
INVERSION ASSIGNMENT 6

NON-LINEAR LEAST SQUARES

Non-linear least squares can be done with either an iterated linear least squares, or a

specialized inversion like simplex.

In iterated non-linear least squares you need to linearize the model about a first guess,

solve for adjustments to the model, and then repeat the process with the new model.

So if mo is the initial guess for the model, and f(mtrue) = d, we need to minimize

dobs − f(mo)

or the difference between the observed data and what the initial model would predict.

Linearizing the model, we have

∂f

∂m
δm + f(mo) =d + ε

∂f

∂m
δm =d − f(mo) + ε

where δm are adjustments to the initial model that result in a smaller data misfit.

The partial wrt the model parameters is then the K matrix, which I will write with a

prime as a reminder that this is the derivative of K.

K ′δm = dobs − f(mo);

A single step in the sequence of iterations has thus been cast in the familiar form of a

linear inverse problem except K has been replaced by K ′, and the observed data are

now the observed data minus the data predictions based on the current estimate of

the model.
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1) Add to the program you have been writing so that it will do iterated nonlinear least

squares.

In a previous assignment you looked at CO2 data from Mauna Loa. Re-visit that

problem now and solve for the time constant. The model was:

Acos(2πt) + Bsin(2πt) + C + De
t−t(1)

τ



where τ was set at reasonable guess. A cursory examination of the data suggests an

initial guess for all parameters.

τ appears in this equation as a non-linear factor, so it cannot be evaluated in the same

way as A, B, C , and D. Taking partial derivatives
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and each i refers to a different time.

So the problem to solve in the first iteration is:
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= dobs − f(mo)

and out of this you get corrections to your first estimate of the five model parameters,

which you add to the model parameters to form a guess for the second iteration.

When should you quit iterating? There are three considerations that guide you here:

1) when the standard deviation of the data misfit approaches the known standard devi-

ation of the observations,

2) when the standard deviation of the data misfit reaches a level beyond which further

iterations produce no further improvement,

3) when the model parameters have converged and show no further changes with suc-

ceding iterations. You could insert an automatic stop based on these criteria, or

preferably a pause with a query to continue or quit.

Try starting with ever more outrageous initial guesses for τ to test the limits of

convergence.

We also saw earlier that some of these parameters could be combined in a linear

equality constraint. Add this linear equality constraint and solve again.



The simplex algorithm is implemented in FMINSEARCH in matlab. FMINSEARCH

operates with N+1 models, where N is the number of parameters, and at each step

rejects the model that returns the largest data misfit and proposes a replacement model

to be used in the next iteration based on the remaining models. The big advantage

over iterated Gauss-Newton is that you do not need to calculate the derivatives, but

the execution time is generally longer and increases drastically with the number of

model parameters.

Solve the above problem again using FMINSEARCH.

In G-N inversion, or any of the variations of G-N we have looked at, the estimated

error on the model parameters was:

∆mmest = (KtK)−1Ktδdobs

With the Simplex algorithm there is no such straightforward way to calculate error

estimates on parameters. Error estimates can still be obtained, but with a little more

work, through a Monte Carlo simulation. If you know the standard deviation of each

observation then add a random number with zero mean and this standard deviation

to every observation, thus generating an observed sequence with the same statistical

properties as the original data. Each sample in this new sequence could have been

the result of the same measurement process. Now go through the inversion procedure

again generating a new set of model parameters which are the best fit to the new data.

This procedure is repeated until sufficient trials have been executed that a statistically

meaningful standard deviation of model parameters can be estimated. Ten or twenty

trials should be enough to estimate the parameter errors.

If you do not know the error on each observation, then you can estimate it from the

residuals of the observed data, that is, the standard deviation of

dobs − dpre

is an estimate of the standard deviation on the observations. How good an estimate

it is depends on how well your model predicts all the variance in observed data. If the

residuals display any trend, or do not look random, then you will over-estimate the

observation errors, and over-estimate the parameter error as well. One very important

test is to do a histogram of these residuals. Does it look Gaussian?

Lastly, Implement the linear equality constraints in simplex.


