Mathematical principles

- Rotations
- Tensors, eigenvectors
- Wave equation
- Principle of superposition
- Boundary conditions

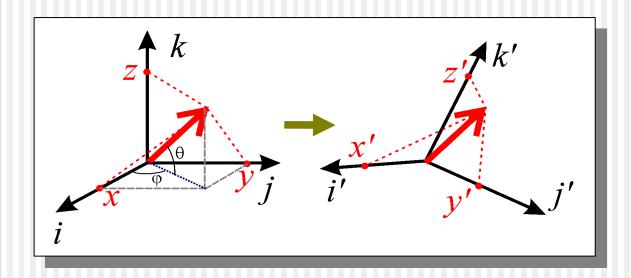
Reading:

- > Telford et al., Sections A.2-3, A.5, A.7
- > Shearer, 2.1-2.2, 11.2, Appendix 2

Rotation (vector)

 When axes are rotated, the projections are transformed via an axes rotation matrix R:

$$\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{bmatrix} R_{xx} & R_{xy} & R_{xz} \\ R_{yx} & R_{yy} & R_{yz} \\ R_{zx} & R_{zy} & R_{zz} \end{bmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

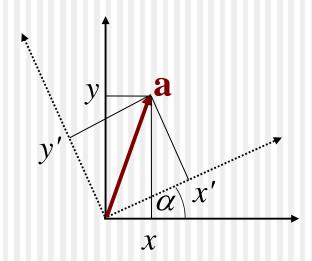


Two dimensional (2D) rotation

• Exercise: Derive the transformation for a counter-clockwise axes rotation by angle α :

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \mathbf{R} \begin{pmatrix} x \\ y \end{pmatrix}$$

- Note that the matrix is anti-symmetric
- What is the matrix R⁻¹ of the inverse transformation?



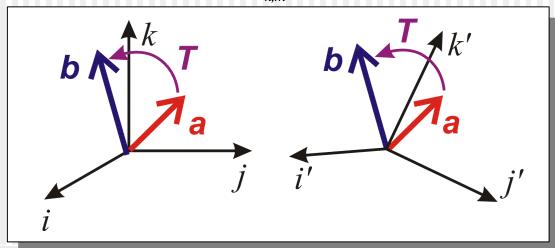
Rotation (tensor)

- Tensor is a bi-directional quantity:
 - Examples: Stress and strain in an elastic body; any operator transforming one vector (say, a;) into another (b);
 - Represented by a matrix:

$$b_i = \sum_{j=1}^{3} T_{ij} a_j \equiv T_{ij} a_j$$
Summation is assumed for repeated index (j) (Einstein's notation)

- 3×3 in three-dimensional space, 2×2 in two dimensions, etc.
- Transformed whenever the frame of reference is rotated:

$$T'_{ij} = \sum_{k,m} R_{ik} R_{jm}^{-1} T_{km}$$

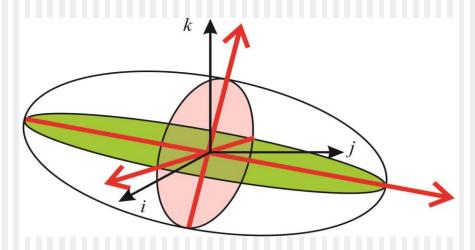


Quadratic form

■ Tensor T can also be represented by its quadratic form Φ (function of an arbitrary vector x):

$$\Phi(\mathbf{x}) = x_i T_{ij} x_j \equiv \mathbf{x}^T \mathbf{T} \mathbf{x}$$
Dot product of \mathbf{x} and $\mathbf{T} \mathbf{x}$

- This is a scalar quantity independent of rotations of coordinate systems
- Surface of $\Phi(\mathbf{x}) = \text{const}$ describes the general properties of this form
 - Ellipsoidal shape (finite dimensions)
 - Hyperboloidal (infinite)
 - Conical (intermediate)
 - Principal axes (axes and planes of symmetry)



Principal directions

Principal directions are obtained as eigenvectors e_i of the tensor matrix:

$$\mathbf{Te}_i = \lambda_i \mathbf{e}_i$$
 Usually take $|\mathbf{e}_i| = 1$

■ Eigenvalues λ_i are solved for from the following determinant vanishing:

$$\det(\mathbf{T} - \lambda_i \mathbf{I}) = 0$$

- Because for stress and strain tensors, the matrix is real and symmetric, all three eigenvalues are real
- The corresponding \mathbf{e}_i give the principal directions (of stress or strain)
 - $\lambda_i < 0$ compression, $\lambda_i > 0$ tension
 - When rotated to the directions of \mathbf{e}_{i} , the tensor becomes diagonal (zero shear stress or strain)

Waves

- In seismology, WAVES are stable spatial field patterns, which may be:
 - Standing:

$$u = \cos(\omega_n t) f_n(\mathbf{r})$$

These are commonly harmonic, with specific ω_n and f_n for wavemode n

Propagating with time:

$$u = f\left(\mathbf{rn} \pm ct\right)$$

Plane wave propagating along direction vector **n**.

$$u = \frac{1}{|\mathbf{r}|} f(|\mathbf{r}| \pm ct)$$

Spherical wave

$$u = \frac{1}{\sqrt{\rho}} f\left(\rho \pm ct\right)$$

Cylindrical wave (p is the distance from axis)

The argument of f() is called phase

f() is the waveform, at time t, its zero is at x = ct

Wave equation and the principle of superposition

Wave equation:

$$\frac{1}{c^2} \frac{\partial^2 u}{\partial t^2} - \nabla^2 u = source(\vec{r}, t)$$
 Scalar
$$\frac{1}{c^2} \frac{\partial^2 \mathbf{u}}{\partial t^2} - \nabla^2 \mathbf{u} = \overrightarrow{source}(\mathbf{r}, t).$$
 Vector

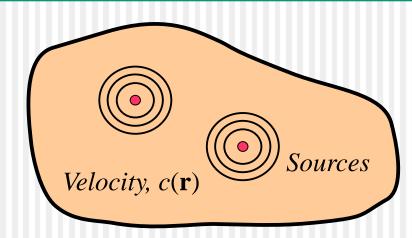
- Note that the wave equation is *linear*: if $u_1(\mathbf{r},t)$ and $u_2(\mathbf{r},t)$ are its solutions then $u_1(\mathbf{r},t) + u_2(\mathbf{r},t)$ is also a solution.
 - This property is known as the *principle of* superposition.
 - Because of it, the total wavefield can always be decomposed into field generated by elementary sources:

 - Planar sources
 - Point sources spherical waves;
 - Linear sources cylindrical waves;
 - plane waves.

In a homogeneous velocity field

Boundary conditions

- Boundaries (sharp contrasts) in the velocity field $c(\mathbf{r})$ result in *secondary sources* that produce reflected, converted, or scattered waves.
- The amplitudes of these sources and waves are determined through the appropriate boundary conditions
 - e.g., zero displacement at a rigid boundary (kinematic boundary condition);
 - ...or zero force at a free boundary (dynamic boundary condition).



Boundary conditions

Three factors determining the wave field