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Modelling travel times, 

rays and wavefronts

Travel-time field

Ray-tracing

For travel times

For amplitudes

WKBJ (high-frequency) approximation

Eikonal equation

Practical travel-time modelling methods

Reading:

➢ Shearer,  4 and 6
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Travel-time field, 

rays, and wavefronts

Rays and wavefronts represent key attributes of 

“the travel time field” t(x) 

If t(x) is the time at which certain wave reaches 

point x, then: 

Wavefronts are surfaces t(x) = const

Rays are streamlines of the gradient of t(x)

Gradient of the time field is the ray parameter 
vector:

Ray theory corresponds to the high-frequency 

limit of wave fields: 

wavefronts and rays are smooth but bend 
sharply on discontinuities
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Snell's law

The key property of the travel-time field is that it 

is continuous across any velocity contrasts

Therefore, the wavefronts and rays are also 

continuous, although they change shapes across 

boundaries

If we look at the ray-parameter equation                

along the direction of a boundary, we will          

see that the ray parameter on both sides of the 

boundary must be the same

That is, the wave slowness along the boundary is 

the same on both sides. This is the Snell’s law:
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WKBJ (high-frequency) 

approximation of wave 

equations

Originates from Liouville and Green (~1837)

Named after Wentzel, Kramers, Brillouin, and 

Jeffreys (~1923-26)

Gives approximate solutions of a general 

differential equation with small parameter e << 1 

in the leading derivative:

The solution is sought in the form:

where small variable  d << 1 is related to e
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I am only trying to give the general spirit of this 

approach; don’t worry about the detail
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WKBJ approximation

of wave equation

Consider the wave equation for a harmonic wave 

(Helmholtz equation) in variable wave speed c(x):

that is:

and c
0
is some characteristic value of c(x)

The coefficient in the left-hand side is small 

(frequency is high), and so let us denote it by d2:

…and look for a solution like this:   
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WKBJ approximation

of wave equation

The wave equation becomes:

To the leading order, with d → 0:

Thus, d is proportional to , and we can take:

and the WKBJ solution becomes:  
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This is the
“eikonal equation”

Ray travel time from x0 to x
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WKBJ approximation

of wave equation (end)

The above solution: 

only gives the ray-theoretical phase of the wave 

It is equivalent to the solution of the eikonal
equation (discussed later)

The amplitude can be estimated by the second-

order WKBJ approximation

This is called the (energy) transport equation
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Eikonal equation

From German Eikonal, which comes from Greek 

eikn, image (that is, “icon”)

Provides the link between the wave and 

geometrical optics (and acoustics)

If t(x) is the time at which certain wave reaches 

point x, then in the geometrical (high-frequency) 

limit, it must satisfy:

This is called the eikonal equation for the seismic 

travel-time field t(x)

This equation is very broadly used in fast 2-D and 

3-D wavefront- and ray-tracing algorithms
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Travel-time modelling 

methods

◼ Ray tracing (shooting)

◼ t-p methods (in layered media)

◼ Eikonal-equation based wavefront 

propagation

◼ Ray bending

◼ Shortest-time ray methods

We will not 
discuss them here

See Shearer
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Ray shooting
(A simple approach in 2D)

◼ Velocity model is split into triangular cells

◼ In each cell, the velocity has a constant gradient

◼ In a constant velocity gradient, the ray is always a 
circular arc (we will see this later)

◼ Starting from the source the  ray is constructed by 
combining such arcs

◼ Accurate, but complex method  

◼ Computationally intensive when many rays are 
needed

◼ May have problems in complex structures
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Eikonal first-arrival 

travel-time calculation

Initialize the near-source times

At each iteration, try timing each node by using the 

already timed adjacent nodes

Use waves from adjacent points, pairs of points 
(linear sources), or triplets (planar sources)

2D

3D
Podvin and Leconte, 1991

Among them, the 

earliest time arriving 
at the white node is 
selected

In plots on the right, the 

white node is being 

timed at the current 

step

To time this node, 

various combinations of 

adjacent timed nodes 

(black) are tried 
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Example
First-arrival travel times 

in 3D

Eikonal travel-

time calculation

Rays to every 

point can be 

obtained by 

tracing t(x)

gradients back 

to the source

Source

Source

Low-velocity

 cube

Zelt, 1993?
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Ray bending

• Directly employing the Fermat principle

• Connecting the source and receiver by a smallest-

time ray

• Pros:

• Accurate and stable

• By sampling rays with times within half of the 
dominant wave period from the smallest-time ray, 
“banana”-shaped volumes can be obtained. These 
volumes represent the area affecting the recorded 
wave arrival

• Cons:

• Works only for selected, fixed source-receiver pairs

• Computationally intensive
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Shortest-path 

ray tracing

A suitable grid of possible ray paths is created

Including reasonable dips and structures

Starting from the source, shortest-time paths are 

identified

Fast and stable method

Good for quick general assessment of time field

Can be followed by ray bending for accuracy

Source

All paths considered Shortest paths

Moser, 1991
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Example:
Shortest-time paths

Uniform velocity

Velocity 
increasing 
with depth

Moser, 1991

Source

Note the discontinuities 

in the travel-time field
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Ray-based amplitudes

Amplitudes can be estimated from ray-flux tubes

For example, the Geometrical spreading is often 
modelled in this way

If energy flux remains constant:

then amplitude varies as:  
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