Refraction Statics

- Plus-Minus method;
- Generalized Linear Inverse (GLI, tomographic) method;
- Delay-time ('time-term') method;
- L_{1} and L_{2} norms.
- Reading:
- Yilmaz (refraction statics section and Appendix C in the new edition)

Delay time

- Consider a nearly horizontal, shallow interface with strong velocity contrast (a typical case for weathering layer).
- In this case, we can separate the times associated with the source and receiver vicinities: $t_{S R}=t_{S X}+t_{X R}$.
- Relate the time $t_{S X}$ to a time along the refractor, $t_{B X}$:

$$
\begin{aligned}
& t_{S X}=t_{S A}-t_{B A}+t_{B X}=t_{S \text { Delay }}+X / V_{2} . \\
& t_{s \text { Detay }}=\frac{S A}{V_{1}}-\frac{B A}{V_{2}}=\frac{h_{s}}{V_{1} \cos i_{c}}-\frac{h_{s} \tan i_{c}}{V_{c}}=\frac{h_{s}}{V_{1} \cos i_{c}}\left(1-\sin ^{2} i_{c}\right)=\frac{h_{s} \cos i_{c}}{V_{1}} \\
& \quad \begin{array}{l}
\text { Note that } V_{2}=V_{1} / \sin i_{c}
\end{array}
\end{aligned}
$$

- Thus, source and receiver delay times are:

$$
\begin{aligned}
& t_{S, R \text { Delay }}=\frac{h_{S, r} c o s i_{c}}{V_{1 .}} \text { and } t_{S R}=t_{S \text { Delay }}+t_{R \text { Delay }}+\frac{S R}{V_{2}}
\end{aligned}
$$

Plus-Minus Method (Weathering correction; Hagedoorn)

- Assume that we have recorded two head-waves in opposite directions, and have estimated the velocity of overburden, V_{1}.
- How can we map the refracting interface?

- Solution:

- Profile $S_{1} \rightarrow S_{2}: \quad t_{S_{1} D}=\frac{x}{V_{2}}+t_{S_{1}}+t_{D}$;
- Profile $S_{2} \rightarrow S_{1}: \quad t_{s_{2} D}=\frac{\left(S_{1} S_{2}-x\right)}{V_{2}}+t_{s_{2}}+t_{D}$
- Form PLUS travel-time:

$$
\begin{aligned}
& t_{P L U S}=t_{S_{1} D}+t_{S_{2} D}=\frac{S_{1} S_{2}}{V_{2}}+t_{S_{1}}+t_{S_{2}}+2 t_{D}=t_{S_{1} S_{2}}+2 t_{D .} \\
& \text { Hence: } \quad t_{D}=\frac{1}{2}\left(t_{P L U S}-t_{S_{1} S_{2}}\right) .
\end{aligned}
$$

\rightarrow To determine i_{c} (and depth), still need to find V_{2}.

Plus-Minus Method (Continued)

- To determine V_{2} :
- Form MINUS travel-time:

$$
t_{\text {MINUS }}=t_{S_{1} D}-t_{S_{2} D}=\frac{2 x}{V_{2}}-\frac{S_{1} S_{2}}{V_{2}}+t_{s_{1}}-t_{s_{2}} .
$$

Hence: $\operatorname{slope}\left[t_{\text {MINUS }}(x)\right]=\frac{2}{V_{2}}$.
\rightarrow The slope is usually estimated by using the Least Squares method.

- Drawback of this method - averaging over the pre-critical region.

Generalized Reciprocal Method (GRM)

- Introduces offsets (' $X Y$) in travel-time readings in the forward and reverse shots;
* so that the imaging is targeted on a compact interface region.
- Proceeds as the plus-minus method;
- Determines the 'optimal XY:

1) Corresponding to the most linear velocity analysis function;
2) Corresponding to the most detail of the refractor.

- The velocity analysis function:

$$
t_{V}=\frac{1}{2}\left(t_{S_{1} D}-t_{S_{2} D}+t_{S_{1} S_{2}}\right), \quad \text { should be linear, slope }=1 / V_{2} ;
$$

- The time-depth function:

$$
t_{D}=\frac{1}{2}\left(t_{S_{1} D}+t_{S_{2} D}-t_{S_{1} S_{2}}-\frac{X Y}{V_{2}}\right)
$$

this is related to the desired image:

$$
h_{D}=\frac{t_{D} V_{1} V_{2}}{\sqrt{V_{2}{ }^{2}-V_{1}{ }^{2}}}
$$

Example:

Refraction survey over a

 proposed waste disposal site (Lankston, 1990), recorded travel times

Refraction survey over a proposed waste disposal site (Lankston, 1990)

Refraction survey over a proposed waste disposal site

(Lankston, 1990), velocity analysis

Refraction survey over a proposed waste disposal site

(Lankston, 1990), results

Generalized Linear Inverse

- Usually overdetermined travel-time inversion problem
- Impossible to fit all times at once;
- Trying to minimize $\left(t_{i j}-t_{i j} \text { observed }\right)^{2}$
- Solved using damped least squares method.
- In matrix form:

$$
\begin{gathered}
\boldsymbol{A} \boldsymbol{m}=\delta \boldsymbol{t} \\
\left(\boldsymbol{A}^{T} \boldsymbol{A}\right) \boldsymbol{m}=\boldsymbol{A}^{\boldsymbol{T}} \delta \boldsymbol{t} \\
\boldsymbol{m}=\left(\boldsymbol{A}^{T} \boldsymbol{A}\right)^{-1} \boldsymbol{A}^{T} \delta \boldsymbol{t} .
\end{gathered}
$$

- Regularized using damping parameter, μ :

$$
\boldsymbol{m}=\left(\boldsymbol{A}^{\boldsymbol{T}} \boldsymbol{A}+\mu \boldsymbol{I}\right)^{-1} \boldsymbol{A}^{\boldsymbol{T}} \delta \boldsymbol{t}
$$

Generalized Linear

 Inverse Method(Hampson and Russel (1984), Amorim et al. (1987))

- Tomographic model

- Parameterized in terms of slownesses within the weathering (LVZ) layer

$$
\begin{gathered}
t_{i j}=s_{i} \frac{H_{i}}{\cos \theta_{i}}+s_{j} \frac{H_{j}}{\cos \theta_{j}}+s^{\prime}{ }_{i}\left(\frac{x}{2}-H_{i} \tan \theta_{i}\right)+s^{\prime}{ }_{j}\left(\frac{x}{2}-H_{j} \tan \theta_{j}\right)+\sum_{n=i+1}^{j-1} s_{n}{ }_{n} x \\
\theta=\arcsin \left(\frac{s^{\prime}}{S}\right)=\arcsin \left(\frac{v}{v^{\prime}}\right)
\end{gathered}
$$

- These equations can be viewed in two ways:
- fixed H, linear equations in s and s^{\prime} (fixeddepth scheme);
- fixed s, linear equations in H and s^{\prime} (variable- depth scheme);

GLI Refraction Statics

- Iterations to reduce δt :

Delay-time (time-term) method

- Linear inverse model for delay times (Δt_{s} and Δt_{R}) and retractor slowness $s=1 / V$:

$$
t_{S R}=\delta t_{S}+\delta t_{R}+\frac{x}{V}=\delta t_{S}+\delta t_{R}+s x .
$$

- Δt_{S} and Δt_{R} are usually surface consistent (dependent on common locations only), and s can be spatially variant
- Spatial variability described using a grid, similarly to GLI method.

Effects of statics in shot gathers

Effects of statics in stacked image

L_{1} vs. L_{2} Norms

- Most tomographic methods use the so-called L_{2} norm: $\left(t_{i j}-t_{i j}^{\text {observed }}\right)^{2}$
- However, L_{2} is not the best norm:
- sensitive to outliers (wild mis-picks).
- Other used norms are:
- $L_{1}=\left|t_{i j}-t_{i j}^{\text {observed }}\right|$ (more stable in respect to outliers);
- $L_{\infty}=\max \mid t_{i j}-t_{i j}^{\text {observed }}$ (extremely sensitive to outliers, the most stringent norm).
- L_{1}-norm is inverted using linear programming (simplex) techniques.
- For good picks (not plagued by outliers) the results of L_{2} and L_{1}-norm inversion are very close.

