 

times equals  

                                           ( )
1 2

rec rec reciprocal

1 2,S St t t S S− =  , (6) 

where ( ) ( ) ( )reciprocal obs obs

1 2 1 2 2 1, , ,t S S t S S t S S = −  is the difference between the observed 

travel times for the two shots. This is a linear inverse problem for 
rec

St , which can be solved by 

the least-squares method. 

When inverting eq. (6), you will notice that the inverse is nonunique because this equation 

allows adding an arbitrary constant to all 
rec

St . This problem is easily corrected by adding an 

additional constraint to the system of equations (6). The constraint can be setting 
rec 0St =  for one 

shot or requiring that the average of all 
rec

St  equals zero: 
rec 0S

S

t = . 

Ideally, ( )reciprocal

1 2,t S S should equal zero and therefore all 
rec 0St = . However, as 

( )reciprocal

1 2, 0t S S   in the real data, inversion of eq. (6) gives the source times 
rec

St correcting 

for this error. These terms should then be subtracted from the data: 

                                           ( ) ( )obs obs rec

corrected
reciprocity

, , St S R t S R t= − , (7) 

giving corrected input data for further inversion, which are free of reciprocal travel-time 

mismatches. 

Analysis of the first-arrival Travel-Time Field (TTF) 

The next two steps of inversion consist in obtaining the subsurface model (parameters 

( )0t x and tni and pni in the preceding section). For this, it is useful to view the first-arrival travel 

times as samples of a continuous “time field” (TTF) function ( ),S RT x x  of continuously variable 

source and receiver coordinates xS and xR. The corrected observed picks (eq. (7)) represent 

sampling of this function at the available source and receiver pairs. For the subsequent plotting, 

data analysis and inversion, it is convenient to grid this function on a regular grid of midpoint 



5 

 

coordinates 
2

S R
mp

x x
x

+
= and (signed) source-receiver distances R Sd x x= − . This gridding can 

be easily performed using function griddata in Matlab (which uses the Delaunay 

triangulation).  

Due to the source-receiver reciprocity, travel time of any wave remains unchanged if the 

source and receiver are switched places. Therefore, the TTF is always an even function with 

respect to d: ( ) ( ), ,mp mpT d x T d x− = . This is a very useful property because it allows 

considering only non-negative values of d and transforming the TTF as 

                                         ( ) ( ) ( )
1

, , ,
2

mp mp mpT d x T d x T d x = − +
 

. (7) 

This averaging of reversed travel times improves sampling in the plane of (d, xmp) and reduces 

noise in the travel-time data. At Further, it is useful to separate the zero-offset travel-time: 

( ) ( )0 0,mp mpt x T x=  and denote the new TTF with zero values at d = 0 

( ) ( ) ( )0 0, ,mp mp mpT d x T d x t x= − . 

In the code, function ( )0 , mpT d x  for d > 0 is stored in a Matlab matrix, with columns 

representing the common-midpoint travel times and rows representing the common-offset travel 

times. The range of (d, xmp) values is subdivided into zones containing the direct waves (near 

axis d = 0, and head waves from the refracting boundaries (at progressively larger d). These zones 

are specified by giving the crossover distances for refractions at each xmp. Measurement of these 

crossover distances is the primary goal of data analysis, which is performed in script 

lab4_pass2.m below. 

If crossover distances are determined, then properties of the nth layer (direct-wave for n = 0 

and headwave for n ≥ 1) can be determined by solving linear inverse problem within the nth 

offset interval of the TTF:  

                                                       ( ) int, mp n nT d x t p d +  .  (8) 

Parameters of this inverse problem 
int

nt  and pn are the intercept time and slowness of the layer, 

respectively. These parameters can be relatively smoothly variable along the profile (i.e., smooth 

functions of xcmp).  

Subsurface model 

The subsurface model is responsible for the terms enclosed in brackets […] in eq. (4). The 

model is defined as Nb layers, each nth layer characterized by a (spatially) slowly variable 

slowness pn and delay times nt in eq. (1) defined at every midpoint xmp. 

Slowness pn for the nth layer can be taken from the corresponding TTF parameter (eq. 8), 

and an initial estimate for nt can be simply obtained as  

                                                              

int

2

n
n

t
t =  .  (9) 

The intercept measured for the direct wave (with n = 0) can be added to the zero-offset 

time function t0(xcmp), after which t0 is set equal zero. This function t0(x) is then used to evaluate 
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the terms ( ) ( )0 0S Rt x t x+  in eq. (4). Once parameters ( )0 mpt x  and pni are estimated, the 

elevation-related terms elev

Snt  and elev

Rnt  can be calculated and also included in the right-hand side of 

eq. (4). 

After estimating all of the above “static” terms, the data can be corrected for them: 

                       ( ) ( ) ( ) ( )obs,corrected obs rec elev elev

0, ,n n S S R S R St S R t S R t t t t x t x = − + + + +   (10) 

 This subtraction should reduce the scatter of the travel times due to elevation and near-surface 

velocity variations and improve the identification of slownesses pn. Therefore, the evaluation of 

the elevation of t0(x), 
elev

Snt  and 
elev

Rnt and estimation of pn should be iterated a couple times until 

these values become consistent.  

Selections of the above “static” terms and nt  give a fairly good starting model for the 

inversion. This starting model would represent an accurate solution a 1-D refraction experiment 

with layering as at location xmp This model will be further refined by iterations described in the 

next subsection. 

Inversion for delay times 

Using the identified layer slownesses, the delay times for refracting boundaries can be 

obtained by correcting the observed times for all of the above effects and solving the linear 

inverse problem in eq. (4): 
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where the corrected data are  

           ( ) ( ) ( ) ( ) ( )obs obs rec elev elev
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Equation (11) is also an overdetermined linear inverse problem for unknowns tni, which is 

solved by an iterative least-squares inverse.  

Residual travel-time terms 

After all “surface-consistent” model-related terms in the right-hand side of eq. (4) are 

inverted for, the “residual” terms tS and tR terms can be obtained and used to improve the 

model (4). Such terms are called the “short-wavelength static correction” in the popular Hampson 

and Russell’s GLI refraction statics software (also included in GeoTomo). These terms are also 

obtained by solving a linear inverse problem: 

                                                   ( )error NSC NSC,n S Rt S R t t + , (13) 

where 
error obs model

n n nt t t= −  is the total error of the travel-time prediction by the final model (4) 

excluding the last to terms.  Equation (13) can also be solved by the least-squares inversion. 

However, as its forward model (right-hand side) is very simple, it can be easily solved even in a 

better approximation. Let us use the median (statistical) inverse: 

                      ( )NSC

error ,S S
t median t S R =

 
,  and   ( )error ,NSC

R R
t median t S R =

 
, (14) 
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where notation 
 or S R

median t 
 means evaluation of the median of all values t over all travel-

time picks for the given source S, or for the given receiver R. These relations give the “non-

surface consistent” travel-time terms in eq. (4) due to uncorrelated near-surface velocity 

variations in the vicinities of the sources and receivers, respectively.  

Assignments 

1) Create a work directory under path /data/ on sura. Use ‘cd /data/’ and then mkdir 

followed by your username. Then ‘cd’ to that directory. In the following, place all files 

and work only in this directory. You can create any subdirectories or files in there. In 

particular, when you start using GeoTomo, place its project into this directory. 

2) Start GeoTomo (TomoPlus) programs by typing geotomo in a Unix shell. In 

GeoTomo, create a project and load file lab4_data_line02.sgy in it.  

Familiarize yourself with SEGY headers in the file, display geometry of the data.   

Create seismic displays and evaluate the quality of data records. There are a number 

of poorly recorded records, and channel 1 was disconnected. Some records are noisy 

because of the AC power generator being placed close to the line, and some records are 

contaminated by pedestrian and bicycle noise. You need to ignore the poor records or 

exclude them by marking as bad or ‘killed’ records. 

The different shots in the records will be identified by different “field file identifiers” 

(FFID), which are called (I think) Shot ID in GeoTomo. The individual trace records are 

identified by their channel numbers used in the recording instrument. 

Identify the first arrivals in the records. 

3) Select display form (time range, frequency filtering, AGC, wiggle-trace or variable-

intensity color style) and perform picking of the first-arrival travel times. This will 

have to be done manually, but you can also explore the available automatic picking 

options.  

Try picking the different FFIDs consistently, i.e, pick the zero crossings from the first 

negative trace swing to the large positive amplitude peak. This may not always be 

possible to do, so only pick the records where such identification can be made. In 

GeoTomo, there should be options for automatic snapping of the manual pick to the 

nearest zero crossing, and also for picking groups of adjacent traces. 

To help ensuring picking consistency for different FFIDs, try switching between the shot 

display (usually the default) and common-midpoint and common-receiver display modes. 

In these displays, traces from different FFIDs are shown side by side, and it is therefore 

easy to see whether the same wave is being picked on them. 

4) After the picks (or maybe a representative sample) are completed, display them in 

GeoTomo and evaluate the travel-time patterns. Identify the direct waves, refractions 

(head waves), and roughly estimate the cross-over distances.  

5) Export the first-arrival picks into an ASCII format and prepare them for further 

processing in Matlab or GNU Octave. 

The preparation may require commenting out (by using symbols ‘%’) certain header lines 

so that the resulting files can be loaded using function load() in Matlab. Alternatively, 
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the pick files can be edited to include names of variables and represent parts of a Matlab 

program. 

 

The following tasks are performed in Matlab using codes provided in this archive file. Try 

understanding what is being done and suggest modifications if needed.  

The different steps of processing are split into three scripts: 

• lab4_pass1.m performs loading the data from GeoTomo file, creating geometry, 

(optionally) correcting some \ errors found in the data, and performing the reciprocal-time 

analysis and inversion; 

• lab4_pass2.m performs semi-interactive analysis of the travel time and obtaining 

estimates of the near-surface velocities and delay times (at present, velocities in the deeper 

layers are unavailable.) 

• lab4_pass3.m performs inversion of the first-arrival times. 

 

In file lab4_pass1.m, replace the current file name in command load_picks() 

with the name of the file you produced from GeoTomo. Execute this script and look at 

three figures produced by this script: 

• Figure 1 shows a map of sources and receivers, with receiver station numbers printed 

next to them. In this dataset, I had not set the accurate geometry, and so this plot 

should look fairly simple. 

• Figure 2 is a preliminary plot of velocity and delay-time cross-section. It will also 

look very simple because of the absence of elevation information. 

• Figure 7 shows reciprocal-time misfits before (on the left) and after (right panel)  the 

reciprocal-time corrections. This is the principal result of this processing step.  

Next, execute lab4_pass2.m . This script will produce Figures 5 and 6 with travel 

times from selected sources and midpoints. The script produces the following plots: 

• Figure 201 shows all picked travel times versus profile distance. In the upper 

panel, the picks are shown versus the positions of receiver stations, similar to the T-X 

displays in GeoTomo. In the middle panel, teh same travel times are plotted vs. the 

source-receiver midpoints. In the bottom panel, the common-offset travel times are 

contoured versus profile distance. 

In these plots, look for anomalies and indications of mis-picks in the travel-time 

dataset. 

• Figure 211 (or similar) shows travel times of selected groups of shots vs. source-

receiver offset. The lines are split into colored segments (muted near-source 

segments – green, direct waves – red, first and second refractions – blue and 

magenta, respectively). The plots are done using travel-time reduction, so that the 

differences in velocities are clearer. 

• Figure 212 is similar, but the travel times are plotted along common-midpoint 

cross-sections of the travel-time surface. 

lab4.zip
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• Figure 221 shows the interpolated travel-time field (TTF) surface plotted as a 

function of midpoint and offset (top panel) and the breakdown of this TTF into 

direct- and headwave blanches (bottom panel). In both of these plots, the cross-over 

lines from model.crossover are plotted. 

Looking at these plots, you will need to adjust the values of columns in matrices 

model.crossover to represent the offsets at which you estimate the crossover 

distances (separators between the colored segments) at the various locations within 

the profile. Matrix model.mute similarly gives the near-source offset ranges which  

need to be excluded from measuring direct-wave velocities (this range is shown by 

green color). 

Repeat the travel-time plots at the end of lab4_pass2.m with different selections of 

midpoints and make more adjustments in model.crossover. You can make multiple 

plots simultaneously using different figure numbers (first parameter in plot_ttimes… 

functions). 

6) After the picking of crossover distances is finished, re-run lab4_pass1.m and 

lab4_pass2.m once again for the cross-over picks to take effect. Then execute 

lab4_pass3.m, and the inversion should be complete.  

7) Save in graphics formats, review and discuss the plots produced in the processing above 

steps.  

With the travel times and model loaded in the workspace, you can try additional 

versions of these plots. For example, you can try plotting the travel times and TTF with 

different reduction velocities.  

 

Hand in:  

Codes, plots, and report in electronic format. 

  


