
GEOL884.3 Lab 6 1

Lab #6. Nonlinear inversion

In this lab, you will practice two types of iterative inversion of nonlinear problems: the Gauss-

Newton inversion and the simplex method. The application example will be the same Mauna Loa CO2

dataset from lab 3. The forward model is (in the approximate sense I talk about in the first sections of the

text)

 () ()
1

cos 2 sin 2
it t

id A t B t C De  
−

 + + + , (1)

where ti is the time in years, di is the CO2 ppm value, and A, B, C, and D, and  are the unknowns.

Parameters A, B, C, and D enter eq. (1) linearly, but for , the equation is nonlinear, and this is why we

need to use iterative inverse methods.

However, even when using nonlinear models, you need to consider how to define the model

vector m. Note that instead of  in eq. (1), it is easier and better to use parameter  = 1/ and form the

model vector as ()
T

A B C D =m . Equation (1) is then ()pred d m , where:

 () () () ()5 1pre

1 2 3 4cos 2 sin 2 im t t

id m t m t m m e 
−

= + + +m , (2)

and the function which we want to minimize is () ()
2

pre

i i

i

d d  = − m m .

For linear and particularly for nonlinear methods to work well numerically, it is important to

properly precondition the forward problem. As a minimum, you need to ensure that all parameters mi

have comparable impacts on the data (values of the Jacobian matrix J). From eq. (2), note that parameters

m1 to m4 are measured in ppm, and the ranges of their variation (variances) are around ~2 ppm (see lab 3).

By contrast, parameter m5 is measured in 1/years, and its expected range of variation is roughly 1/(60

years). As a result, numerical values of m5 are much smaller than those of m1 to m4, and the inversion may

have hard time finding m5 concurrently with other parameters. Therefore, for a better-conditioned inverse

problem, you would need to rescale parameter m5 so that its expected value would be around one. This

can be done by parameterizing eq. (2), for example, like this:

 () () () ()5 10.01pre

1 2 3 4cos 2 sin 2 im t t

id m t m t m m e 
 −

= + + +m . (2a)

This scaling can be interpreted as measuring m5 in units of 1/(100 years), which is more natural for this

model.

GEOL884.3 Lab 6 2

To minimize function (m), you can start from some model m0 and linearly approximate

() ()pre 0 pre 0 +  +d m m d m J m , where J (the “Jacobian” matrix) consists of the derivatives of each

data point
pre

id with respect to each model parameter mj:
pre

i
ij

j

d
J

m


=


. Alternatively, you can use nonlinear

search methods like simplex, which require no calculation of the Jacobian. However, in all cases, it is

important to estimate a starting model m0 which is reasonably close to the solution.

Thus, the steps of the lab are like this:

Step 1: calculate the Jacobian analytically (verify this):

 for any i:

()

()

()

() ()

5 1

5 1

1

2

3

4

0.01

5 4 1

cos 2 ,

sin 2 ,

1,

,

0.01 .

i

i

i

i

i

m t t

i

m t t

i i

J t

J t

J

J e

J m t t e





−

−

 =

 =


=


=

 = −

 (3)

The function being minimized is thus replaced with () ()
2

pre 0

i i ij j

i j

d d J m
 

 = − − 
 

 m m

which is the objective function of the least-squares problem for m:

  =J m d , (4)

where ()pre 0 = −d d d m is the data misfit vector for your current iteration. This is often (and in this lab)

an over-determined inverse problem for dm. In the Gauss-Newton iterative inverse, m is found from

eq. (4) by using the least-squares method:

 ()
1

T T 
−

=m J J J d . (5)

Note that sometimes, the problem (4) might be under-determined, and then you would probably use the

minimum-length inverse instead of (5).

GEOL884.3 Lab 6 3

Also note in eq. (5) that matrix
T =J J H is the “approximate Hessian” (matrix of second

derivatives of the approximate (m) with respect to the model:
()2

ij

i j

H
m m

 
=
 

m
, and JTd equals minus

the gradient of (m): ()preT
= = − −


g J d d
m

. Thus, the Gauss-Newton inverse (eq. 5) can also be

written as 1 −= −m H g .

Step 2: Add to the program you have been writing code to so perform iterated nonlinear least squares

by the Gauss-Newton method, Use either the (J, d) or (H, g) notation above.

Step 3: Starting from some reasonable m0 not far from he one found in lab 3, perform iterations

to obtain solution of the nonlinear inverse problem. Plot the path of these iterations on the

plane of parameters (m4, m5) (or also any other).

When should you stop iterating? Three considerations can guide you in this decision:

1) When the standard deviation of the data misfit approaches the known standard deviation

of the observations,

2) When the standard deviation of the data misfit reaches a level beyond which further

iterations produce no further improvement,

3) When the model parameters have converged and show no further changes with

succeeding iterations.

You could insert an automatic stop based on these criteria, or preferably a pause with a query to

continue or quit.

Step 4: Try starting with ever more outrageous initial guesses for m5 =  (or ) to test the limits

of convergence. Note that if you are using  as the nonlinear parameter, then even very large

values of  represent small variations of the actually essential parameter  from zero.

With , you can start iterations even from values  < 0 and see how the method converges.

GEOL884.3 Lab 6 4

Next, try applying additional linear constraints when iteratively solving for a nonlinear

inverse. For this type of model, only exact linear constraints make sense, because, for example. there

are no parameters for which we could require smoothness. Let us impose a constraint requiring that the

first data point in the dataset is known exactly: ()pre

1 1d d=m . From eqs. (2) or (2a), this constraint reads

() () ()pre

1 1 1 2 1 3 4 1cos 2 sin 2d m t m t m m d = + + + =m . Write it in matrix form Bm = c (section 7.1

in the notes and lab 5) and verify that:

 () ()1 1cos 2 sin 2 1 1 0t t =   B , and 1d=c . (6)

For the model increment m, this equation becomes ()pre

1 1d d = −B m m , where ()pred m is

the data predicted by the preceding iteration. Before starting the iterations using this equation, it is better

to ensure that the starting model is close to satisfying the desired constraint Bm = d1. This can be done

by various selections of parameters m. For example, set all parameters mi as you found in lab 3,

and then adjust the additive parameter m3 to satisfy ()pre

1 1d d=m .

 Step 5: Add the exact linear constraint Bm = 0 to eq. (5), similar to what was done in the last question

of lab 5. Perform the iterative inverse and verify that ()pre

1 1d d=m after each iteration. Plot the

convergence path on the (m4, m5) plane.

In the remainder of the lab, examine the simplex algorithm on the same problem, using

function fminsearch in Matlab or Octave. For a model with N parameters (five in this case).

this algorithm operates with N+1 trial models. At each step of iteration, fminsearch rejects

the model that returns the largest data misfit, and based on the remaining N models, proposes a

replacement model with lower data misfit. The big advantage over the iterated Gauss-Newton

method is that you do not need to calculate any derivatives and solve any least-squares or

minimum-length problems. However, the execution time is generally longer and increases

drastically with the number of model parameters.

Step 6: Solve the problem in eq. (2a) again using fminsearch.

GEOL884.3 Lab 6 5

In Gauss-Newton or any other variations of linearized inverses, the error of the inverted

model parameters can be estimated by using data and model covariance matrices (see lab 4 and

class notes). With the simplex algorithm, there is no such straightforward way to calculate the

model error estimates. However, error estimates can still be obtained by a generating synthetic

data, or by data bootstrapping (see class notes). In this lab, let us try straightforward Monte Carlo

simulation of data errors.

The idea of Monte Carlo parameter-error testing consists in generating several sets of

synthetic data d*:

 ()* pre best

i i id d = +m , (7)

where mbest is your best-fit model, and i is a random error drawn from the distribution of measurement

errors. By using these d* as data, you would then repeat the inversion by any method, and the

scatter of the resulting models (m*)best would show the model-parameter uncertainty, and also the

covariances between the different parameters.

Step 7. From your lab 3, find the standard deviation of CO2 ppm data errors . Then, go through

the simplex inversion procedure several times, each time generating a new Gaussian

distribution with zero mean and variance . Add these errors to the best-fit model

predictions as in eq. (7). Using these randomized data, produce inverses by the

fminsearch algorithm.

Ten or twenty trials above should be enough to estimate the model parameter errors.

If you do not want to trust the results of lab 3 for determining  (might be a good idea),

then you can repeat the analysis of data fitting from there. Plot the residuals of data errors

()pre best

i id d− m versus time of the observation, check whether there are any systematic trends, and then

plot a histogram. Does it look Gaussian? Calculate the standard deviation .

GEOL884.3 Lab 6 6

Step 8. Lastly, implement the linear equality constraints on the first data point ()pre

1 1d d=m in

the simplex method. This constraint is again given as Bm = c (eq. 6).

As you will find, exact constraints cannot be included in the simplex method, because it

does not allow restricting the possible values of arguments m. However, you can apply

constraints in a “soft” way by adding them to the objective function (written in matrix form here):

() () () () ()pre pre1

2 2

T T
    = − − + − −   m d d m d d m c Bm c Bm . (8)

As usual, some thought (and testing) needs to be given to the selection of parameter .

