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Lab #5. Inversion with linear constraints  

In this lab, you will practice inversion with explicit (exact) constraints and Laplacian 

smoothness constraints. 

 

Step 1: Add switches to your code or make new versions to add linear constraints using two 

methods discussed in the course notes: exact model constraints (section 7.1 in the notes) and 

Laplacian smoothness constraints (section 7.2; eqs. 7.13 and 7.14).  

 

Using these programs, invert the following integral for a function m(x) sampled on interval 

 0,1x :  

                                                     ( ) ( )
1

0

yxxe m x dx d y− = . (1) 

In the table at the end of this description (also in file asg5.dat), values of this integral are given 

for 25 values of  0.1,10y . Random Gaussian error with mean zero and standard deviation 

0.000005 was included in d(y). 

In the program, denote the number of data points (Nd in my text) by N = 25 and the number 

of model parameters (Nm in the text) by M.  Use an identifier for M, so that it can be changed in 

the following tests. Define an equally spaced grid of M model-grid points (using linspace()), 

so that the first of them is at x = 0 and the last x = 1.  

 

Step 2: Using this grid of m(xi), construct kernel matrix L that would express equation (1) as a 

linear forward model Lm = d. For the quadrature (approximation of the integral (1) by a 

sum), use the trapezoidal or Simpson’s integration rule. 

 

Step 3: Also define two constraint matrices:  

1) Two-row matrix B such that equation Bm = 0 implements two constraints on the 

resulting model function: m(0) = 0, m(1) = 0. If your model is a vector (matrix 

column in Matlab) like this: 

asg.dat
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then the constraint matrix will be 

                                                         
1 0 0 0

0 0 0 1

 
=  
 

B . (3) 

2) Roughness matrix R (see section 7.2) such that expression mTRm approximates the 

integral of minus the Laplacian of the model function: ( )
1 2

2

0

d
m x dx

dx
− . The integral 

of the Laplacian will be negative, and therefore the roughness term mTRm will be 

positive for functions m(x) oscillating within the interval. Simply use eq. (3.35) in 

class notes for the Laplacian.  

 

Step 4:  Using matrices L, B, and R, and several forms of gridding, solve for m(x) for the 

following constraints on the model: 

1) Take a small M < N and perform the least-squares inversion; 

2) Try the simple even-determined quadrature, i.,e. M = N = 25, and solution of the 

form m = L−1d. I think you will find that the solution will fail; is this so?  

 

The solution should fail because there exist functions m(x) for which ( )
1

0

0yxxe m x dx− =  

(null space of the forward kernel). These functions can be removed by additionally constraining 

the solution: 

 

3) For M = N = 25, try the damped least squares (Marquardt-Levenberg) inversion. 

This is a “soft” (approximate) constraint requiring that the model m(x)  0 not 

exactly but “on average”. 

4) Try the smoothest-model inversion using matrix R (section 7.2 in the notes). 
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5) Try exact constrained inversion using matrix B. The method is described in 

section 7.1 in class notes. Verify that the constraints m(0) = 0 and m(1) = 0 are 

achieved exactly. 

 

Data table: 
 

y  d(y) 

0.1   -0.1439 

0.2   -0.1299 

0.3   -0.1170 

0.4   -0.1052 

0.5   -0.0944 

0.6   -0.0844 

0.7   -0.0753 

0.8   -0.0699 

0.9   -0.0593 

1.0   -0.0523 

1.2   -0.0400 

1.4   -0.0297 

1.6   -0.0211 

1.8   -0.0140 

2.0   -0.0081 

2.5   +0.0025 

3.0   +0.0088 

3.5   +0.0123 

4.00   +0.0140 

5.0   +0.0144 

6.0   +0.0130 

7.0   +0.0112 

8.0   +0.0099 

9.0   +0.0078 

10.0   +0.0065 


