Reflection Seismic Processing

- Objective
- Processing Systems
- General concept of CMP processing
- Processing Tools
- SEGY and similar file formats
- General features of ProMAX
- Reading:
 - ProMAX manual (Introduction)

Reflection Seismic Processing

- Objective transform redundant reflection seismic records in the time domain into an interpretable depth image.
 - Data reduction and editing;
 - Transformation into conveniently computer-manageable form;
 - Removal of bad records;
 - Gathering;
 - CMP sorting;
 - Filtering in time and space;
 - Attenuation of noise;
 - Imaging
 - Final velocity and reflectivity image.

Seismic Processing Systems

- Usually geared to a particular type of application
 - Mostly CMP reflection processing;
 - Land or marine, 2D or 3D.
- Commercial:
 - ProMAX (Landmark);
 - Omega (Western Geophysical, marine);
 - Focus (Paradigm);
 - Amoco and almost every other company have their own...
 - Vista (Seismic Image Soft.).
- Open-source/Universities:
 - Stanford Exploration Project;
 - Seismic UNIX (Colorado School of Mines);
 - FreeUSP (Amoco);
 - SIOSEIS (Scrippts, marine, not free!);
 - SIA: http://seisweb.usask.ca/SIA

Seismic data formats

- Most seismic data formats are similar, and include:
 - Text file header (comments for the user, line description);
 - Binary file header (number of traces, other vital formatting information);
 - 'Traces', each including:
 - Binary trace header (channel number, coordinate, offset, statics, mute times, filter parameters, etc.). Some formats allow user-defined trace headers.
 - Trace sample values (integer or floating-point).
- SEG-Y (adopted by SEG as the standard data exchange format):
 - Text file header of 3200 bytes (40 80-character lines);
 - Binary file header of 400 bytes;
 - Traces include:
 - 240-byte headers, fixed predefined format.
 - Samples in any of the 2- or 4-byte formats (usually stored as 4-byte IBM REAL).
- A moderate 2-D seismic line with 800 shots recorded by 96 channels at 1500 samples per trace takes about 500 Mb of storage in SEG-Y format (verify this!)

General CMP Processing Sequence

1) Demultiplex, Vibroseis correlation, Gain recovery

- Conversion from file formats produced by field data loggers into processingoriented formats
 - SEG-Y, SEG-2.
 - ProMax, Focus, Omega, SU, Vista, etc., internal formats.
- These days, may not be required (done in the field).

2) Field Geometry

 Assignment of source-receiver coordinates, offsets, etc. in the trace headers.

3) Edit

Removal of bad traces (noisy channels, poorly planted geophones, channels contaminated by power line noise, etc.).

4) First arrival picking

- May be semi-automatic or manual;
- Required for generation of refraction statics; models and for designing the mutes.

5) Elevation statics

- Based on geometry information, compensates the travel-time variations caused by variations in source/receiver elevations.
- Transforms the records as if recorded at a common horizontal datum surface.

6) Refraction statics

- Builds a model for the shallow, low-velocity subsurface;
- Compensates the travel-time variations caused by the shallow velocities.

7) 'Top', 'bottom', and 'surgical' mute

- Eliminates (sets amplitude=0) the time intervals where strong non-reflection energy is present:
 - First arrivals, ground roll, airwave.

8) Gain recovery

- Compensates geometrical spreading;
- Based on a simple heuristic relation.

10) Trace balance

- Equalizes the variations in amplitudes caused by differences in coupling;
- In true-amplitude processing, replaced with 'surface-consistent deconvolution'.

9) Deconvolution

Compresses the wavelet in time, attenuates reverberations.

10) Gather, CMP sort

In modern processing systems (ProMax, Omega, Vista) done by using trace lookup spreadsheets rather than by creating additional copies of the dataset.

12) Velocity analysis

For each of the CMP gathers, determines the optimal stacking velocity.

13) Dip Moveout (DMO) correction

Transforms the records so that the subsequent NMO+stack work well even in the presence of dipping reflectors.

14) Normal Moveout (NMO) correction

- Removes the effects of source-receiver separation from reflection records;
- Transforms the records as if recorded at normal incidence.

15) Residual statics

 Removes the remaining small traveltime variations caused by inaccurate statics or velocity model

- 16) Steps 12-15 above are usually iterated 3-5 times to produce accurate *velocity* and *residual* statics models.
 - Success of velocity analysis depends on the quality of DMO/NMO and residual statics, and vice versa.

17) Stack

- Produces a zero-offset section;
- Utilizes CMP redundancy to increase the Signal/Noise ratio.

18) Migration

- Transforms the zero-offset time section into a depth image;
- Establishes correct extents and dips of the reflectors.

Processing tools

Preprocessing

- Demultiplex;
- Editing;
- Gain recovery;
- Field geometry;
- Elevation ('field') statics.

Travel-time corrections

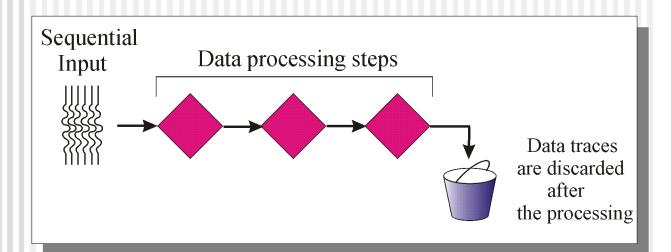
- Statics, i.e., time shifts (elevation, refraction (weathering), residual);
- Velocity analysis (testing for hyperbolic moveout);
- Normal-moveout correction (NMO);
- Dip moveout correction (DMO);
- Migration.

Processing tools Continued

Wavelet adjustments

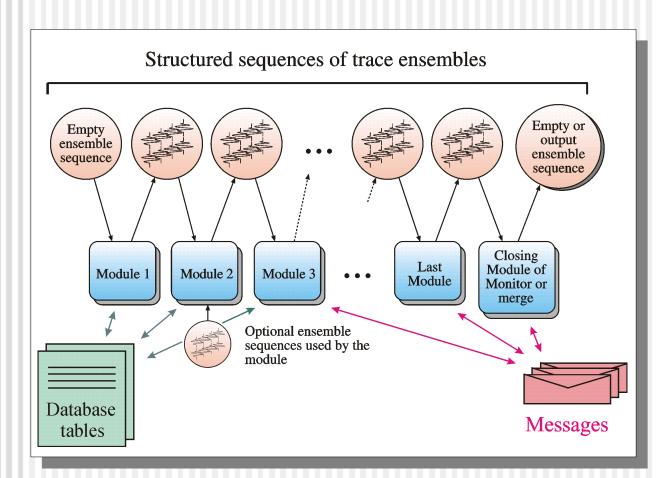
- Vibroseis correlation,
- Deconvolution;
- Frequency filtering.

Amplitude corrections


- Compensation of Geometrical spreading;
- Gain
 - Automatic Gain Correction (AGC,), trace normalization, etc.

Noise reduction

- Velocity filtering (f-k and τ-p filters);
- 'Vertical' stack, CMP stack;
- Muting.


General Processing Flow

- Seismic processing flow is a computer program
 - Implemented as a 'script' (DISCO, SIA, SU), 'instruction list' (ProMAX), or visual 'graph' (Vista, Omega)
 - User builds the processing sequence using a collection of tools for data manipulation
 - Results in generation of a code customized to perform the specified task

A More General Processing Flow (SIA)

- SIA Seismic processing logic is based on independent operation of the modules
 - Each module transforms an input gather of multicomponent traces into output one
 - SIA also maintains a system of database tables and inter-modular messaging mechanism

ProMAX Data hierarchy

- Area (project)
 - Line
 - Processing Flows (perform specific processing tasks with the traces or databases)
 - Datasets (traces, headers, lookup tables)
 - Databases (most of them called OPF – Ordered Parameter Files)
 - Tables (travel times, velocity models, etc.)
- A special area used for archiving and restoring other projects ('areas')

ProMAX Key components

- Front-end GUI
 - Navigates within areas, lines, flows, datasets, databases, tables, etc.
- Flow builder
 - Allows building processing flows from a library of modules
 - Send flows to execution
- Monitor
 - Monitors running jobs, allows suspending and killing them
 - Displays job logs
- Database editors
 - Display/edit various databases