Lab #5. Inversion with linear constraints

In this lab, you will practice inversion with explicit (exact) constraints and Laplacian smoothness constraints.

Step 1: Add switches to your code or make new versions to add linear constraints using two methods discussed in the course notes: exact model constraints (section 7.1 in the notes) and Laplacian smoothness constraints (section 7.2; eqs. 7.13 and 7.14).

Using these programs, invert the following integral for a function m(x) sampled on interval $x \in [0,1]$:

$$\int_{0}^{1} x e^{-yx} m(x) dx = d(y). \tag{1}$$

In the table at the end of this description (also in file asg5.dat), values of this integral are given for 25 values of $y \in [0.1,10]$. Random Gaussian error with mean zero and standard deviation 0.000005 was included in d(y).

In the program, denote the number of data points (N_d in my text) by N = 25 and the number of model parameters (N_m in the text) by M. Use an identifier for M, so that it can be changed in the following tests. Define an equally spaced grid of M model-grid points (using linspace()), so that the first of them is at x = 0 and the last x = 1.

Step 2: Using this grid of $m(x_i)$, construct kernel matrix **L** that would express equation (1) as a linear forward model $\mathbf{Lm} = \mathbf{d}$. For the quadrature (approximation of the integral (1) by a sum), use the trapezoidal or Simpson's integration rule.

Step 3: Also define two constraint matrices:

1) Two-row matrix **B** such that equation $\mathbf{Bm} = \mathbf{0}$ implements two constraints on the resulting model function: m(0) = 0, m(1) = 0. If your model is a vector (matrix column in Matlab) like this:

$$\mathbf{m} = \begin{pmatrix} m_1 \\ m_2 \\ \vdots \\ m_{N_m-1} \\ m_{N_m} \end{pmatrix}, \tag{2}$$

then the constraint matrix will be

$$\mathbf{B} = \begin{bmatrix} 1 & 0 & \dots & 0 & 0 \\ 0 & 0 & \dots & 0 & 1 \end{bmatrix}. \tag{3}$$

- 2) Roughness matrix **R** (see section 7.2) such that expression $\mathbf{m}^T \mathbf{R} \mathbf{m}$ approximates the integral of minus the Laplacian of the model function: $-\int_0^1 \frac{d^2}{dx^2} m(x) dx$. The integral of the Laplacian will be negative, and therefore the roughness term $\mathbf{m}^T \mathbf{R} \mathbf{m}$ will be positive for functions m(x) oscillating within the interval. Simply use eq. (3.35) in class notes for the Laplacian.
- **Step 4**: Using matrices **L**, **B**, and **R**, and several forms of gridding, solve for m(x) for the following constraints on the model:
 - 1) Take a small M < N and perform the least-squares inversion;
 - 2) Try the simple even-determined quadrature, i.,e. M = N = 25, and solution of the form $\mathbf{m} = \mathbf{L}^{-1}\mathbf{d}$. I think you will find that the solution will fail; is this so?

The solution should fail because there exist functions m(x) for which $\int_{0}^{1} xe^{-yx}m(x)dx = 0$ (null space of the forward kernel). These functions can be removed by additionally constraining the solution:

- 3) For M = N = 25, try the damped least squares (Marquardt-Levenberg) inversion. This is a "soft" (approximate) constraint requiring that the model $m(x) \approx 0$ not exactly but "on average".
- 4) Try the smoothest-model inversion using matrix \mathbf{R} (section 7.2 in the notes).

5) Try exact constrained inversion using matrix **B**. The method is described in section 7.1 in class notes. Verify that the constraints m(0) = 0 and m(1) = 0 are achieved exactly.

Data table:

y	d(y)
y 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.6 1.8 2.0 2.5 3.0	d(y) -0.1439 -0.1299 -0.1170 -0.1052 -0.0944 -0.0844 -0.0753 -0.0699 -0.0593 -0.0523 -0.0400 -0.0297 -0.0211 -0.0140 -0.0081 +0.0025 +0.0088
3.5	+0.0123
4.00 5.0 6.0 7.0 8.0 9.0 10.0	+0.0140 +0.0144 +0.0130 +0.0112 +0.0099 +0.0078 +0.0065