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INTRODUCTION
More than 1000 Martian days after its successful landing in
Elysium Planitia on Mars on 26 November 2018, the
InSight mission (Banerdt et al., 2020) continues to operate the
Seismic Experiment for Internal Structure of Mars (SEIS)
(Lognonné et al., 2019), nearly 45 yr after the pioneering
Viking seismic experiment (Anderson et al., 1977).

Prior to InSight’s landing, very little was known aboutMartian
seismic activity. It had been assumed to be roughly between that
of the Earth and Moon, with 5–500 events per year with a mag-
nitude larger than Mw 4 (or a seismic moment release between
1017 N · m=yr and 1019 N · m=yr) (Phillips, 1991; Golombek
et al., 1992; Knapmeyer et al., 2006; Plesa et al., 2018). The inte-
grated SEIS system was, therefore, designed to enable the detec-
tion of anMw 4.6 event at a global range (Lognonné et al., 2019).
Several prelaunch papers, including those published in two issues
of Space Science Review (Banerdt and Russel, 2017; The Insight
Mission to Mars I, 2017; The Insight Mission to Mars II, 2019)
described detailed system assumptions and requirements for the
expected instrument, environmental noise, seismic activity, inter-
nal structure, and seismic signals.

The first postlanding results (Banerdt et al., 2020; Giardini
et al., 2020; Lognonné, Banerdt, et al., 2020) showed that
Mars was much less active than thought prior to launch, with
a significant deficit of large magnitude events. The four largest
magnitude events reported during the first 500 sols (Martian
days) of the mission were initially estimated to be in the range
of 3.5–3.7 (Clinton et al., 2021). All but one of these magnitudes
have been re-estimated to be 3.7 by Böse et al. (2021) using a
calibration with Earth moment magnitude Mw. This suggests
that none of the Marsquakes detected before mid-August
2021 had seismic moments larger than 1015 N · m.

Fortunately, the significantly lower than expected event
ground acceleration has been compensated by much lower
recorded noise than expected. This very low noise is due in
part to the careful installation of SEIS by the InSight robotic
arm (Fig. 1), thermal and wind protection from the Wind and
Thermal Shield (WTS), and the performance of the three-axis
Very Broad Band (VBB) instrument of SEIS itself. These
resulted in a noise floor about 10 times below the prelaunch
requirement during the low-noise portions of the Martian
day. This low-noise daily time window, which begins around
Martian sunset and lasts only about 6 hr, has not surprisingly
included the times of the majority of detected events (Giardini
et al., 2020; Clinton et al., 2021). No low-frequency events and

only a few high-frequency events have been detected during
the noisier daytime. The amplitude of both noise and event
signals recorded by SEIS is, therefore, exceptionally low com-
pared to the Earth and is very close to that observed on the
Moon (see Lognonné and Johnson, 2015 for a review of com-
parative planetary seismology).

Following the initial postlanding results (Giardini et al., 2020;
Lognonné, Banerdt, et al., 2020; Khan et al., 2021; Knapmeyer-
Endrun et al., 2021; Stähler et al., 2021) and an American
Geophysical Union special issue on InSight (InSight at Mars,
2021), this BSSA special issue on the seismology of Mars
presents new analyses of SEIS data, as well as seismic instrumen-
tation reports that describe instrument responses related to SEIS
subsystems, and analyses pertinent to the design of future plan-
etary seismometers. Six of the following papers (Barkaoui et al.,
2021; Dahmen et al., 2021; Hurst et al., 2021; Kim et al., 2021;
Stott et al., 2021; Zweifel et al., 2021) are devoted to better
understanding the recorded Martian seismic noise, which not
only remains challenging to understand but is also a key for
future improvement of all seismic event analysis. Two papers
focus on seismic (Böse et al., 2021) and infrasound (Garcia et al.,
2021) events. Two others (Karakostas et al., 2021; Menina et al.,
2021) focus on the interpretation of high-frequency events, and
particularly their attenuation and scattering properties, follow-
ing up on earlier studies (Giardini et al., 2020; Lognonné,
Banerdt, et al., 2020; van Driel et al., 2021). The final paper
discusses possible future planetary seismic instrumentation
(Erwin et al., 2021).

OBSERVATIONS
The first series of six papers (Barkaoui et al., 2021; Dahmen
et al., 2021; Hurst et al., 2021; Kim et al., 2021; Stott et al.,
2021; Zweifel et al., 2021) focuses on the analysis of
Martian seismic noise, SEIS instrument performance, and their
consequences for understanding SEIS data.
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Stott et al. (2021) quantify
the lander-generated noise
reduction achieved by the
deployment of SEIS. Prior to
deployment, while still on the
lander deck, SEIS was extremely
sensitive to lander vibrations,
with a wind sensitivity larger
(Panning et al., 2020) than that
of the Viking lander seismic
experiment (Anderson et al.,
1977). They demonstrate that
placing the instrument on the
ground reduced the noise by a
factor of 100 to 1000, emphasiz-
ing the importance of ground
deployment for planetary seis-
mology.

However, despite its careful
robotic installation on the
ground and its shielding against
temperature fluctuations and
wind effects, SEIS remains sen-
sitive to lander-generated noise,
ground deformation generated
by atmospheric pressure drops,
thermally induced cracks and
shifts related to the large surface
temperature variations (Scholz
et al., 2020), and crosstalk
between SEIS and its house-
keeping signals. The latter are
described in detail by Zweifel
et al. (2021) who describes
the acquisition electronics and
show that “tick” noise from this
crosstalk is stable enough to
be removed efficiently by data
processing. Lander resonances
are studied in detail by Dahmen
et al. (2021), who catalog the
major lander resonances up to
9 Hz and characterize their
dependence on temperature
and wind, and their time-varia-
ble damping factors, polariza-
tions, and amplitudes. Hurst
et al. (2021) focus their analysis
on resonances of the sensor
assembly system and especially
those related to the Load
Shunt Assembly, designed to
decouple the SEIS sensors from

Figure 1. (a) The sensor assembly of the Seismic Experiment for Internal Structure of Mars (SEIS) on the ground just
prior the deployment of the Wind and Thermal Shield (WTS), on 2 February 2019. (b) Picture taken on 27
September 2021 showing the fully installed WTS two and a half years later. These two images were taken on sol 66
and sol 1008 since InSight landing, respectively.
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mechanical noise transmitted by the electrical cable connecting it
to the lander. The two analyses confirm that no resonances
are observed below 1 Hz, but that these resonances must be
accounted for in any analyses of signals above a frequency of
1 Hz. Continuing with seismic noise, Barkaoui et al. (2021) ana-
lyze the stochastic properties of recorded noise using machine
learning algorithms, allowing for efficient tracking of transient
events (e.g., atmospheric pressure drops and thermal “glitches”),
but more importantly detecting and clustering glitches that repeat
with stable offset times. The recorded seismic noise also affects
noise correlograms, and Kim et al. (2021) perform an in-depth
study of the impact of glitches in noise autocorrelations (Deng
and Levander, 2020; Compaire et al., 2021; Knapmeyer-
Endrun et al., 2021; Schimmel et al., 2021). They discuss these
previous autocorrelation results and conclude with guidance
for making future autocorrelation interpretation more robust.

Böse et al. (2021) present an updated methodology for deter-
mining Marsquake magnitudes from SEIS data as an update to
previous methodologies (Böse et al., 2018). They confirm that
the largest earthquake detected prior to October 2020 had a
magnitude of 3.7—a maximum magnitude significantly smaller
than that expected prior to launch.

The two papers on attenuation and scattering (Karakostas
et al., 2021; Menina et al., 2021) extend the analysis (based on
only a few events) previously made by Lognonné, Banerdt, et al.
(2020), using 13 and 19 events, respectively, and different scatter-
ing theories. Menina et al. (2021) use elastic radiative transfer
theory to study the energy envelopes of high-frequency events.
They show that the typical coda decay time is frequency indepen-
dent and that some events are the best explained by propagation
in a mostly dry medium, with possible stratification of scattering
properties. Karakostas et al. (2021) use the two-layer diffusion
model of Dainty et al. (1974), developed for Apollo seismic analy-
sis. They confirm that the higher frequency events appear to have
depths that are shallower than the lower frequency events.
However, they do not find variations in coda properties with dis-
tance as expected, and suggest that there is significant lateral
variation of diffusivity and scattering layer thickness near the
InSight landing site.

Following the possible detection of infrasound events sug-
gested by Martire et al. (2020) and an infrasound origin for
part of the recorded noise (Stutzmann et al., 2021); Garcia et al.
(2021) perform an extensive search of the seismic and pressure
data for pressure infrasound signals that produce ground sig-
nals through compliance effects. They reject most candidates,
leaving only two infrasound candidates, on sols 421 and 521,
with satisfactory compliance ratios. The origin of these two
events remains unknown.

LESSON LEARNED FOR FUTURE MISSIONS IN
PLANETARY SEISMOLOGY
Several of the papers already described provide important con-
straints for designing future planetary seismological missions.

These include constraints on lander noise (Stott et al., 2021),
design of future service loops and cables (Hurst et al., 2021),
design of future high-performance acquisition electronics
(Zweifel et al., 2021), the importance of prelaunch characteriza-
tion of lander resonances (Dahmen et al., 2021), the importance
of minimizing thermal glitch occurrence and strength (Kim
et al., 2021), and the potential for machine learning in auto-
mated planetary geophysical stations (Barkaoui et al., 2021).

The final contribution of this issue from Erwin et al. (2021)
provides further guidance for future planetary seismic deploy-
ments. They analyze the impact of internal friction in seis-
mometer Brownian noise and show that this noise has been
underestimated at very long periods in most of the previously
developed seismometer noise models. Although this noise is
overshadowed by thermal noise for SEIS on Mars, the associ-
ated 1=f noise will have important implications in the design of
future seismometers for the Moon, especially when attempting
to reach performance levels about 10 times better than the
Martian SEIS VBB.

CLOSING THOUGHTS ABOUT FUTURE MISSIONS
IN PLANETARY SEISMOLOGY
Collectively, the papers in this special issue describe valuable
insights for understanding the signals from seismic activity on
Mars and for planning future seismometer deployments on
extraterrestrial bodies. Anyone analyzing seismic records still
being sent back from Mars by InSight will need to be aware of
the analyses in the papers in this special section, to prevent
misinterpretation of apparent signals and to understand the
original of the signals present in the SEIS data.

More importantly, with the anticipated future seismic
exploration on both Mars and other terrestrial bodies in our
solar system, the lessons learned from the SEIS experience will
improve future data acquisition on extraterrestrial bodies.
Planned missions to Mars (Exomars, Zelenyi et al., 2015), the
Moon (Farside Seismic Suite, Panning et al., 2021; Chang’e 7,
Zou et al., 2020), and Titan (Dragonfly, Turtle et al., 2020;
Lorenz et al., 2021) have seismometer packages, exciting devel-
opments that may result in the possibility for new types of plan-
etary seismology, such as two-station seismology on Mars and
the Moon.

This already impressive series of missions with seismome-
ters over the next decade may be complemented by new mis-
sions, if selected, such as the Europa lander (e.g.; Burke et al.,
2020; Kedar et al., 2020), the Lunar Geophysical mission (Neal
et al., 2020; Weber et al., 2021), a geophysical package on
Artemis (Lognonné, Schmerr, et al., 2020), or even gravita-
tional-wave detectors on the Moon that may enable the detec-
tion of lunar-free oscillations (Harms et al., 2021). Seismology
is, therefore, well on its way toward solar-system-wide compar-
ative seismic studies—a new frontier for understanding the
planets and planetoids in our solar system and more broadly
the origins of our solar system. Lessons learned from Apollo,
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Viking, and now InSight about the design of planetary seis-
mometers, their deployment and operation, and seismic signal
processing and signal interpretation will help us perform the
best seismic monitoring of these terrestrial bodies and lead to
the better scientific understanding of our solar system through
future missions.

DATA AND RESOURCES
The Seismic Experiment for Internal Structure of Mars (SEIS) consists of
a three-axis Very Broad Band (VBB) seismometer and a three-axis
short-period (SP) seismometer, deployed successfully on the surface
in February 2019. SEIS provides continuous 20 samples per second data
for the VBB sensors, as well as selected “event” data at rates up to 100
samples per second for both the VBB and SP. In addition, pressure and
wind speed are monitored by the Auxiliary Payload Sensor Suite (APSS)
experiment (Banfield et al., 2019). All SEIS data (InSight Mars SEIS Data
Service, 2019a,b) through 30 June 2021 are available at the Data Center
of the Institut de Physique du Globe de Paris (IPGP), the Data
Management Center of the Incorporated Research Institutions for
Seismology (IRIS-DMC), and the National Aeronautics and Space
Administration (NASA) Planetary Data System (PDS). The APSS data
are available at NASA PDS. The InSight Marsquake event catalog
(Clinton et al., 2021; InSight Marsquake service, 2021), which provides
timing of events as well as preliminary information such as seismic
phase arrival times and, when possible, magnitudes and locations of
the Marsquakes, is also available for the same time period at the
same repositories. Future data and catalogs will also be released every
quarter.
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