Refraction Statics

- Plus-Minus method;
- Generalized Linear Inverse (GLI, tomographic) method;
- Delay-time ('time-term') method;
- L_1 and L_2 norms.
- Reading:
 - Yilmaz (refraction statics section and Appendix C in the new edition)

Delay time

- Consider a nearly horizontal, shallow interface with strong velocity contrast (a typical case for weathering layer).
 - In this case, we can separate the times associated with the source and receiver vicinities: $t_{SR} = t_{SX} + t_{XR}$.
- Relate the time t_{SX} to a time along the refractor, t_{BX} :

$$t_{SX} = t_{SA} - t_{BA} + t_{BX} = t_{S Delay} + X/V_2.$$

$$t_{S Delay} = \frac{SA}{V_1} \quad \frac{BA}{V_2} = \frac{h_s}{V_1 \cos i_c} \quad \frac{h_s \tan i_c}{V_2} = \frac{h_s}{V_1 \cos i_c} (1 \quad \sin^2 i_c) = \frac{h_s \cos i_c}{V_1}$$
Note that $V = V/\sin i_c$

Thus, source and receiver delay times are:

Plus-Minus Method (Weathering correction; Hagedoorn)

- Assume that we have recorded two head-waves in opposite directions, and have estimated the velocity of overburden, V₁
 - How can we map the refracting interface?

- Solution:
 - $\succ \text{ Profile } S_1 \to S_2: \quad t_{S_1D} = \frac{x}{V_2} + t_{S_1} + t_D;$
 - ▶ Profile $S_2 \rightarrow S_1$: $t_{S_2D} = \frac{(S_1S_2 \ x)}{V_2} + t_{S_2} + t_{D_2}$
 - Form PLUS travel-time:

$$t_{PLUS} = t_{S_1D} + t_{S_2D} = \frac{S_1S_2}{V_2} + t_{S_1} + t_{S_2} + 2t_D = t_{S_1S_2} + 2t_D.$$

Hence: $t_D = \frac{1}{2}(t_{PLUS} - t_{S_1S_2}).$

• To determine i_c (and depth), still <u>need to find</u> V_2 .

Plus-Minus Method (Continued)

- The slope is usually estimated by using the *Least Squares method*.
- <u>Drawback</u> of this method averaging over the pre-critical region.

Generalized Reciprocal Method (GRM)

- Introduces offsets ('XY) in travel-time readings in the forward and reverse shots;
 - so that the imaging is targeted on a compact interface region.
- Proceeds as the plus-minus method;
- Determines the 'optimal XY:
 - 1) Corresponding to the most linear velocity analysis function;

Example: Refraction survey over a proposed waste disposal site (Lankston, 1990), recorded travel times

Refraction survey over a proposed waste disposal site (Lankston, 1990)

Refraction survey over a proposed waste disposal site (Lankston, 1990), velocity analysis

Refraction survey over a proposed waste disposal site (Lankston, 1990), results

Generalized Linear Inverse

- Usually overdetermined travel-time inversion problem
 - Impossible to fit all times at once;
 - Trying to minimize $(t_{ij} t_{ij}^{observed})^2$
- Solved using damped least squares method.
- In matrix form:

A m = t, $(A^{T} A) m = A^{T} t,$ $m = (A^{T} A)^{-1} A^{T} t.$

Regularized using *damping parameter*, μ:

$$\boldsymbol{m} = (\boldsymbol{A}^T \boldsymbol{A} + \boldsymbol{\mu} \boldsymbol{I})^{-1} \boldsymbol{A}^T \quad \boldsymbol{t}.$$

Generalized Linear Inverse Method

(Hampson and Russel (1984), Amorim et al. (1987))

- Tomographic model
- Parameterized in terms of slownesses within the weathering (LVZ) layer

$$t_{ij} = s_i \frac{H_i}{\cos_i} + s_j \frac{H_j}{\cos_j} + s'_i (\frac{x}{2} - H_i \tan_i) + s'_j (\frac{x}{2} - H_j \tan_j) + \sum_{n=i+1}^{j-1} s'_n x$$

= $\arcsin(\frac{s'}{s}) = \arcsin(\frac{v}{v'}).$

These equations can be viewed in two ways:

- fixed H, linear equations in s and s' (fixeddepth scheme);
- fixed s, linear equations in H and s' (variable- depth scheme);

GLI Refraction Statics

Delay-time (time-term) method

• Linear inverse model for delay times (Δt_s and Δt_R) and retractor slowness s = 1/V:

$$t_{SR} = t_{S} + t_{R} + \frac{x}{V} = t_{S} + t_{R} + sx.$$

- Δt_s and Δt_R are usually surface consistent (dependent on common locations only), and s can be spatially variant
 - Spatial variability described using a grid, similarly to GLI method.

Effects of statics in shot gathers

Effects of statics in stacked image

L_1 vs. L_2 Norms

- Most tomographic methods use the so-called L_2 norm: $(t_{ij} - t_{ij}^{observed})^2$
- However, L_2 is not the best norm:
 - sensitive to outliers (wild mis-picks).
- Other used norms are:
 - $L_1 = |t_{ij} t_{ij}^{\text{observed}}|$ (more stable in respect to outliers);
 - $L_{\infty} = \max|t_{ij} t_{ij}^{\text{observed}}|$ (extremely sensitive to outliers, the most stringent norm).
- L₁-norm is inverted using *linear programming* (simplex) techniques.
- For good picks (not plagued by outliers) the results of L_2 and L_1 -norm inversion are very close.