Tomography and Location

In this lecture, we discuss several aspects of the very general problem of INVERSION, based on examples of cross-well seismic travel-time tomography and earthquake location

- Forward and Inverse travel-time problems
- Seismic tomography
- Generalised Linear Inverse
- Least Squares inverse
 - Regularized, weighed, smoothed
- Iterative inverse
 - Back-projection method
- Resolution
- Statistical testing of results
- Location of seismic sources
- Data norms

Reading:

Shearer, 5.6-5.7

Seismic (velocity) tomography

Tomography

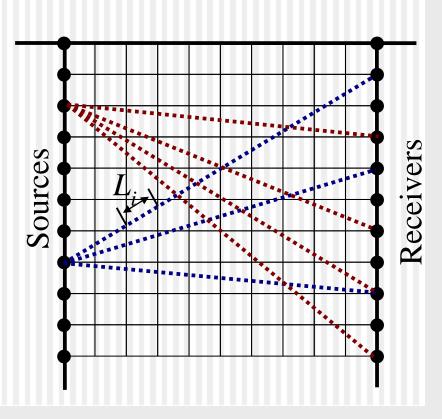
- The name derived from the Greek for "section drawing" - the idea is that the section appears almost automatically...
- Using multitude of source-receiver pairs with rays crossing the area of interest.
- Looking for an unknown velocity structure.
- Depending on the type of recording used, it could be:
 - Transmission tomography (nearly straight rays between boreholes);
 - Reflection tomography (reflected rays; in this case, positions of the reflectors could be also found);
 - Diffraction tomography (using least-time travel paths according to Fermat rather than Snell's law; this is actually more a waveform inversion technique).

Cross-well tomography

- Consider the case of transmission "cross-well" tomography
 - This is the simplest case rays may be considered nearly straight, the data are abundant, and the coverage is relatively uniform

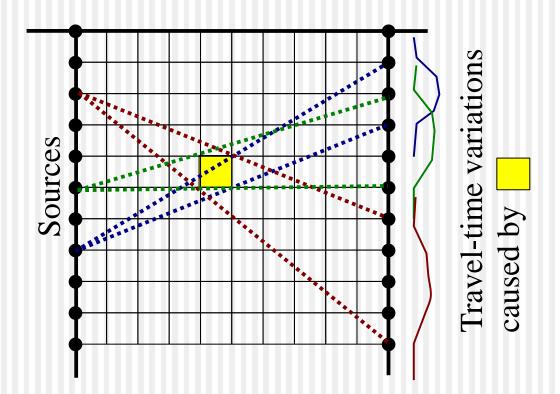
These are the three principal concerns in tomography:

- 1) linearity of the problem;
- 2) density of data coverage;
- 3) good azimuthal coverage.



Principle of travel-time tomography

- Velocity perturbations are considered as small
 - Therefore, rays are approximated as straight
- Each velocity cell leads to characteristic travel-time variations at the receivers ("impulse response")
 - These are inverted for velocity value at



Travel-time inversion as a *linear inverse problem*

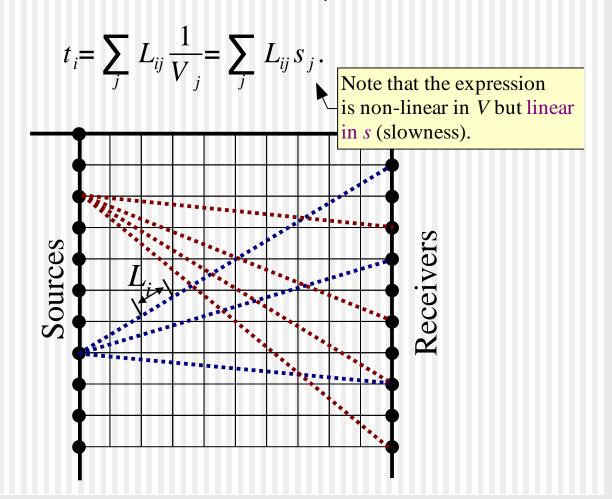
- First, we parameterize the velocity model
 - Typically, the parameterization is a grid of constant-velocity blocks (sometimes continuous spline functions are used instead of the blocks).
 - This parameterization gives us a model vector,
 m, consisting of slownesses in each cell:
 - Second, we measure all available travel times and arrange them into a single data vector:

$$\mathbf{m} = \begin{pmatrix} s_1 = 1/V_1 \\ s_2 = 1/V_2 \\ \cdots \\ s_{N_{\text{model}}} = 1/V_N \end{pmatrix}$$

$$\mathbf{d} = \left(egin{array}{c} t_1 \\ t_2 \\ \dots \\ t_{N_{\mathrm{data}}} \end{array}
ight)$$

Forward model

- Third, we formulate the *forward model* to predict \mathbf{d} from \mathbf{m} . To achieve this, we need to *trace rays* through the model and measure the length of every ray's segment in each model block, L_{ii} .
 - The travel time for i-th ray is then:



Generalized Linear Inverse

• The model for travel times: $t_i = \sum_j L_{ij} s_j$ can be written in matrix form:

$$d = Lm$$

- Now, we want to substitute $\mathbf{d} = \mathbf{d}^{\text{observed}}$ and solve for unknown \mathbf{m} . This is called the inverse problem
- Typically, matrix L is not invertible (it is not square), and so it is inverted in some generalized (averaged, approximate) sense
- Any solution in the linear form

$$\mathbf{m} = \mathbf{L}_g^{-1} \mathbf{d}^{\text{observed}}$$

is called the generalized linear inverse.

- The key idea of generalized inverse is that model m is sought as a linear combination (matrix product) of data values) (dobserved, travel times in our case)
- The key problem is thus in finding a suitable form for $\mathbf{L}_{_{\sigma}}^{-1}$

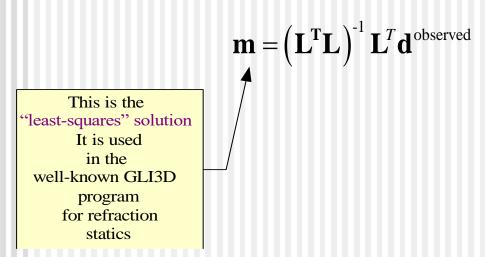
Projection into model space

- Tomography problems are typically <u>overdetermined</u> (contain many more ray paths than grid model blocks)
- In such cases, the following approach to constructing $\mathbf{L}_{_{\mathbf{g}}}^{-1}$ works well:
 - multiply on the left by transposed LT:

$$\mathbf{L}^T \mathbf{d}^{\text{observed}} = \mathbf{L}^T \mathbf{L} \mathbf{m}$$

This operation "backprojects" the redundant data onto model space

- ullet The matrix $\mathbf{L}^T \mathbf{L}$ is square and often invertible
- By inverting matrix L^TL, we find solution giving m is a product of data d with a matrix:



Least Squares Inverse

Note that the solution is a linear combination of data values:

$$\mathbf{m} = \left(\mathbf{L}^{\mathrm{T}}\mathbf{L}\right)^{-1}\mathbf{L}^{\mathrm{T}}\mathbf{d}^{\mathrm{observed}} = \mathbf{L}_{g}^{-1}\mathbf{d}^{\mathrm{observed}}$$

$$\mathbf{L}_{g}^{-1} = \left(\mathbf{L}^{\mathsf{T}}\mathbf{L}\right)^{-1}\mathbf{L}^{\mathsf{T}}$$

 $\mathbf{L}_{g}^{-1} = (\mathbf{L}^{T}\mathbf{L})^{-1}\mathbf{L}^{T}$ This is the generalized inverse for LEAST SQUARES method

The reason for its name of "Least Squares" is in minimizing the mean square of data misfit function $\Phi(\mathbf{m})$:

$$\Phi(\mathbf{m}) = (\mathbf{d}^{\text{observed}} - \mathbf{Lm})^{T} (\mathbf{d}^{\text{observed}} - \mathbf{Lm})$$

Exercise: show this!

Hints:

Write the misfit above in subscript form, as function of multiple variables m_i :

$$\Phi(\mathbf{m}) = \left(d_i^{observed} - L_{ij}m_j\right) \left(d_i^{observed} - L_{ik}m_k\right)$$
summations
over
repeated
indices
implied!

Write equations for minimizing the misfit: 2)

$$\frac{\partial \Phi}{m_i} = 0$$

Present these equations back in matrix form. 3)

Damped Least Squares

- Sometimes the matrix L^TL is singular and its inverse does not exist or unstable.
 - This happens, e.g., when:
 - Some model cells are not crossed by any rays, or
 - There are groups of cells traversed by the same rays only.
- In such cases, the inversion can be regularized by adding a small positive diagonal term to L^TL:

$$\mathbf{m} = \left(\mathbf{L}^{\mathsf{T}}\mathbf{L} + \varepsilon\mathbf{I}\right)^{\mathsf{-1}}\mathbf{L}^{\mathsf{T}}\mathbf{d}^{\mathsf{observed}}$$

- This is also a generalized inverse. This form of inverse is called the *Damped Least Squares* solution.
- In this solution, ε is chosen such that stability is achieved and the non-zero contributions in L^TL are affected only slightly.

Weighted Least Squares

- Often, different types of data are included in d
 - For example, different travel times, t_i , may be measured with different uncertainties δt_i
- In such cases, it is useful to apply weights to the equations:

Wd = WLm

where W is a diagonal weight matrix:

$$\mathbf{W} = \operatorname{diag}\left(\frac{1}{\delta t_1}, \frac{1}{\delta t_2}, \frac{1}{\delta t_3}, \dots\right)$$

This weight matrix simply means that each equation for travel time t_i is multiplied by $1/\delta t_i$. As a result uncertainties of scaled data in each equations become equal 1, and they should have equal contributions to the resulting model

$$\mathbf{m} = \mathbf{L}_g^{-1} \mathbf{d}^{\text{observed}}$$

Weighted Least Squares (cont.)

 This corresponds to a modified least-squares misfit function:

$$\Phi(\mathbf{m}) = (\mathbf{d}^{\text{observed}} - \mathbf{L}\mathbf{m})^T \mathbf{W}^T \mathbf{W} (\mathbf{d}^{\text{observed}} - \mathbf{L}\mathbf{m})$$

and solution:

$$\mathbf{m} = \mathbf{L}_{g}^{-1} \mathbf{d}^{observed}$$

$$\mathbf{L}_{g}^{-1} = \left(\mathbf{L}^{T} \mathbf{W}^{T} \mathbf{W} \mathbf{L} + \varepsilon \mathbf{I}\right)^{-1} \mathbf{L}^{T} \mathbf{W}$$

Smoothness constraints

- When using finely-sampled models...
 - some cells may be poorly constrained;
 - solutions can become 'rough' (highly variable, noisy - see below)
- To remove roughness, additional 'smoothness constraint' equations can be added
 - These equations will be additional rows in L, for example:

$$m_i = \text{Average_of_some_adjacent_points_}(m_i)$$

This equation makes the inverse favor models in which model slowness m_i is close to adjacent points

Zero Laplacian:

$$\nabla^2 m_i = 0$$

Recall that Laplacian of a function is the sum of second derivatives. These derivatives are small in a smooth model:

$$\nabla^2 f \equiv \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2}$$

These equations must be used with small weights
 w, which are often tricky to select

Simple Iterative Inverse

- Sometimes matrix L^TL is also too large to invert, or even to store
- It can the be approximated by its diagonal:

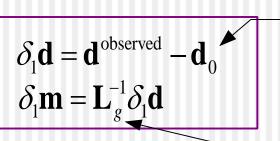
$$m = \left[\operatorname{diag}(\mathbf{L}^T \mathbf{L}) + \varepsilon \mathbf{I}\right]^{-1} \mathbf{L}^T \mathbf{d}^{\text{observed}}$$

- The diagonal only contains one value per model cell (sum of squared distances for all rays crossing it)
- ◆ Contributions to m can be evaluated during a pass through all data and without storing matrices L or L^TL
- Variants of this method are known as:
 - Back-projection method;
 - SIRT (Simultaneous Iterative Reconstruction technique)
 - ART (Algebraic Reconstruction Technique)

Simple Iterative Inverse

(how it works)

Iteration to reduce data error:



Travel times in "background model"

Approximate inverse of any kind

$$\delta_2 \mathbf{d} = \delta_1 \mathbf{d} - L \delta_1 \mathbf{m}$$
$$\delta_2 \mathbf{m} = \mathbf{L}_g^{-1} \delta_2 \mathbf{d}$$

Sources

For each ray, the observed travel-time perturbation is thus "back-projected" into the slownness model

Resolution matrix

 For any form of the inverse, assessment of the quality of inversion method is often done by using the Resolution Matrix:

$$\mathbf{R} = \mathbf{L}_{g}^{-1} \mathbf{L}$$

- The resolution matrix can be understood like this:
 - 1) To obtain j^{th} column of the resolution matrix, perturb j^{th} parameter (slowness value) of a zero model by a unit value (e.g., 1 s/m for slowness). Let us denote this perturbed model $\mathbf{m}_{\text{test}}^{j}$
 - 2) Perform forward modeling (generate synthetic data);
 - 3) Perform the inverse. The result of this inversion will be $\mathbf{m}_{\text{test}}^{j \text{ reproduced}} = \mathbf{L}_{g}^{-1} \mathbf{L} \mathbf{m}_{\text{test}}^{j} = \mathbf{R} \mathbf{m}_{\text{test}}^{j}$

This is the j^{th} column of matrix **R**.

- Thus, j^{th} column in matrix \mathbf{R} shows how the j^{th} cell is reproduced by the inversion. Ideally, cell j should be reproduced perfectly (with value $R_{jj} = 1$), and other R_{ij} should equal zero (cell j should not be misrepresented as different "i" after inversion).
- Note that R does not depend on data values but depends on sampling (matrix L)

Checkerboard resolution test

- Test of the resolution in the model when computation of the Resolution Matrix is impossible or impractical
- Method:
 - Create an artificial model perturbation in the form of alternating positive and negative anomalies ("checkerboard")
 - Predict the data in this model:

$$\mathbf{d'} = \mathbf{Lm}_{checker}$$

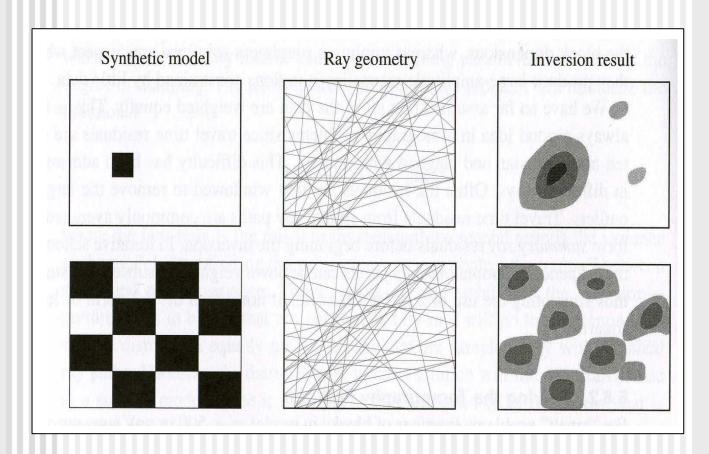
Invert the resulting synthetic data:

$$\mathbf{m'} = \mathbf{L}_g^{-1} \mathbf{d'} = \mathbf{L}_g^{-1} \mathbf{Lm}_{\text{checker}}$$

- Compare the result to the input model
 - The ability to reproduce the input "checker" anomalies indicates the quality of inversion
 - This quality varies within different parts of the model

Checkerboard resolution test (cont.)

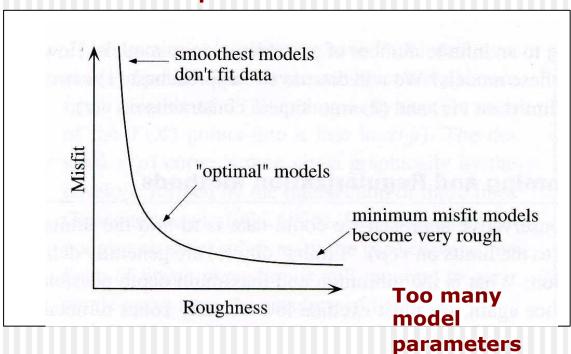
Schematic example from travel-time tomography:



Trade-off between data fit and model simplicity

- Too simple models often cannot explain the data
- However, excessively detailed models are also not good:
 - They can "over-fit" the data (fit travel times too much, better than warranted by errors in picking the times)
 - Model complexity may be spurious and caused by data noise
- We need to look for "optimally" complex models

Too few model parameters



Test for statistical significance of data fitting

- How can we verify that the model fits the data within reasonable error?
 - Complex models (with large numbers of unknowns) would often fit the data well;
 - Because the data contains noise, we should not over-fit the data!
- The χ² test is commonly used to determine whether the remaining data misfit is likely to be random:

$$\chi^{2} = \frac{\sum_{i=1}^{N} \left(t_{i} - t_{i}^{\text{observed}}\right)^{2}}{\sigma^{2}}$$

- Here, σ is the estimated data-measurement uncertainty
- This uncertainty needs to be somehow measured from the data, prior to inversion (see eq. 5.31 in Shearer)

χ^2 test (cont.)

The p.d.f. of χ^2 is controlled by the "number of data degrees of freedom" in the model:

$$N_{\rm df} = N_{\rm travel\ times} - N_{\rm model\ parameters}$$

- this value means the number of travel times (constraints) not already satisfied by solving for model parameters
- For a given $N_{\rm df}$, tabulated percentage points of p.d.f.(χ^2) can be used to determine whether the residual data misfit is likely to be random:

N _{df}	At 5%	At 50%	At 95%
5	1.15	4.35	11.07
10	3.94	9.34	18.31
20	10.85	19.34	31.41
50	34.76	49.33	67.5
100	77.03	99.33	124.34

The 95-% level is commonly used

χ^2 test (cont.)

- Here is how the χ^2 test is conducted (see lab #2):
- Estimate measurement error σ for your data (travel times);
- For a given model, calculate data errors (data minus data predicted by the model);
- Divide the errors by σ , square, and sum to produce the χ^2 quantity ("statistic");
- Determine $N_{\rm df}$;
- For this $N_{\rm df}$, look up in the table on the preceding slide the expected value of χ^2 at 95% confidence. Let us denote this value $\chi^2_{95\%}$.
- Check how your χ^2 from the data and model compares to $\chi^2_{95\%}$:
 - If $\chi^2 > \chi^2_{95\%}$, your model <u>poorly explains data</u>; you need to increase the detail in the model;
 - If $\chi^2 \ll \chi^2_{95\%}$, the <u>model is overfitted</u> and likely "rough". Reduce model detail.
 - If $\chi^2 < \chi^2_{95\%}$ by not much, the model is good, and the errors are random (with 95% confidence).

Source Location Problem

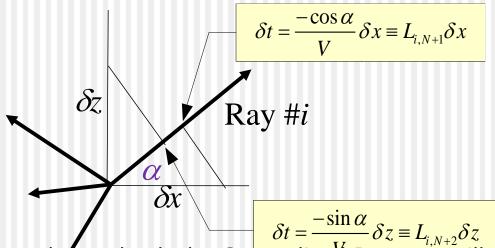
- When using a natural (impulsive) source, its location can also be determined by a similar approach.
 - This method is used for locating earthquakes worldwide
 - For monitoring creep of mine walls (potash exploration)
 - Monitoring reservoirs during injection (Weyburn)
- To solve this problem, we:
 - Start from some reasonable approximation for source coordinates and solve the velocity tomography problem.
 - Include the coordinates and time of the source in model vector m:

$$\mathbf{m} = \begin{pmatrix} s_1 = 1/V_1 \\ s_2 = 1/V_2 \\ \dots \\ s_N = 1/V_N \\ \mathcal{X}_{source} \\ \mathcal{Z}_{source} \\ t_{source} \end{pmatrix}$$

(In two dimensions)

Source Location (cont.)

• Include into the matrix L time delays associated with shifting the source by δx or δz :



- Now, when solved, the Generalized Inverse will yield the corrections to the location $(\delta x, \delta z)$.
- This process is <u>iterated</u>: with the new source location, velocities are recomputed, and sources relocated again, etc.
 - Iterations are needed because ray shapes change after we shift the source and modify velocities (rays are not straight!)

Measures of data misfit ("data norms")

The Least-Squares norm (called "L2") can be highly sensitive to data outliers:

$$\varepsilon_{L2} = \sum_{i=1}^{N} \left(t_i - t_i^{\text{observed}} \right)^2$$

- However, it is the easiest to use (only for this norm, L⁻¹_g exists).
- Other useful norms:

•
$$L_{\text{n}}$$
 norms: $\varepsilon_{L_n} = \sum_{i=1}^{N} \left| t_i - t_i^{\text{observed}} \right|^n$

•
$$L_{\infty}$$
 norm: $\varepsilon_{L_{\infty}} = max_i \left(\left| t_i - t_i^{\text{observed}} \right| \right)$

 The "L₁" norm is less sensitive to outliers (i.e., anomalous errors), and therefore also often preferred:

$$\varepsilon_{L_1} = \sum_{i=1}^{N} \left| t_i - t_i^{\text{observed}} \right|$$

L₁-norm inversion

- Solutions minimizing L₁ and similar norms are derived from L₂ by iterative reweighting:
 - 1) Use the least-squares inverse to minimize

$$\varepsilon_{L2} = \sum_{i=1}^{N} \left(t_i - t_i^{\text{observed}} \right)^2$$

2) Apply weights based on current data errors:

$$W_i = \frac{1}{\sqrt{\left|t_i - t_i^{\text{observed}}\right|}}$$

• The misfit then approximates ε_{L1} :

Weighted
$$\varepsilon_{L2} = \sum_{i=1}^{N} W_i^2 \left(t_i - t_i^{\text{observed}} \right)^2 \approx \sum_{i=1}^{N} \left| t_i - t_i^{\text{observed}} \right| = \varepsilon_{L1}$$

3) Iterate to converge to L1 solution