
GEOPHYSICS, VOL. 64, NO. 3 (MAY-JUNE 1999); P. 888–901, 11 FIGS., 1 TABLE.

Seismic waveform inversion in the frequency domain, Part 1:
Theory and verification in a physical scale model

R. Gerhard Pratt∗

ABSTRACT

Seismic waveforms contain much information that
is ignored under standard processing schemes; seismic
waveform inversion seeks to use the full information
content of the recorded wavefield. In this paper I present,
apply, and evaluate a frequency-space domain approach
to waveform inversion. The method is a local descent al-
gorithm that proceeds from a starting model to refine the
model in order to reduce the waveform misfit between
observed and model data. The model data are computed
using a full-wave equation, viscoacoustic, frequency-
domain, finite-difference method. Ray asymptotics are
avoided, and higher-order effects such as diffractions and
multiple scattering are accounted for automatically.

The theory of frequency-domain waveform/wavefield
inversion can be expressed compactly using a ma-
trix formalism that uses finite-difference/finite-element
frequency-domain modeling equations. Expressions for
fast, local descent inversion using back-propagation
techniques then follow naturally. Implementation of
these methods depends on efficient frequency-domain
forward-modeling solutions; these are provided by re-
cent developments in numerical forward modeling. The

inversion approach resembles prestack, reverse-time mi-
gration but differs in that the problem is formulated in
terms of velocity (not reflectivity), and the method is
fully iterative.

I illustrate the practical application of the frequency-
domain waveform inversion approach using tomogra-
phic seismic data from a physical scale model. This al-
lows a full evaluation and verification of the method;
results with field data are presented in an accompanying
paper. Several critical processes contribute to the suc-
cess of the method: the estimation of a source signature,
the matching of amplitudes between real and synthetic
data, the selection of a time window, and the selection of
suitable sequence of frequencies in the inversion.

An initial model for the inversion of the scale model
data is provided using standard traveltime tomographic
methods, which provide a robust but low-resolution im-
age. Twenty-five iterations of wavefield inversion are ap-
plied, using five discrete frequencies at each iteration,
moving from low to high frequencies. The final results
exhibit the features of the true model at subwavelength
scale and account for many of the details of the observed
arrivals in the data.

INTRODUCTION

During the last decades the seismic waveform inverse prob-
lem has been tackled by many applied mathematicians and
geophysicists with an increasing degree of success. The aim of
such research, simply stated, is to develop processing methods
that take data from a seismic survey and (automatically, if pos-
sible) compute the best earth model consistent with the data
(and consistent with any existing a priori information). An im-
portant step was taken by Lailly (1983) and Tarantola (1984),
who recognized that models could be improved iteratively by
back-propagating the data residuals and correlating the result
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with forward-propagated wavefields in a manner very similar
to many prestack migration algorithms. Numerical results us-
ing this approach are given by Kolb et al. (1986), Gauthier
et al. (1986), and Mora (1987). These authors all formulate
their methods in the time domain. Shin (1988), Pratt and
Worthington (1990), Pratt (1990b), Geller and Hara (1993),
and Song et al. (1995) apply the same idea to inverse problems
in the frequency domain and use an implicit frequency-domain
numerical algorithm to provide the forward model.

Several researchers have achieved considerable improve-
ments in tomographic (transmission) imaging from cross-bore-
hole data by utilizing gradient methods for waveform inversion
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in conjunction with finite-difference modeling. Results with
real crosshole data have been demonstrated by Zhou et al.
(1995), who use a time-domain approach, and by Song et al.
(1995) and Pratt et al. (1995), who use a frequency-domain ap-
proach. The motivation in the use of waveform inversion for
crosshole data (or other transmission data) is to improve the
resolution when compared with traveltime inversion methods
(Williamson, 1991; Williamson and Worthington, 1993). Al-
though crosshole seismic methods are a specialized technique,
in many respects the successful inversion of crosshole data,
with the difficult phases often observed in the data [see, for
example, Van Schaack et al. (1995)], paves the way for the ap-
plication of such techniques to more conventional reflection
seismic data.

In this paper, and in the accompanying paper (Pratt and
Shipp, 1999), I return to the frequency-domain approach for
seismic waveform inversion. Here I provide a new, compact
derivation of the theory and use the methodology on scale
model data; in the accompanying paper the method is ap-
plied to a real crosshole data set. Time-domain and frequency-
domain methods are analytically equivalent; to some extent the
nonspecialist (or end user) need not be concerned in which do-
main the results are obtained. However, the numerical advan-
tages of a frequency-domain implementation are formidable.
There are also other good reasons for preferring the frequency
domain. Most of the advantages are linked to the forward
modeling algorithm. Marfurt (1984) was the first to point out
that the frequency domain is the method of choice for finite-
difference/finite-element modeling if a significant number of
source locations are involved. I pointed out later (Pratt, 1990a)
that large aperture seismic surveys could be inverted effectively
using only a limited number of frequency components, thus re-
ducing the number of frequency-domain forward solutions in a
manner not possible with time-domain methods. To these im-
portant advantages, we may add the ease with which viscous
attenuation and dispersion are incorporated into frequency-
domain methods and the ease with which inverse methods can
be implemented to use the lowest data frequencies first, thus
mitigating the notorious nonlinearities in the seismic inverse
problem.

Several recent developments in waveform inversion make
this paper timely and relevant:

1) Advances in seismic modeling by finite differences in the
frequency domain (Jo et al., 1996; S̆tekl and Pratt, 1998)
that make the method significantly more efficient than
the original second-order method of Pratt (1990a);

2) Advances in computer hardware—particularly in the
wider availability of cheap random access memory—that
make the routine application of the frequency domain
method possible on standard workstations;

3) A new description of the theory based on matrix algebra,
rather than functional analysis, that makes the method
more accessible (Pratt et al., 1998); and

4) A practical method for minimizing artifacts that makes
use of the capability of incorporating viscous attenuation
into the forward model.

The method of frequency-domain waveform inversion is ver-
ified in this paper by applying the method to tomographic seis-
mic data from a physical scale model. The use of scale model
data allows a full evaluation and verification of the method. As
in synthetic studies the final result can be compared directly

to the true model. Unlike computer-generated data, however,
these data come from a real, physical experiment and contain
both random and signal-generated noise—we are not simply
testing the computer software in forward and inverse modes.
These same scale model data have been used before to demon-
strate a variety of imaging and inversion methods (Pratt and
Goulty, 1991; Pratt et al., 1991; Leggett et al., 1993; Rowbotham
and Goulty, 1995; Reiter and Rodi, 1996); an objective com-
parison can thus be made between those results and the results
I present here.

The paper is divided into two main sections. In the first sec-
tion I provide a review of the theory for seismic waveform
inversion, specifically cast into the frequency-space domain.
By specifying the frequency-domain method from the outset,
one can introduce a discrete matrix formalism for the seismic
waveform inverse problem directly in the frequency-space do-
main. The matrix formalism replaces the more difficult notions
of functional analysis of, for example, Tarantola (1987). This
section of the paper concludes with a matrix algebra demon-
stration of Lailly’s (1983) fast back-propagation method for
computing the gradient of the misfit function for the waveform
inversion problem.

In the second section of the paper I give a complete account
of the inversion of the physical scale model data. The model ge-
ometry simulates a seismic crosshole experiment. This section
deals with the generation (and validation) of an appropriate
starting model, the time windowing of the data, the estima-
tion of a source signature, the matching of amplitudes between
model and observed data, the selection of a suitable sequence
of frequencies in the inversion, and the verification of the final
results. The final results exhibit the features of the true model
at subwavelength scales. Moreover, modeling in the final result
provides model data that match many of the waveform details
of the observed data.

THEORY

The mathematics of descent-type inversion methods have
been given in the past in terms of functional analysis, using in-
finite dimensional spaces to represent the data and the model
[see, for example, Tarantola (1987)]. These developments are
often difficult to follow; ultimately, the results must be ex-
pressed in the form of computer programs that deal with finite-
dimensional representations of the data and the models. In
this section I present an alternative approach (which can be
followed in more detail in Pratt et al., 1998), in which finite-
dimensional (i.e., discrete valued) data and model represen-
tations are assumed from the outset. The integral operations
of functional analysis are thereby replaced with matrix opera-
tions.

Full-wave equation forward modeling
in the space-frequency domain

I begin by assuming that the forward problem can be ade-
quately simulated using a finite-element or a finite-difference
method. These numerical methods for wave modeling avoid
the use of ray theory, which is an asymptotic theory that ig-
nores crucial low-frequency effects in the data. I use the full-
wave equation, and not a one-way wave equation, which ig-
nores backscattering and wide-angle effects. Usually in seismic
wave modeling, explicit time marching schemes are used. Here
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I assume instead that an implicit, time-independent scheme has
been obtained by temporal Fourier transformation of the full-
wave equation. The resultant numerical system can be repre-
sented compactly by

S(ω) u(ω) = f(ω) or u(ω) = S−1(ω) f(ω) (1)

[See, for example, Marfurt (1984) or Pratt (1990a)], where u
is the Fourier-transformed, complex-valued, discretized wave-
field (i.e., the pressure or the displacement), sampled at l node
points and arranged as an l × 1 column vector, S is an l × l
complex-valued impedance matrix, and f are the source terms,
also arranged as an l ×1 column vector. Although I will use the
second mathematical form in equation (1), which makes use
of the inverse impedance matrix, S−1(ω), this is purely sym-
bolic; the impedance matrix is very large (sparse) and its in-
verse is difficult and expensive to compute. Interestingly, the
inverse impedance matrix is identical in form to Berkhout’s
response matrix (Berkhout, 1982), although Berkhout’s ap-
proach to imaging and inversion is not used in this paper.

The impedance matrix is computed by numerical approx-
imation of the underlying (spatial) partial differential equa-
tions, given the discretized physical parameters (for example,
the seismic velocities sampled at each of the node points). The
boundary conditions are included implicitly; these are incorpo-
rated directly into the various matrix coefficients. Equation (1)
can be used to represent acoustic, elastic, or electromagnetic
wave propagation as well as potential field problems or diffu-
sion problems.

Viscous damping (attenuation) and dispersion may be in-
cluded when generating the impedance matrix simply by allow-
ing the material properties to be complex valued and frequency
dependent. As we shall see, it is convenient (but not required)
that source-receiver reciprocity holds in equation (1). If the
numerical problem is exactly reciprocal with respect to an in-
terchange of source and receiver elements, then both S and S−1

are symmetric matrices.

Matrix solution methods.—The discrete frequency-domain
modeling problem represented by equation (1) is an implicit
specification of the wavefield; the second, explicit form shown
in equation (1) is only representational, as it is not gener-
ally possible (or desirable) to actually invert the very large
impedance matrix S. For multiple source problems, equa-
tion (1) is best solved using direct matrix factorization methods,
such as LU decomposition (Press et al., 1992; Pratt, 1990b). It
is critical to use ordering schemes that allow maximum advan-
tage to be taken of the sparsity of both S and its LU factor-
ization; nested dissection (Liu and George, 1981; Marfurt and
Shin, 1989) is such a method. If LU decomposition is used to
solve equation (1), the matrix factors can be reused to rapidly
solve the forward problem for any new source vector, f. This
is especially important in the iterative solution of the inverse
problem, in which many forward solutions for the true sources
and for the virtual sources are required at each iteration.

The inverse problem in the space-frequency domain

Mathematically, the inverse problem is to estimate a set of
model parameters from the recorded data. The model can be
thought of as being specified at each of the l node points, as

above. However, it is more sensible to define the model in
terms of a more general parameter set, p, an m× 1 column
vector, where m 6= l in general (and usually m< l ). In terms of
generating forward modeled data, it is only necessary to be able
to compute the l × l impedance matrix S from the parameters
p, for example, by interpolation. As we shall see below, we will
also require expressions for the partial derivatives ∂S/∂pi for
all m model parameters.

Suppose we have n experimental observations, d (after
Fourier transformation at a particular frequency, ω), recorded
at a subset of nodal points corresponding to the receiver lo-
cations. The explicit dependence of each term in equation (1)
on the angular frequency, ω, will be dropped from now on. We
proceed in the inversion by reducing the misfit between these
observed data and the modelled data by iteratively updating
the model. As always with such descent methods, I assume the
existence of a suitable initial model, p(0), that is close enough
to the global solution to allow successively more accurate data
fitting to be achieved using local information about the mis-
fit function. This is appropriate for seismic tomography, since
good starting models can be generated by the more linear but
more approximate methods of traveltime analysis. Given the
initial model, we can calculate the impedance matrix, S, and
the initial wavefield estimate by forward modeling.

The residual error at the n receiver node points, δd is defined
as the difference between the initial model response and the
observed data at the receiver locations. Thus

δdi = ui − di , i = (1, 2, . . . ,n), (2)

where the subscripted quantities are the individual components
of δd, u, and d and the subscript i represents the receiver num-
ber. (It is convenient to assume the node points are ordered
in such a way that the first n≤ l node points are receiver lo-
cations, but the results I shall describe are not specific to such
an ordering scheme.) As is common in many inverse problems,
we seek to minimize the sum of squared residual errors

E(p) = 1
2δd

tδd∗ (3)

(the l2 norm misfit function), where (here and later) the su-
perscript t represents the ordinary matrix transpose and the
superscript ∗ represents the complex conjugate.

Gradient method of inversion.—To proceed, we use the di-
rection in parameter space defined by the gradient of the misfit
function,∇pE. We produce a new parameter set by (iteratively)
updating the parameter vector according to

p(k+1) = p(k) − α(k)∇pE(k), (4)

where k is an iteration number and α is a step length (a posi-
tive scalar) chosen by simple line search methods to minimize
the l2 norm in the direction given by the gradient of E(p). The
iteration in equation (4) is performed until some suitable stop-
ping criteria is reached. The convergence rate of the gradient
method is generally quite slow; convergence can be improved
by adopting a conjugate gradient approach [see, for example,
Mora (1987)] that does not require any significant additional
computations.

The key quantity we require for such descent-type inverse
methods is the gradient direction, ∇pE. We may evaluate the
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gradient direction by taking partial derivatives of equation (3)
with respect to each of the m model parameters, p, yielding

∇pE = ∂E

∂p
= Real{Jtδd∗}. (5)

The matrix Jt is the transpose of the n×m Frechét derivative
matrix, J, the (complex valued) elements of which are given by

Ji j = ∂ui

∂pj
i = (1, 2, . . . ,n); j = (1, 2, . . . ,m). (6)

Computation of the Frechét derivatives.—We now wish to
explicitly link the computation of the gradient vector to the
forward frequency-domain modeling problem given in equa-
tion (1). To do this we first augment the m×n matrix J with
the additional rows required to define partial derivatives at all
node points—not just at the receiver locations—to obtain a new
m× l matrix Ĵ. We may then write a new equation equivalent
to equation (5):

∇pE = Real{Ĵtδd̂∗}, (7)

where δd̂∗ is the data residual vector of length n, augmented
with (l − n) zero values to produce a new vector of length l .

An expression for each column of the augmented Frechét
derivative matrix, Ĵ, can be obtained by taking the partial
derivative of both sides of equation (1) with respect to the
i th parameter pi :

S
∂u
∂pi
= − ∂S

∂pi
u or

∂u
∂pi
= S−1 f (i ). (8)

From a comparison with equation (1), we see that the benefit
of writing this solution using the matrix inverse is that we may
obtain the required partial derivatives by solving a different
forward problem in which we have introduced the i th virtual
source term

f (i ) = − ∂S
∂pi

u, (9)

itself an l × 1 vector [see Rodi (1976) and Oristaglio and
Worthington (1980), who originally suggested this approach
for the electromagnetic problem]. The computation of the par-
tial derivatives of the impedance matrix, ∂S/∂pi , depends on
the specific details of the finite approximation method used.
However, in all cases these are relatively trivial to compute.

Since we could generate an equation similar to equation (8)
for any choice of i , we can represent all of the partial derivatives
simultaneously by the matrix equation

Ĵ =
[
∂u
∂p1

∂u
∂p2
· · · ∂u

∂pm

]
= S−1[f (1) f (2) · · · f (m)]

(10)
or Ĵ = S−1F,

where F is an l ×m matrix, the columns of which are the virtual
source terms for each of the m physical parameters. Compu-
tation of the elements of Ĵ using equation (10) would require
m forward propagation problems to be solved (one for each
column in F), in addition to the one required to compute the
virtual sources using equation (9). This is unfortunate since
m can be a large number and forward modeling is expensive.
Computing the partial derivatives explicitly is, however, not
the most efficient way to proceed.

Efficient calculation of the gradient direction.—We can sig-
nificantly reduce the cost of computing the gradient vector by
some simple matrix manipulations. Substituting equation (10)
into equation (7), we obtain

∇pE = Real{ Ĵtδd̂∗} = Real{Ft [S−1]tδd̂∗} (11)

or

∇pE = Real{Ft v}, (12)

where

v = [S−1]tδd̂∗ (13)

is the back-propagated wavefield. If the inverse impedance ma-
trix S−1 is symmetric, as we expect for reciprocal problems, then
[S−1]t = S−1 and

v = S−1δd̂∗. (14)

In either equation (13) or (14), computing the new back-
propagated wavefield v requires only one additional forward
problem to be solved.

Since the computation of the step length also requires the so-
lution of at least one more forward problem, this brings the to-
tal number of required forward solutions to three. The forward
and back-propagation problems are solved in the same model;
hence, the stored LU factors of S can still be used to compute
these solutions rapidly. This back-propagation method paral-
lels the back-propagation method derived by Lailly (1983), who
used the (more difficult) methods of functional analysis. Taran-
tola (1986), Kolb et al. (1986), Mora (1987), Pratt (1990b), Pratt
and Worthington (1990), and Chavent and Jacewitz (1995) all
exploit the back-propagation technique in computing the gra-
dient of the misfit function for nonlinear waveform inversion.
Further details of the matrix methods presented above are
found in Pratt et al. (1998).

In many of the references cited in the previous paragraph,
comparisons are drawn between the inverse method and
prestack migration. There is indeed very little difference be-
tween the first iteration of the inverse method given above
and prestack, reverse time migration. The inverse method is
distinct because the problem is formulated in terms of funda-
mental model parameters (e.g., velocity, not reflectivity) and
because the method is fully iterative (i.e., the model is updated
and the process is reiterated to convergence).

APPLICATION TO PHYSICAL SCALE MODEL DATA

Scale model data

The physical scale model experiment was conducted in an
ultrasonic modeling tank at the University of Durham (Sharp
et al., 1985). Figure 1 is a photograph of the epoxy resin scale
model used in this study; data from this model have also been
used by others to demonstrate a variety of imaging and inver-
sion schemes (Pratt and Goulty, 1991; Pratt et al., 1991; Leggett
et al., 1993; Rowbotham and Goulty, 1995; Reiter and Rodi,
1996). As shown in Figure 2a, the model contains a number
of horizontal layers of different velocities and thicknesses, a
single channel feature, and a single dipping layer with a small
fault. The model is sufficiently wide in the out-of-plane direc-
tion to allow us to assume the geometry is two dimensional.
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The source and receiver piezoelectric transducers were oper-
ated at frequencies between approximately 200 and 800 kHz.
Geometric and static corrections to account for the finite di-
mensions of the source and receiver transducers were applied
to the data before any further processing. The full survey con-
sisted of a total of 51 source positions and 51 receiver positions,
each at 2.5-mm intervals and generating 2601 records. The tar-
get region was 55 mm wide by 125 mm long (i.e., 125 mm deep).

FIG. 1. A photograph of the epoxy resin model and the source
transducer before immersion in water. The model has been
tipped on one side in preparation for the experiment; the ge-
ometry of the epoxy resin layers is faintly visible. The top of
the survey is at the right end of the photograph. See Figure 2a
for a diagram of the layer geometry.

FIG. 2. The physical scale model and some representative data. (a) Schematic section through the epoxy resin scale model, showing
the layer geometry, the nominal velocities, the source/receiver locations, and the location of source 22. All dimensions are given in
scaled units, which are 1000 times the true dimensions (see text). (b) Common shot gather 22 from the epoxy resin model prior to
data processing. Times are given in scaled units (1000 times the true times). The curve on the figure represents the picked arrival
times.

Scale dimensions.—All distances, times, and frequencies
may be scaled by a factor of 1000 to produce cross-borehole
dimensions that are realistic, although somewhat smaller than
some reported real data examples. The scaled survey is 55 m
across and 120 m deep, and scaled seismic frequencies lie be-
tween 200 and 800 Hz (used hereafter instead of the true
lengths and frequencies). Time, measured on the model in mi-
croseconds, is given in scaled dimensions of milliseconds.

Data quality.—A representative common source gather
from the survey is depicted in Figure 2b. This gather was syn-
thesized by regathering the original common receiver gathers.
The original picked arrival times are also shown superimposed
on the data. The data are of good quality, with clear first arrival
time breaks and only a low level of random noise. The source
wavelet reverberates for several cycles at the dominant fre-
quency, making the identification of individual phases difficult;
but there is a clear time advance opposite the high-velocity
layer in which the source is situated, with some evidence of
secondary, reflected phases at slightly later times. Amplitudes
fall off strongly with distance (and angle) at the top and at the
bottom of the gather. A weak shear-wave phase, generated by
mode conversions at the two edges of the model, is visible at
late times near the top and the bottom of the gather.

Traveltime tomography

Since the waveform inversion method is a local, descent-
type method, the first stage is to generate an appropriate start-
ing model. The starting model must be sufficiently accurate to
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allow us to descend to the global minimum of the misfit func-
tion. In practice, with seismic waveform inversion this implies
that much of the waveform energy must be predicted to within a
half-wavelength of the observed waveforms; if not, a minimum
misfit model will be obtained when the predicted waveforms
match the wrong cycle of the observed waveforms. Fortunately,
in the crosshole configuration we can generate an appropriate
model reasonably rapidly using traveltime methods.

Traveltimes for all raw data were picked (as in Figure 2b) and
used in a tomographic inversion for the velocity field. I used
the curved-ray traveltime tomographic methods described by
Pratt et al. (1993), which include regularization methods for
minimizing the first and second spatial derivatives. (I did not
include any of the anisotropy parameters suggested in that pa-
per.) The result is shown in Figure 3, together with the geom-
etry and nominal acoustic velocities of the epoxy resin model.
The tomogram exhibits the expected velocity variations, but
at a very poor resolution. The large, strong, horizontal low-
velocity layers are correctly imaged, but the central, semicir-
cular channel feature is only very faintly present on the image.
The dipping interface is recovered, but there is no trace of the
small fault on this image.

Despite the apparent poor resolution of the tomogram in
Figure 3b, this velocity structure predicts the traveltimes to
within an rms level of 0.2 ms (compare this with the sample
interval of 0.25 ms, in scaled time). Any attempt to reduce
the level of residuals by reducing the level of constraints only
resulted in the generation of noise in the images and not in
the recovery of additional model features. The result appears
to be consistent with Williamson’s (1991) prediction of a re-
solving length for traveltime tomography of the first Fresnel
zone width, approximately given by

√
λL . Here, the dominant

wavelength, λ≈ 5 m, and the propagation distance, L ≈ 50 m,
yield a resolving length of approximately 15 m.

FIG. 3. (a) The true velocity model. Velocity values represent
the nominal velocities of the epoxy resins used in the model.
(b) Curved-ray tomography result from the picked traveltimes.
The bars next to the figure depict the dominant wavelength and
the approximate width of the first Fresnel zone.

Initial forward modeling

The suitability of the tomographic velocity image in Fig-
ure 3b as a starting model for waveform inversion can be ver-
ified by forward modeling and comparing the resultant wave-
forms with the original data. I carried out the modeling (and the
subsequent inversions) using an acoustic-wave equation finite-
difference method. We are primarily interested in modeling
and inverting the dominant phases in the data—the P-wave
first arrivals plus the reflections or diffractions created within
a few milliseconds of these arrivals.

The waveform modeling was carried out using a 2-D, vis-
coacoustic, frequency-domain, finite-difference method. The
second-order rotated operator method of Jo et al. (1996) was
used. Grid-point intervals of1x=1z= 0.8333 m were used for
the finite-difference modeling, corresponding approximately
to five grid points per wavelength at 600 Hz. The total grid,
including a five-grid-point buffer zone outside the edges of the
survey, consisted of 75× 160= 12 000 node points. The node
velocities were taken directly from the traveltime tomography
result of Figure 3b. A constant value of 2.5 kg/m3 for the den-
sity was used in all the modeling and inversion results to fol-
low. As a first guess for appropriate attenuation values, I used
a constant Q model with a (homogeneous) quality factor of
Q= 100; this guess is refined below. The source signature was
estimated directly from the deconvolved data; this step is also
described in more detail below. Time-domain records 64 ms
long were synthesized by inverse Fourier transformation of
the results; frequency-domain modeling was carried out every
1 f = 1/0.064= 15.625 Hz. A total of 77 frequency components
were computed, up to 1200 Hz, beyond which the source spec-
trum contains virtually no energy.

The result of forward modeling in the traveltime tomogra-
phy velocity field is shown in Figure 4a; the first arrival times
are clearly matched to within a half-cycle, as required, but there
are major differences in the appearance of these modeled data
and the real data, shown again in Figure 4b (after deconvolu-
tion). In particular, the synthetic data show only weak evidence
of the reflections and diffractions associated with the direct ar-
rivals on the real data. There is also evidence on the real data
of geometric amplitude focusing effects (at the top and bottom
of the high-velocity layer); these amplitude effects are not pre-
dicted by the waveform modeling. The challenge for waveform
inversion is to produce an improved velocity model that can be
used to predict waveform data that look much more like the
real, observed data and to demonstrate that the new velocity
model is a better representation of the true model than that
obtained from traveltime tomography.

Waveform inversion preprocessing

Having chosen to use an acoustic modeling/inversion ap-
proach, we must ensure that data phases which do not con-
form to the physics of the forward model (in this case, the
shear waves) are eliminated, or at least suppressed.

Deconvolution.—Deconvolution is not strictly necessary
in seismic waveform inversion. The source wavelet must be
known, or estimated, but the detailed shape of this wavelet
should not play any role in the success (or otherwise) of the
method. Nevertheless, I applied deconvolution to these data
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before proceeding. This was carried out because the source
wavelet can potentially change with angle as a result of the
source and receiver characteristics and because late time ar-
rivals will be muted at a later stage (see below). Before win-
dowing the data, deconvolution is used to reposition some of
the reverberating signal to earlier times. I followed a simple,
deterministic deconvolution process [described earlier by Pratt
and Goulty (1991) and later used in a modified form by Rector
et al. (1995)]. The process is adapted from standard vertical
seismic profile (VSP) processing: a Wiener filter is computed
offset by offset (or, equivalently, angle by angle) that converts
the estimated direct wavefield into a minimum-phase equiv-
alent wavelet. The result of this deconvolution process is de-

FIG. 4. (a) Synthetic common shot gather 22, obtained by full
wave equation, viscoacoustic, finite-difference forward mod-
eling in the traveltime tomography result (see Figure 3b). A
quality factor of Q= 100 was used to generate these data. (b)
Common shot gather 22 from the model, after the application
of deterministic deconvolution. This figure may be compared
with Figure 2b, which shows the same data before deconvolu-
tion. Dashed lines show the extent of the data window used in
the subsequent waveform inversion.

picted in Figure 4b: the compression of the wavelet is evident,
although there is still some strong remnant reverberation left
in the signal. In comparison with the original data (Figure 2b),
it is now much easier to visually separate and follow individual
phases. Because of the local nature of the deconvolution oper-
ator, any angle-dependent variation in the source signature is
at least partially deconvolved.

Data windowing.—Following the deconvolution process, the
data were then muted to remove all energy except that falling
within a window starting 2.5 ms before the first break and end-
ing 7.5 ms following the first break. Cosine tapers 1 ms long
were used at each end of the time window. The extent of the
window is indicated in Figure 4b. The window length was se-
lected to be as short as possible (to enhance the S/N ratio and
eliminate S-waves) but still to include the visible diffractions
and reflections associated with the direct arrival.

The time windowing of the direct arrivals is a crucial step
in the inversion process. The objective is to mute any energy
arriving later than a few cycles following the direct arrivals [as,
for example, in Pratt and Worthington (1988)]. This technique
is somewhat ad hoc; it is primarily required to precondition
the data in order to force the inversion to fit the direct arrivals,
which contain the critical information on the low and interme-
diate wavenumbers in the model. At a later stage, the window
can always be increased in length to include more of the data;
this was not considered beneficial or necessary in this example.
A further discussion of the advantages and disadvantages of the
windowing operation is given at the end of the accompanying
paper.

Source signature estimation.—In frequency-domain for-
ward modeling we can account for the source signature explic-
itly by assuming the source terms in the modeling are multi-
plied by an unknown, complex-value scalar, s. This leads to the
following modification to equation (1), the original forward-
modeling equation:

Su = sf. (15)

The source signature estimation problem is to find s for each
frequency in the survey (and, if necessary, for each distinct
source in the survey).

Because equation (15) is linear with respect to changes in
the source signature, it is trivial to obtain an exact solution for
the source signature by minimizing the misfit function (Song
and Williamson, 1995). Using the same definition of the misfit
function,

E = 1
2δd

tδd∗ (16)

[equation (3) again], it is not difficult to show that the minimum
misfit is found when

s= ut d∗

ut u∗
. (17)

This is a complex-valued expression that yields both the am-
plitude and phase of the desired source signature at the given
frequency. To evaluate this expression, we need only compute
one forward model (per source and per frequency). In contrast
to the algorithm suggested by Zhou et al. (1997), this algorithm
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is independent of the starting model for the source wavelet, and
it converges in one iteration.

In deriving the solution above, I implicitly assumed that the
source signature was the only unknown, i.e., I assumed that the
velocity model was correct. In practice, for the crosshole prob-
lem a very good representation of the source signature can be
obtained when the velocity model is only approximate. To ver-
ify this, I show in Figure 5 the minimum-phase desired output
wavelet used in the deconvolution of the data (see previous
section), together with the source signature estimated from
the deconvolved data, using the traveltime velocity model of
Figure 3b. The source signature was estimated by a straight-
forward application of equation (17) to the deconvolved data,
frequency by frequency, followed by inverse Fourier transfor-
mation of the results. It was assumed that all 51 sources in the
survey could be modeled using the same source signature.

Some differences between the two wavelets in Figure 5 are
observed: most obviously, the estimated wavelet is more ad-
vanced in phase with respect to the desired output. This, to
some degree, is expected because of the 2-D nature of the
simulation, which generates a phase delay or wake (Morse
and Feschbach, 1953). Thus, to obtain a desired seismic arrival
pulse, a phase advance must be applied to the source signature.
Note that the desired output is not a perfect representation of
the output of the result of the deconvolution process. Because
the original, undeconvolved wavelet was clearly not minimum
phase, the optimum Wiener filter was not perfectly causal; the
result of the deconvolution also exhibits a slight phase advance.
This signature can be updated during the waveform inversion
process as the velocity model improves in resolution—I used
this strategy for the following inversion results.

Modeling amplitude variations.—The comparison of the de-
convolved data and the current synthetic data (from the trav-
eltime velocity model) in Figure 4 reveals significant amplitude
discrepancies, in spite of the fact that the source amplitudes for
the synthetic data were obtained directly from the real data.
The real data exhibit geometrical focusing effects and a strong
loss in amplitude with increasing source-receiver offset; neither
of these effects is observed on the synthetic data. The geomet-

FIG. 5. (Top) Desired minimum-phase output wavelet used in
the deconvolution of the data. (Bottom) Source signature ex-
tracted from the deconvolved data by waveform inversion, us-
ing the traveltime inversion result from Figure 3b as a velocity
model.

ric effects are absent because the velocity image does not (yet)
contain sufficient variation to predict these additional effects.
There are several good reasons for the remaining discrepancy
in the amplitude behavior.

1) The real amplitudes are affected by transmission from
the water to the epoxy resin and back into the water at
the source and receiver edges of the model. These likely
lead to amplitudes that fall off with increasing angle (and,
as a result, offset). These interfaces are not included in
the synthetic model.

2) The real amplitudes are affected by mode conversion to
S-waves; the synthetic amplitudes are generated within
the acoustic approximation.

3) The epoxy resins are likely to be highly attenuating
(Leggett et al., 1993). The synthetic data in Figure 4b were
generated using a constant Q value of 100. This may be
too high.

4) The real amplitudes experience 3-D geometrical spread-
ing. The synthetic amplitudes only spread in 2-D and thus
have a smaller amount of geometrical spreading.

The last of these discrepancies can be formally accounted for
by using 2.5-D forward modeling (Song and Williamson, 1995),
but this is expensive and the remaining discrepancies may be
equally serious. An approximate amplitude correction (from
three dimensions to two dimensions) can be applied by the use
of a
√

t filter, but this fails in areas of strong velocity gradients
or when phases travel with different velocities (i.e., when both
P- and S-waves are present).

The amplitude discrepancy between the real and synthetic
data is further illustrated in Figure 6, in which the rms ampli-
tude values for a set of constant offset (constant angle) bins
have been computed and are depicted as a function of the off-
set. Clearly, synthetic data generated with a value of Q= 100
fail to match the observed decay in amplitude with distance
offset. We can force the synthetic data to match the observed

FIG. 6. The amplitude versus source-receiver offset relation-
ship of the direct arrival from the observed data (solid curve),
compared with the same relationship for the synthetic data,
using a value of Q = 100 (dotted curve) and Q = 10 (dashed
curve). Offsets represent the total (oblique) distance between
source and receiver in the model.
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amplitude decay by reducing the quality factor, Q (i.e., increas-
ing the intrinsic attenuation). The amplitude results of using a
value of Q= 10 in the forward modeling are also depicted in
Figure 6; this leads to a much improved fit in the amplitude be-
havior in the data. By matching the amplitudes in this fashion,
we ensure that no offset range dominates the data residuals
during the inversion, and we avoid the need for amplitude nor-
malization (advocated by Zhou et al., 1995). However, as a
result of the additional amplitude effects that have not been
included, we cannot claim that Q= 10 is better than an approx-
imate representation of the true attenuation properties of the
scale model [note, however, that Leggett et al. (1993) found
similar Q values from the same data].

Waveform inversion

We now have (1) a starting model (from the traveltime to-
mography, with a quality factor, Q= 10, chosen in the manner
described above), (2) a preprocessed data set (deconvolved
and windowed), and (3) a reasonable estimate of the source
signature for the survey. These form the input data required to
apply the iterative waveform inversion formula, equation (4),
to the physical scale model data. The following strategy was
used to invert the data.

First, data frequencies were selected and Fourier trans-
formed. The frequencies to be used in the inversion were
grouped into five overlapping groups of increasing frequency
content. Each group contained five frequencies, according to
the schedule given in Table 1. The frequency interval 31.25 Hz
was chosen to oversample the data within the 10-ms time win-
dow used. The total frequency bandwidth, 125–750 Hz, was
chosen to match the observed bandwidth of the data. Complex-
valued spectral components at each of these frequency values
were obtained by direct application of the Discrete Fourier
transform to the deconvolved and windowed observed data.

For each frequency group, the gradient was computed us-
ing all five frequencies simultaneously. A set of five iterations
of the inverse method [equation (4)] was carried out for each
group, proceeding through all groups. By the end of the inver-
sion, 25 iterations had been carried out. The strategy of moving
up through the frequency spectrum helps to mitigate the non-
linearity of the problem: for lower frequencies, the method is
more tolerant of velocity errors because these are less likely to
lead to errors of more than a half-cycle in the waveforms. As
the inversion proceeds, the velocity model improves and we
move to progressively higher frequencies.

Computation times.—For the 75× 160= 12 000 nodes used
in this example, the forward modeling required less than 8 s
(CPU time) per frequency, for all 51 sources, on a DEC Alpha
500 5/500 (915 Specfp rating). The 77 frequencies required to

Table 1. Schedule of frequencies used in the inversion of the
data to produce the results shown in Figure 7.

Group Frequencies (Hz) Iterations

1 125.00 156.25 187.50 218.75 250.00 5
2 250.00 281.25 312.50 343.75 375.00 5
3 375.00 406.25 437.50 468.75 500.00 5
4 500.00 531.25 562.50 593.75 625.00 5
5 625.00 656.25 687.50 718.75 750.00 5

synthesize the time-domain wavefield (see Figure 4) were com-
puted in approximately 10 minutes (again, for all 51 sources).
Storage requirements are also important for frequency-domain
methods: the finite-difference matrix and its LU decomposi-
tion required 11 Mbytes of RAM for storage (using the nested
dissection ordering scheme of Liu and George (1981). Larger
models would require significantly more RAM (see the accom-
panying paper).

For inversions, the computer time is dominated by the
forward-modeling runs, with some additional overhead costs
associated with updating the models. As described above, three
modeling runs are required per iteration. Thus, the total time
per iteration can be estimated by multiplying the time for
single-frequency forward modeling first by the number of fre-
quencies used in each iteration (five) and then by three. Since
each forward model requires 8 s, this yields a figure of 2 min-
utes per iteration. In actuality, each iteration took slightly
longer (140 s). For this rather small model (in terms of wave-
lengths) the total time required to carry out frequency-domain
waveform inversion was comparable to the time required to
complete the traveltime inversion. Further comments on the
computation time for waveform inversion are made in the
accompanying paper with reference to a real data set, with a
conclusion that frequency-domain waveform inversion is one
to two orders of magnitude faster than an equivalent time-
domain waveform inversion scheme.

Results.—Two wavefield inversion results (velocity images)
are depicted in Figure 7. For reference, the true geometry of the
epoxy resin model is given in Figure 7a. Figure 7b depicts the
result of inverting the data, using the original attenuation value
of Q= 100. Figure 7c depicts the result obtained when an atten-
uation value of Q= 10 was used in the inversion. Both images
show a reasonable representation of the true model geome-
try and velocities, and both images represent a significant gain
in resolution when compared with the starting model for the
waveform inversion, the traveltime tomogram (see Figure 3b).
On both images each of the individual layers can be clearly dis-
cerned and followed from one edge of the model to the other,
including the thin, low-velocity layer containing the simulated
channel feature. The channel feature itself is unambiguous on
the images. These waveform inversion images are consistent
with the expectation that the resolution should be comparable
with the dominant wavelength (Wu and Töksoz, 1987). This is
in contrast to the traveltime inversions shown earlier, for which
the width of the first Fresnel zone controls the resolution of the
result (Williamson, 1991). Both the wavelength and the width
of the first Fresnel zones are shown on the figures.

The first of the two images, Figure 7b, is marred by the pres-
ence of a strong, X-shaped artifact that crosses the image and
obscures, in particular, the reconstruction of the small, vertical
fault on the lowest, dipping interface. Such artifacts are often
obtained in cross-borehole tomographic inversions, especially
when waveform inversion is attempted. In this case the artifact
appears to be associated with the large level of data residu-
als obtained for the largest offsets (see Figure 6). As the iter-
ation proceeds, these residuals, which have large noise levels
because of the poor S/N ratios at large offsets, apparently exert
a disproportionate influence on the inversion. This conjecture
seems to be confirmed by the spatial association of the artifact
with the largest offset data.



Frequency-Domain Waveform Inversion, Part 1 897

In an attempt to remove the X-shaped artifact observed on
Figure 7b, I re-computed the inversion using exactly the same
strategy but with a value of Q= 10 in the model. By doing this
we match the amplitude versus offset behavior of the observed
data (see Figure 6), yielding the second, improved image in Fig-
ure 7c. The artifact appears to have been successfully removed
by this strategy, although there is a still a vestige of the problem
at the bottom right of the image. Most importantly, the location
and geometry of the small, subtle fault on the dipping interface
is now correctly imaged.

In addition to the large, X-shaped artifact, the original im-
age in Figure 7b showed some distortion near each source and
receiver location. Source/receiver location artifacts are also
common on tomographic reconstructions. These arise because
of singularities in the Green’s functions associated with each
source and receiver location, which affect the gradient calcu-
lation disproportionately, and because of the poor coverage of
the target near the source and receiver locations. These artifacts
have also been limited through the use of matched amplitudes
in the inversion.

Verification of final results

An important verification that should be provided along with
any inversion result is a physical comparison of the observed
and predicted data, preferably together with a subtraction to

FIG. 7. (a) Geometry and nominal velocities of the original epoxy resin model. (b) Initial wavefield inversion result, obtained using
a value of Q = 100 throughout the processing and inversion of the data. (c) Final wavefield inversion result, obtained by using a
value of Q = 10. As in Figure 3, the bars next to the figure depict the dominant wavelength and the approximate width of the first
Fresnel zone.

show the final residual level. I show such a result in Figure 8
but for only one frequency (187.50 Hz). By using only a single
frequency, I am able to depict the data (actually, the real parts of
the data) for all 2601 source-receiver pairs. The figure caption
describes the manner in which these displays are organized;
there is a strong analogy between this manner of displaying
the data and the interference data recorded in optical holo-
graphy.

The three rows in Figure 8 represent, respectively, results for
the starting model (Figure 3b), the initial (Q= 100) inversion
result (Figure 7a), and the final inversion result (Figure 7b). The
observed data are common to each row, and the two columns
in the figure depict the predicted data and the data residuals
for each result. At first sight the three rows appear very similar.
On closer examination we can observe subtle phase variations
on the observed data that are not present on the predicted
data from the starting model (in particular, the red region at
the center of the panels). These variations are recreated in
the synthetic data during the waveform inversion procedure.
Note that these subtle features on the frequency domain data
are obtained from the direct-arrival waveforms; any muting of
the direct arrival [as advocated, for example, by Zhou et al.
(1995)] would have changed the character of these displays
significantly. Finally, note that the high offset data regions, at
the upper right and lower left of these panels, are clearly best
matched by the final (Q= 10) inversion results.
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In Figure 9a I again depict the observed data, the predicted
data for the starting (traveltime) model, and the predicted data
for the final result. In this case, however, the real valued parts
of the data are shown as curves for only one common source
gather. The differences between the curves are very subtle;
there is only a slight phase mismatch observable on the curves.
Nevertheless, the more accurate fit of the final model is clear.
On Figure 9b I show the velocity variation with model depth
from a single, constant lateral position in the model for the true
velocities (in this case recovered from the straight across travel-
times), the traveltime result, and the final waveform inversion
result. The traveltime result fails to delineate layer boundaries
accurately or to respond at all to the thin, low-velocity layer
at 62 m depth. In contrast, the waveform inversion result is
effective in representing all interfaces in the model and clearly
indicates the presence and thickness of the thin layer.

As a final test of the validity of the waveform inversion
model, I computed synthetic, time-domain, finite-difference
seismograms using, not the acoustic modeling software used
in the inversion, but a full viscoelastic code (S̆tekl and Pratt,
1997). This result is displayed along with the corresponding
common source gather from the observed data in Figure 10.
The real data and the synthetic data match each other in some
detail, especially within the data window used in the inversion.
The synthetic data are cleaner than the observed data. This is

FIG. 8. Frequency-domain data. Each panel represents the real part of the Fourier components of the data at 187.5 Hz, with source
number increasing from top to bottom and receiver number increasing from left to right. (a) Observed data. (b), (c) Modeled data
and residuals for the starting model (i.e., the tomogram in Figure 3b). (d), (e) Modeled data and residuals for the initial wavefield
inversion result (Figure 7a). (f), (g) Modeled data and residuals for the final wavefield inversion result (Figure 7b).

FIG. 9. (a) Frequency-domain data (real values at 187.5 Hz)
from shot gather 22, showing the real data (solid line), the
modeled data in the tomographic velocity model (dotted line),
and the modeled data in the final waveform inversion veloc-
ity model (dashed line). (b) Velocities from the center of the
model, showing the nominal velocities of the epoxy resins
(solid line), the results from curved-ray tomography (dotted
line), and the results from the final wavefield inversion model
(dashed line).
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FIG. 10. Time-domain data, showing (a) the deconvolved real
data (Figure 4b) and (b) synthetic, viscoelastic data, modeled
in the final wavefield inversion result. In (a), the dashed lines
show the extent of the data window used for the wavefield
inversion.

mainly because of the imperfect deconvolution of the real data,
which leaves some reverberatory energy present—especially
in areas of high amplitude. The reflected and diffracted modes
in the real data within the data window have been predicted
correctly in the waveform model, as have the geometric am-
plitude effects above and below the high-velocity layer. The
weak, low-velocity phase at late time on the real data corre-
lates well in time and amplitude with the direct shear arrival
on the synthetic viscoelastic data.

Finally, in Figure 11 I show three velocity images as shaded-
relief, color-contoured maps. The three images correspond to
the true velocity model, the traveltime tomography result, and
the final wavefield inversion result. This kind of display is well
suited for detecting and interpreting discontinuities. The trav-
eltime tomogram allows only a general interpretation of the
target region to be inferred, whereas the final waveform in-
version result has clearly resolved all geometric features in

the true model, including the small fault on the dipping layer
in the bottom half of the model. The shaded-relief display,
however, slightly overexaggerates the importance of the ar-
tifacts associated with each source and receiver location (see
above).

CONCLUSIONS

I have described the theory and application of a frequency-
space seismic waveform inversion process. In spite of the at-
traction of an intuitive, time-domain method for waveform
inversion, the frequency-space domain appears to be better
suited for tomographic inversion purposes. There are signifi-
cant computational advantages, both in the forward modeling
and in the inverse problem: modeling the seismic response in
the frequency domain is fast for multiple source problems, and
inverting the seismic data in the frequency domain allows us
to limit the number of forward models to a reduced number of
frequency components. Additional benefits include being able
to progress through the data frequencies from the lowest to
the highest (an effective strategy for mitigating nonlinearities)
and being able to easily incorporate any desired viscous atten-
uation and dispersion laws (an effective strategy for matching
the amplitudes of the observed data).

This paper began with a restatement of the basic theory of
seismic waveform inversion, cast into the frequency-space do-
main and making use of the implicit matrix formulation for
discrete boundary value problems. This allowed me to restate
some of the classic advances of Lailly (1983), Tarantola (1984),
and others using a simple matrix formalism. I then applied the
frequency-domain wavefield inversion method to tomographic
data from a physical scale model. The method yielded an im-
age on which the individual layers and structures in the model
could be unambiguously interpreted. The results are a clear
improvement when compared with the starting model (i.e., the
traveltime tomography result). The results were further veri-
fied by a detailed comparison of the data with the modeled data
in the final inversion result, in both the time and frequency
domains. Much of the high-resolution information about the
model is contained in subtle and difficult waveform effects in
the data, arising from the superposition of many different co-
incident phases.

To achieve the successful inversion results we showed in Fig-
ures 7 and 11, we made a number of preprocessing decisions.
The most critical of these was to window the original data in
the time domain before Fourier transformation and subsequent
inversion. This effectively forces the inversion to fit the direct
arrivals, which contain the crucial information on the low and
medium wavenumbers in the model. It was also found that the
use of a nonzero attenuation factor in the model to simulate
the amplitude behavior of the observed data effectively sup-
pressed some of the severe imaging artifacts often encountered
in waveform inversion of tomographic data.
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