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Abstract 

The concept of dynamic (frequency-dependent) viscoelastic modulus is broadly 
used for describing mechanical properties of rocks and building attenuation and fluid-
substitution models. However, for porous rock saturated with fluids, this concept is 
approximate and does not reproduce the stress fields within seismic waves and boundary 
conditions between contrasting media. Consequently, for heterogeneous poroelastic 
media, calculations based on a single effective P-wave modulus may often be inaccurate 
or incorrect. To examine the accuracy of the viscoelastic approximation, we use Biot’s 
theory to compare the P-wave and Young’s moduli for traveling waves and extensional 
subresonant laboratory measurements with short cylindrical specimens. Four 
observations are made from this comparison. First, for seismic waves, the moduli 
measured from stress/strain ratios differ from those determined from wave velocity and 
attenuation. The differences between these quantities are mainly in the strength of 
dispersion and poroelastic dissipation. Second, for the waves, the dynamic P-wave and 
Young’s moduli and the Poisson’s ratios do not obey the mutual relations usually 
expected from (visco)elastic moduli. Third, the moduli measured from stress/strain ratios 
in the laboratory differ from those for traveling waves. In a cylindrical specimen, 
frequency effects occur at much lower (10–100 times) frequencies than the dissipation 
peaks in traveling waves. Fourth, the moduli and particularly attenuation measured in 
short cylinders depend on the lengths of the specimens. All these observations are caused 
by the contributions of secondary P-wave modes to the deformations of small specimens. 
To account for these contributions, dynamic moduli need to be considered for all primary 
and secondary wave modes within the body. An alternate and better approach could 
consist in using first-principle physics for describing the material and boundary 
conditions of the specific experiment. Qualitatively, these conclusions should also apply 
to the more general wave-induced flow effects in fluid-saturated porous rock. 
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Introduction 

Estimation of mechanical properties of fluid-saturated porous rock from 
observations of wave attenuation and dispersion is among the primary goals of seismic 
studies. Numerous field and laboratory data show that pore-space and pore-fluid 
properties affect the velocities and attenuation of seismic waves as well as on reflectivity 
(e.g., Müller et al., 2010; Lines et al., 2014). The measurements, modeling and inversion 
of such effects for petrophysical properties of reservoir and crustal rock commonly utilize 
the concept of dynamic (complex-valued and frequency-dependent) bulk and shear 
moduli. These moduli combine the observed characteristics of wave propagation within 
the rock, such as the wave speeds and quality factors, Q. Frequency dependences of these 
moduli are approximated by empirical relations such as the Andrade or Cole-Cole laws 
(Cooper, 2002; Adam et al., 2009) or models of linear solids (Liu et al., 1976).  

In practical studies, the dynamic modulus is often treated as a fundamental intrinsic 
property of the rock, or at least some combination of its properties responsible for wave 
speed and energy dissipation (e.g., Batzle et. al, 2014). The complex argument of the 
modulus is often interpreted as an inherent stress/strain phase lag and serves for 
designing and interpreting attenuation experiments at seismic frequencies (Jackson and 
Paterson, 1993; Lakes, 2009; Tisato and Madonna, 2012). However, the existence and 
uniqueness of such a combination is still not guaranteed, and it is also not always needed 
for explaining the obserrvations. The most rigorous and developed macroscopic models 
of internal friction within solids, such as poroelasticty (Biot, 1962), viscosity and 
thermoelasticity (Landau and Lifshitz, 1986) – do not rely on the moduli. The moduli-
based viscoelastic model implies certain assumptions and represents an approximation 
whose accuracy needs to be examined in each specific case.  

The goal of this paper is to check how the viscoelastic approximation works for the 
poroelastic mechanism at low (seismic) frequencies. We try answering whether the 
effective viscoelastic modulus or some other physical parameters of a poroelastic 
material represent a sufficient and reliable characterization of its mechanical properties. 
Clearly, knowing such parameter(s) is critical for interpreting wave-propagation and 
attenuation experiments and models. 

Poroelasticity is an important attenuation mechanism in itself, and it also possesses 
important similarities (two-constituent structure, microstructural heterogeneity, mobile 
and viscous pore fluids) with a broad group of wave-induced fluid flow mechanisms 
(WIFF). WIFF mechanisms are considered the primary cause of seismic attenuation in 
sedimentary rocks at seismic frequencies (Müller et al., 2010). Fluid-flow effects are 
especially strong for patchy saturations (White, 1975; Johnson, 2001). Recently, realistic 
2-D and 3-D models of heterogeneous saturations were studied numerically (Rubino and 
Holliger, 2012) and compared to laboratory observations (Kuteynikova et al., 2014, and 
references therein). In these studies, the principal quantities used to connect the modeling 
to observations were again the dynamic Young’s and P-wave moduli. Thus, 
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understanding of the character of dynamic moduli for fluid-flow related internal friction 
is important for interpreting the observations of WIFF.  

In comparing the poroelastic and viscoelastic predictions, we do not consider the 
effects of grain sizes, multiple saturation fluids, patchy saturations and other WIFF 
effects, and also the upscaling of laboratory observations to field conditions. We focus on 
only two questions related to the macroscopic boundary conditions of the experiments:  

i) Do the complex-valued empirical moduli measured at low frequencies in 
experiments with traveling waves equal those measured in short cylindrical 
rock specimens?  

ii) Do these moduli obey the relations usually expected from the (visco)elastic 
moduli? This question applies to the mutual relations between the different 
moduli as well as to the relations of the moduli to wave velocities and 
acoustic impedances. 

To answer these questions, we derive the P-wave and Young’s moduli and the Poisson’s 
ratio for propagating P waves and for an experiment with subresonant extensional-mode 
deformation of a rock cylinder (Figure 1). Dunn (1986) considered similar experiments 
with emphasis on the “anomalous attenuation” resulting from an open-pore surface of the 
cylinder. In this paper, we only consider impermeable boundaries and axial deformations.  

The results show that if we try describing a poroelastic material by a single 
dynamic P-wave modulus (as commonly done), the answers to the questions i) and ii) are 
generally negative. Our general observations are:  

1) At nonzero frequencies, the empirical P-wave (M) and Young’s (E) moduli 
for a cylindrical rock specimen are significantly lower than the 
corresponding Mfast and Efast for a propagating wave. The relations between 
M, E, Mfast, and Efast are nontrivial and frequency-dependent, and they do not 
follow the conventional relations for the elastic moduli. 

2) The stress-strain phase lags measured in a rock specimen are strongly 
affected by Biot’s slow P wave. Because the slow-wave length is close but 
longer than the dimensions of the specimen, its distribution within the 
cylinder is influenced by the boundary conditions on all surfaces of the 
specimen. Consequently, the shape and dimensions of the specimen affect 
the empirical stress/strain ratios, i.e. moduli.  

Dunn (1986) also noted the dependence of the complex argument of the dynamic 
modulus (Q-1) on the boundary conditions on the surface of the cylinder. For internal 
friction caused by nonlinear solid viscosity, similar observations were made by Coulman 
et al. (2013). 

Thus, the dynamic moduli measured by using traveling and standing waves in 
experiments of different geometries may be difficult to relate to each other. The reason 
for this is easy to see: in a finite poroelastic body (and also in bodies with WIFF; cf. 
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Dutta and Odé, 1979a), multiple wave modes are always present even in the simplest 
laboratory experiment. A consistent characterization of the material would therefore 
require defining the moduli for all primary and secondary waves and determining the 
relative amplitudes of these waves in each experiment. However, establishing the modal 
content can be complicated for bodies of complex shapes. 

In the following section, we briefly summarize the general properties expected 
from a dynamic modulus and the two general types of moduli measured from field and 
laboratory data. These overviews show that the wave-mode content and the measurement 
procedure always influence the observed value of the dynamic modulus. In the last two 
sections, we numerically model the low-frequency moduli measured in 1-D, traveling 
waves and short cylindrical sandstone specimens.  

Along with noting the properties of the poroelastic dynamic moduli, the models 
below show how the field and laboratory experiments can be interpreted without relying 
on the dynamic moduli. In a first-principle physical approach, the material is described 
by three local and matrix-valued constitutive properties: density, rigidity and Darcy 
friction. The experiments are modeled in their specific geometries, by directly using the 
differential equations of continuum mechanics. 

The dynamic modulus 

Expected properties 

Describing the elastic and anelastic responses of a rock body by a dynamic 
modulus is not merely a convenient way for communicating the results of observations. 
Recognition of a quantity called “modulus” implies certain general properties of the 
mechanical behavior of the body: 

1) The modulus is expected to be a property of the material and at least 
relatively insensitive to “extrinsic” parameters of the experiment, such as 
the shape and dimensions of the specimen. On the other hand, dependences 
on “intrinsic” parameters such as the frequency, pressure, fluid distribution, 
and temperature may be allowed.  

2) The moduli derived for different shapes of deformation (for example, P-
wave, Young’s, bulk, and shear) are expected to follow their mutual 
relations known from elasticity. 

3) In experiments with waves, the moduli are also expected to be related to 
wave speeds and attenuation factors (Q-1). 

4) In experiments with forced oscillations of material samples in the laboratory 
and also in seismic waves, the moduli must also equal the appropriate ratios 
of stresses to strains. 

5) To be useful for predicting seismic reflection amplitudes in layered media, 
the moduli should also reproduce seismic impedances, for example, as 
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/Z p v M  , where p is the pressure within the wave, and v is the 

particle velocity with it, M is the P-wave modulus, and  is the density (Aki 
and Richards, 2002).  

Properties 3) and 4) are the basis for two approaches to measuring the moduli, 
property 2) is often used for extracting the desired moduli from the observed ones (such 
as the P-wave or bulk from the Young’s modulus; e.g., White, 1965), and property 1) is 
critical for relating the results to the physical state of the material.  

As shown below, the above properties mutually disagree for a poroelastic material 
at nonzero frequencies. This disagreement occurs because the pore-fluid friction is 
physically distinct from viscosity and elasticity, despite producing spectral attenuation 
peaks similar to those of a Standard Linear Solid (Geertsma and Smit, 1961). In contrast 
to viscosity, the internal friction within a poroelastic medium is caused not by gradients 
of deformation velocities (strain rates) but by the relative velocities between the solid and 
fluid phases (Darcy’s or Biot’s friction). Unlike the elastic and viscous forces, this 
friction is not a surface but body force which is more analogous to an effect of inertia 
than that of a modulus. This force does not contribute to the pressure and boundary 
conditions between contrasting media, and consequently property 5) above is particularly 
problematic. As shown by Morozov (2011), with body-force friction, reflections from 
pure Q-contrasts have opposite polarities compared to the viscoelastic predictions.  

The dynamic modulus is also sensitive to the measurement procedure 
(property 1 above). It is well known that different moduli correspond to bulk and shear 
deformations, and these moduli also vary with frequency. However, frequency is not the 
only experimental factor affecting the measurements. For a saturated porous rock, 
another key factor is the relative contributions of the primary (“fast”) and secondary 
(“slow”) Biot’s P waves. Each of these waves possesses a dynamic P-wave modulus that 
we denote Mfast and Mslow and that are strongly different. In observations with uniform 
media, Mfast is of primary interest because the slow wave is diffusive and only present 
near boundaries. However, in experiments with small rock specimens, the measured 
modulus (which we denote Mstand) belongs to neither of these modes but to a standing 
wave. As shown below, the relation of Mstand to Mfast and Mslow is nontrivial and controlled 
by the shape and dimensions of the specimen and by the frequency. For the next section, 
it is most important that Mstand Mfast  for short specimens. 

Viscoelastic relations 

The dynamic modulus plays two distinct roles in describing the mechanical 
properties of the medium. First, in observations of seismic waves, the “wave” modulus is 
measured from the wave velocity: 

                                              *2
phaseM V   ,  (1) 

where  is the density,  is the angular frequency, and 



 

6 

 

     * 1
phase phase 1 2V V i Q       is the complex-valued phase velocity (Figure 1a). 

The practical meaning of this modulus is in comprising the phase velocity and 
attenuation of the wave. However, in a laboratory experiment with a small specimen of 
fluid-saturated rock, definition (1) cannot be used directly, because fast and slow waves 
traveling in both directions are present within the specimen (Figure 1b). Therefore, the P-
wave modulus measured for the cylinder represents some mixture of Mfast and Mslow. To 
measure this modulus, a different form is used for M(), giving M as the ratio of the 
applied axial stress, xx, to the average strain in the specimen, xx (e.g., White, 1965; 
Jackson and Paterson, 1993): 

                                                xx

xx

M



 .  (2) 

Along with the frequency, this ratio may in principle depend on other experimental 
parameters, such as the shape and length of the specimen. Since most laboratory 
experiments do not permit significant variations in the dimensions of the specimens, 
these dependences need to be studied theoretically.  

Expressions (1) and (2) are automatically equal only within the viscoelastic model, 
which assumes that the internal friction is indeed due to a complex modulus in the 
frequency domain. This means that the frictional stress field is proportional to the strain 
and spatially isomorphic to that in Newtonian viscosity (page 849 in Ben-Menahem and 
Singh, 1981), which in its turn, is isomorphic to the elastic stress: 

                                   friction Im 2 Imij ij kk ij       .  (3) 

 Such form of the frictional stress is only observed in linear solid viscosity, in which 
Im     and  Im    , where  is the viscosity and  is the second viscosity  

(Landau and Lifshitz, 1986). However, for constant  and , this model predicts 
a Q factor strictly proportional to 1/, which is usually not the case for rocks. Moreover, 
in a poroelastic medium, frictional forces do not follow the tensor relation (3) at all (see 
eq. (8) below). 

To test the relations (1) and (2) for a fluid-saturated porous rock, consider an 
experiment with subresonant axial deformation of a cylindrical rock specimen, such as by 
Tisato and Madonna (2012) or Batzle et al. (2014) (Figure 1b). To measure the P-wave 
modulus by using relation (2), the cylinder must be extended or compressed along its 
axis X so that it does not deform in the directions Y and Z, i.e. the transverse strain equals 
zero: yy = zz = 0. However, such boundary condition is difficult to implement, and 
cylinders with free transverse boundary are usually used, i.e. with zero perturbation of the 
stress: yy = zz = 0. In this case, the stress/strain ratio (2) represents the Young’s 
modulus, which we denote E(). In most materials, E < M because of the transverse 
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thickening of the cylinder upon axial compression. This thickening is characterized by 
the Poisson’s ratio: 

                                        
 

2

2
yy

xx

M

M

 
 


  


.  (4) 

The second equation in (4) is valid for an elastic solid, and in the viscoelastic model, this 
relation is extrapolated to the anelastic case (Tschoegl et al., 2002; Lakes and 
Wineman, 2006). Similarly, to infer the dynamic M() from the measured E(), it is 
usually assumed that these quantities obey the relations for elastic moduli (White, 1965): 

                    3E
M




 


, and conversely, 
3

M
E




 


,  (5) 

where  is the shear modulus. If the Poisson’s ratio  can be measured, then the anelastic 
shear and bulk moduli can also be derived from E by assuming that they are related as 
elastic ones: 

                                 
 3 1

E





 and 
 3 1 2

E
K





.  (6) 

From each of the above complex-valued moduli, the respective Q-factors are extracted as 
(ibid): 

         1
P

Im

Re

M
Q

M
   , 1 Im

ReE

E
Q

E
   , 1

S

Im

Re
Q




   , and 1 Im

ReK

K
Q

K
   ,  (7) 

with elaborate relations resulting between these Q-factors and seismic wave speeds 
(Knopoff, 1964). The relations (2)–(6) constitute the correspondence principle, which 
states that the solution of an anelastic problem can be obtained from the elastic one by 
extrapolating the elastic moduli into the complex domain and making them frequency-
dependent (Ben-Menahem and Singh, 1981; Lakes, 2009). 

For porous, fluid-saturated rock, relations (2)–(6) still contain two important 
problems. First, as shown in the next section, for a wave in a poroelastic medium, the 
stress/strain ratio (2) does not generally equal the density-velocity product (1). This 
means that the correspondence principle does not hold in this case. As mentioned above 
and derived in Appendix A, the difference between quantities (1) and (2) occurs because 
of the pore-fluid friction being body force and not a surface stress implied in (2) and (3). 
Second, for an anelastic rock at frequencies  > 0, relations (4)–(6) between the different 
types of moduli only follow from a verbal interpretation of the stress-strain ratio (2) as a 
“modulus”. This interpretation is not automatic and needs to be verified by rigorous 
analysis. However, even before starting such analysis in the following sections, it seems 
clear that the friction of the fluid sloshed through pores or cracks is governed by 
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completely different physics and should unlikely obey the relations between the elastic 
moduli. Relations (4)–(6) are only guaranteed at frequency  = 0, at which the pore-fluid 
flows are absent and the rock is elastic. 

P-wave and Young’s moduli in poroelastic models 

For quantitative examples, we consider two experiments with high-porosity and 
permeability, brine-saturated rock with parameters given in Table 1. This example 
corresponds to young, unconsolidated Texas Gulf Coast sand near 1600-m depths used 
by Dutta and Odé (1979b). Following these authors, we also take the tortuosity equal 
one, and the dynamic viscosity and permeability as frequency-independent.  

Traveling waves 

Consider a P wave propagating along axis X in a boundless poroelastic medium. In 
the matrix formulation of poroelasticity by Bourbié et al. (1987), the deformation of a 
two-phase rock at point (x,y,z) is described by two variables: u1i representing the 
observable displacement of the wet rock and u2i representing the filtration displacement 
(relative coordinate between the fluid and its unperturbed position in host matrix) 

multiplied by porosity :  2 fluid, 1i i i iu w u u     . In these expressions and below, 

subscripts ‘i’ denote the spatial coordinates. These variables can be combined in three 

two-component model vectors  1 2

T

i i iu uu , with similar vectors for the components 

of strain   2ij i j j i   ε u u  and stress ijσ . In terms of these variables, the matrix 

equation of motion for the two-phase field is: 

                                              i i j ij   ρu du σ  ,  (8) 

where the elastic stress tensor equals: 

                                              2ij ij ij σ KΔ με ,  (9) 

and where    tr   kk  is the volumetric strain, 3ij ij ij ε ε Δ  is the deviatoric (pure 

shear) strain, ij is the unit (Kronecker) tensor, and summations over all pairs of repeated 
spatial indices are assumed. The density , bulk and shear moduli  and  are matrix 
quantities (ibid): 

                  
f

f f

a

 

 


 
 
 
  

ρ , fK M

M M




 
   

K ,  and 
0

0 0

 
  
 

μ . (10) 

where  is the total mass density, f is the pore fluid density, a is the tortuosity of pore 
space, f is the bulk modulus of the rock with constant fluid content (closed system), 
parameter M has the meaning of the pressure that needs to be exerted on the fluid in order 
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to increase the fluid content by a unit value at constant volume, parameter   [0, 1] 
measures the proportion of the apparent macroscopic dilatational strain caused by 
variations in fluid content, and  is the shear modulus. All these physical parameters are 
measurable in a set of properly designed quasi-static experiments and lead to Gassmann’s 
equations (ibid). The matrix d in equation (8) describes the friction caused by the 
volumetric pore flow (ibid): 

                                              
0 0

0  
 

  
 

d , (11) 

where  is the permeability of the rock, and is the viscosity of the pore fluid. Note that 
all quantities (10) and (11) are specified before any oscillatory motion is considered 
within the medium, and consequently they represent true medium properties. 

For a plane P wave, all displacements are oriented in the direction of the spatial 
axis X: 1Jk J ku u  , where the upper-case subscript J =1,2 enumerates the above model 

variables and the lower-case subscripts refer to spatial coordinates. The strain tensor 
therefore equals 1 1Jik J i ku   , where the prime denotes the spatial derivative with 

respect to the coordinate x. The equation of motion (8) then simplifies to: 

                                                 ρu du Mu  , (12) 

where 4 3 M K μ  is the matrix P-wave modulus.  

Further, let the wave be harmonic in time and exponentially decaying in space:  

                                       exp i t ikx x    u A  , (13) 

where A is the vector amplitude (including the relative phase shifts of the two 
variables),  is the frequency, k is the wavenumber, and  is the logarithmic spatial 

decrement for the amplitude. If we denote  2 2k i    , equation (12) shows that 

wave modes (n) are eigenvectors of the following generalized eigenvector problem 
(equation (A17) in Appendix A): 

                                                * n nρ υ Mυ , (14) 

where the “complex density” matrix * is: 

                                               * i


 ρ ρ d . (15) 

Note that from equation (14), the correspondence principle for poroelasticity differs from 
the viscoelastic one: the moduli remain elastic (real-valued) but the density (15) becomes 
complex-valued and contains the internal friction. 
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Equation (14) yields two eigenvectors corresponding to plane harmonic P waves 
with complex phase velocities * 1V  . These complex velocities comprise the phase 

velocities *ReV V  and quality factors * *Re 2 ImQ V V   observed for the wave. The 
faster of these modes with k  is the primary P wave, and the much slower and 
diffusive second mode with k   is the “fluid” wave (Biot, 1962; Dutta and 
Odé, 1979a; Johnson, 2001). 

For the P-wave case, solving the eigenvalue problem (14) yields a frequency-
dependent ReMfast() and a much weaker ReMslow() (Figure 2a). In this Figure, note that 
these quantities, which represent the “wave” moduli in relation (1) (solid lines in 
Figure 2a), differ from the stress-strain ratios (2) (dashed lines). For the fast mode, 
Figure 2b also shows the attenuation factors derived from these moduli by using 
relations (7). Note that the peak Q-factors differ by about four times between the wave-
velocity and stress/strain ratio definitions for M (Figure 2b).  

To independently evaluate the Young’s modulus (2) and the Poisson’s ratio (4) in 
an extensional-deformation wave, consider another experiment with an extensional wave 
propagating along an infinite thin rod (Figure 1a). In this case, there exists a transverse 
component in u1i but not in u2i, because the transverse pore-pressure gradient equals zero. 
Unlike in the true P-wave case, the boundary condition for the rod is 1 1 0yy zz    

(recall that the first upper-case subscript here denotes the rock deformation variable 
J = 1). The axial components of strain are then Jxx Jxu  , with J = 1, 2. In the low-

frequency approximation, 1yy  is constant within the cross-section of the rod, and the 

transverse displacement is proportional to the distance from the axis: 1 1y yyu y . In 

Appendix B, it is shown that the transverse elastic stress equals: 

                                1 1 1 22yy f xx f yy xxM           , (16) 

where 2 3f fK    is the Lamé modulus of the saturated rock. The condition 

1 0yy   therefore requires that the transverse strain of the rod is related to the two axial 

strains: 

                               1 1 1 2 2yy x xu u        and 1 1y yyu y , (17) 

where  1 2f f        is the elastic Poisson’s ratio (4) and  2 2 fM        

is a similar ratio for equilibrium transverse thickening caused by the axial fluid flow. As 
shown in Appendix A, in this case, the axial deformation also obeys the eigenvalue 
relation (14), but with different matrices * and M. 

The results for a wave with free transverse boundary of the rod (Young’s modulus 
case) are shown in the form of E/M ratios in Figure 3. As expected in the Introduction, 
these ratios do not match the viscoelastic expression (5) (dashed lines in Figure 3). Thus, 
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for porous fluid-saturated sandstone at  > 0, the wave-based P-wave and Young’s 
moduli are not bound by the viscoelastic relations.  

It is also interesting to plot the Poisson’s ratio (4) for a wave with a free transverse 
boundary (solid lines in Figure 4). For a given wave mode q(n), the Poisson’s ratio for the 
wave can be obtained from the ratio of the transverse and axial strains (eq. (17)): 

                                  
 
 

( )

1 2
( )

1 1

n

yy

n
xx





   

EUq

EUq
 .  (18) 

In this expression, notation (…)k denotes the k-th element of the corresponding vector, 
and the notation for matrices E, U, and vectors q(n) is explained in Appendix A. 
Numerical modeling of this ratio shows that () is frequency dependent (solid lines in 
Figure 4) and also does not follow the viscoelastic relation (4) (dashed lines in Figure 4).  
Note that the variations of the Poisson’s ratio and E/M with frequency predicted by the 
viscoelastic approximation are opposite to those in the solution of Biot’s equations. 

Axial deformation of a short cylinder  

Let us now consider a short cylindrical specimen of radius R and length L, oriented 
in the direction of axis X (Figure 1b) and subjected to oscillatory axial 
compression/extension at a single, low angular frequency  = 2f. We will assume that 
the specimen is jacketed on all sides, so that the fluid does not flow across its boundaries. 

In contrast to the single, traveling wave considered in the preceding section, in the 
present experiment, we have a standing wave formed by an interference of forward- and 
backward-traveling waves. The standing wave contains both the primary (fast) and slow 
P waves, and consequently four wave modes are involved in this deformation. The 
lengths of these waves are shown as functions of frequency in Figure 5. The slow-wave 
modes have the largest amplitudes at the ends of the cylinder, and the depths to which 
they penetrate into the cylinder is the characteristic “skin depth”, which is close to its 
wavelength: slow slow  (gray lines in Figure 5). From Figure 5, for frequencies below 

about 1 kHz, both slow and slow exceed the dimensions of even the relatively large 
specimen in the apparatus used by Tisato and Madonna (2012) and Kuteynikova et 
al. (2014) (length of 25 cm and diameter 7.6 cm). Thus, in seismic-frequency laboratory 
experiments with sandstone, the fluid wave penetrates the whole specimen.  

As an additional observation from Figure 5, note that at frequencies above the 
poroelastic dissipation peak, the skin depths  for both fast and slow waves are nearly 
independent of the frequency (the difference in  and  between the two modes waves is 
also no longer pronounced at these frequencies). Such frequency independence is often 
observed, particularly when the attenuation is caused by geometric spreading or random 
scattering. Such attenuation produces an apparent Q nearly proportional to the frequency 
(Morozov, 2010).
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To find the standing-wave field, we denote the amplitudes of the forward- and 
backward-propagating modes a+ and a–, respectively: 

           
  fast fast slow slow

fast fast slow slow

fast fast slow slow

fast fast slow slow

, (

),

ik x x ik x xi t

ik x x ik x x

x t e a e a e

a e a e

 

 

     

      

  



u Uq Uq

Uq Uq
  (19) 

where vectors fast or slow
q are the eigenvectors of  the forward- or backward-propagating 

modes of the fast or slow wave, respectively. The parameterization of these eigenvectors 
and matrices U producing the displacements for the different types of boundary 
conditions is explained in Appendix A. The relative values of a+ and a– are determined by 
the boundary conditions at the ends of the cylinder: 

                    
 
 

   

1

1

2 2

0 0 (fixed base of the cylinder),

(observed displacement),

0 0 (zero axial flow).

x

x

x x

u x

u x L L

u x u x L


 

  
    

. (20) 

where  is the desired average strain of the cylinder. These conditions lead to four 
equations for the amplitudes fast or slowa  : 

              fast fast slow slow

fast fast slow slow

fast fast slow slow fast fast slow slow

fast fast slow slow

fast fast slow slow

0
 (at  = 0),

0

0

ik L L ik L L

ik L L ik L L

a a a a x

a e a e

L
a e a e

 

  

       

    

      

 
     

 
 


 



Uυ Uυ Uυ Uυ

Uυ Uυ

Uυ Uυ  (at  = ).x L






    

 (21) 

By solving this 44 system, we find the values of fasta  , slowa  , fasta  , and slowa  , and by 

using relations (19),we obtain the distribution of rock and pore-fluid displacement within 
the cylinder.  

For a uniaxial deformation of a sandstone cylinder, Rubino and Holliger (2012) and 
Kuteynikova et al. (2014) modeled the displacement fields similar to those in 
equations (19) by using numerical modeling. This approach allowed considering arbitrary 
non-uniform saturations in 2D and 3D. However, these authors only modeled the 
modulus M as the stress/strain ratio (2) and relied on relations (5) for transforming the 
measured Young’s modulus E into M as well. They also assumed that the modeled 
modulus is equivalent to 2

fastM V  for the “fast” wave. By contrast, we examine (and 

in fact, disprove) both of these assumptions by directly evaluating all measurable 
quantities for a uniform cylinder. 

For a small specimen, the measured axial strain equals in equations (20). The 
confining stress measured at the end of the cylinder is given by the first element of the 
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two-element vector in expression (9) evaluated at x = L. The expressions for strain and 
stress within plane waves in a rod with free transverse boundaries are given in 
Appendix A. From equation (A19) there, the stress at the end of the cylinder is a sum of 
the stresses caused by each of the four wave modes (here denoted n for brevity, with 
n = 1…4): 

                             ( ) ( )

1 1
2 nik Ln n

L n
n

ik e     KΩUq ΕUq ,  (22) 

where the matrices Ε  and  are defined in Appendix A. Note that this stress comes from 
purely elastic forces and includes no internal friction. Nevertheless, there still exists a 
phase lag between this stress and the strain, because the strain is affected by Darcy’s 
frictional forces. 

As stated in equation (2), the measured empirical (dynamic) Young’s modulus 
equals LE   . This quantity is shown in Figure 6 for low frequencies according to 

the approximation used in Appendix A. This modeling is performed for L = 11 cm and 
frequencies selected so that the fast-mode wavelengths exceed 8L, which is adequate for 
subresonant laboratory measurements. Since both fast and slow waves contribute in L 
and , the modulus E is intermediate between Efast and Eslow evaluated for the traveling 
waves in the preceding section (Figure 6).    

Because the relative amplitudes of the fast and slow modes within the specimen 
vary with frequency, the relation between E, Efast and Eslow is complicated and depends on 
the frequency and sample length. There appears to exist no simple relation to empirically 
relate these quantities. Note that the decrease of ReE and QE with frequency (solid lines 
in Figure 6) occurs at ~1 kHz, which is 10–100 times lower than the dissipation peak for 
the infinite rod (dashed lines in the same Figure). This low-frequency rise in the 
frequency dependence of ReE and QE for the cylinder is principally caused by an increase 
in the contributions from the slow modes. 

Because the wavelengths of slow waves are larger but comparable to the length of 
the cylinder L (Figure 5), the measured quantities vary with changing L. At a loading 
frequency of 100 Hz, such variations are illustrated in Figure 7 for L ranging from zero to 
two wavelengths of the slow P wave. The real part of the modulus, ReE, decreases with 
increasing L but is approximately constant and equal the “elastic” Young’s modulus for 
short cylinders with L < 10–20 cm (black line in Figure 7a). The Poisson’s ratio similarly 
decreases with L (Figure 7c).  

Another notable result of this modeling shows that the imaginary part of the 
Young’s modulus, ImE, is near zero for L below 10–20 cm, above which it quickly 
increases in negative magnitude (gray line in Figure 7a). This leads to a very low 1

EQ   

(strain-stress phase lag) for short cylinders, with a steep increase above L ≈ 20 cm 
(Figure 7b). The near-zero dissipation for short cylinders is easy to understand. Recall 
that the pore fluid flow is constrained by u2x = 0 (no fluid flows) at both boundaries. 



 

14 

 

When the boundaries become much closer together than the slow wave lengths, this 
constraint forces the values of u2x to be near zero within the whole specimen. As a result, 
the weak fluid flow u2x  0 leads to low internal friction and small strain-stress phase 
lags. 

Discussion 

The above results may disagree with the intuitive reading of the viscoelastic model 
which is often used to explain seismic attenuation experiments. Dynamic moduli can 
certainly be modeled and measured in a variety of environments by using either 
relations (1) or (2), and yet these quantities are not necessarily “moduli” in the sense of 
(visco)elastic relations (4)–(6). This difference may make it difficult to relate the 
dynamic moduli measured in the laboratory (typically the Young’s modulus for 
compressional deformation) to those describing seismic waves in the field (typically the 
P-wave modulus). The dynamic moduli for a traveling wave are also significantly 
different from those for a short rock cylinder (Figure 6). 

For waves in fully saturated uniform sandstone in Figures 3 and 4, the violations of 
viscoelastic relations (4)–(6) are weak below about 10 kHz, and it might therefore appear 
that we should not be concerned about them in practical measurements. Nevertheless, 
note that relations (4)–(6) hold at these frequencies only inasmuch the rocks are 
approximately elastic (i.e., the moduli are constant). At all frequencies, the Q-1 measured 
from the stress/strain ratio (2) within a wave is about four times larger than the Q-1 
inferred from the wave attenuation relation (1) (Figure 2b). The frequency dependences 
of the anelastic parts of the poroelastic and viscoelastic predictions are opposite 
(Figures 3b and 4b), and the differences between them are of the same order as the Q-1 
(Figure 2b).  

For the same deformation type, the frequency-dependent moduli measured in 
subresonant laboratory tests with small specimens (i.e., in a forced standing wave) are 
much weaker and have much stronger dissipation than in a traveling wave (Figure 6). The 
deviation from elasticity in a small specimen starts at much lower frequencies 
(~100-1000 Hz) than in a traveling wave and shows an opposite sense of variation with 
frequency (Figure 6a). These variations, and particularly the Q-1, strongly depend on the 
length of the cylindrical specimen (Figure 7b). The reason for all these effects is that the 
diffusive secondary wave penetrates the whole specimen, and the amount of this 
penetration varies with frequency and specimen size. 

The dynamic bulk modulus, K, is a particularly delicate quantity, because it is 
extremely difficult to measure in field data. This modulus only exists within the 
viscoelastic model, and apparently the only direct observation of it comes from the radial 
free-oscillation mode 0S0 of the whole Earth (Knopoff, 1964). In laboratory studies, the 
bulk modulus is derived from the elastic-moduli relations such as (6). Since these 
relations appear to be limited for poroelastic materials, the significance of the dynamic K 
for them appears unclear. 
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The above observations show that the picture of mechanical behavior of a fluid-
saturated porous rock may become quite complicated if based on the empirical dynamic 
moduli. The difficulty arises from commonly considering only the modulus for the 
primary (‘fast’) wave. If the moduli for the secondary modes are also included and 
reflections from the ends of the cylinder are taken into account, the moduli-based picture 
becomes consistent. Such a model was given by equations (19)–(21) in this paper. 

However, attributing a modulus to every wave mode gives only a mathematical 
summary of the modal spectrum for a mechanical body. This spectrum is controlled by 
two factors: 1) properties of the material (equations of motion), and 2) the shape of the 
body and boundary conditions. Multiple dynamic moduli represent properties of the wave 
modes but not of the medium. For different body shapes, for example spherical saturation 
patches considered by White (1975) and Dutta and Odé (1979a), the dynamic-moduli 
spectrum should be different from the 1-D plane-wave modes considered here. As we are 
primarily interested in material properties, we need to deemphasize the boundary effects 
and emphasize the equations of motion (8), constitutive relation (9), and the matrix 
material properties (10). As noted by Geertsma and Smit (1961), these equations are not 
viscoelastic, which can be seen in the frictional term idu  entering equation (8) outside 

of the stress tensor and without the divergence operator required for the stress field (term 

j ij σ ). The Darcy friction is a body force that cannot be incorporated in the viscoelastic 

stress.  

To further illustrate the difference of the pore-fluid friction from the strain-induced 
friction in the viscoelastic model, Figure 8a shows the distribution of the solid and fluid 
displacements within the cylinder at frequency 1.8 kHz. The distribution of fluid flow is 
non-uniform, even though the strain within the entire cylinder is practically constant. The 
distribution of u2 is also asymmetric, with a peak shifted toward the moving end of the 
cylinder. This asymmetry is due to the inertia of the pore fluid. If fluid saturation is non-
uniform, this asymmetry could lead to different attenuation results depending on which 
end of the cylinder being loaded. For example, in the apparatus by Tisato and 
Madonna (2012), the cylindrical rock specimen is oriented vertically, and its saturation 
may be lower at the top because of the effect of gravity. Consequently, we might expect 
different values of attenuation when measured with the actuator placed at the bottom of 
the cylinder instead of its top, or with the whole device oriented horizontally. Such 
effects could apparently be easily tested experimentally. In addition, Figure 8a shows that 
fluid motion within the cylinder becomes significant at frequencies above about 100–
300 Hz, which correspond to the increase of attenuation in Figure 6b. 

The above observations are made for poroelasticity, for which a rigorous first-
principle macroscopic theory is available (Biot, 1962; Bourbié et al., 1987). 
Qualitatively, similar observations could also be relevant to WIFF effects such as patchy 
saturations and squirt flows. With patchy saturation, the increase in velocity dispersion 
and attenuation occurs at lower frequencies, but the general mechanism of internal 
friction remains the same (fluid flow through heterogeneous rock matrix). The key 
feature of poroelasticity is the mutual friction between the two constituents of the 
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material (term idu  in eq. (8)), which should likely be present in any model of rock 

containing fluids. Also similarly to poroelasticity, WIFF media contain internal degrees 
of freedom (local fluid flows) and should therefore allow matrix parameterizations as in 
eqs. (10), support multiple wave modes (Dutta and Odé, 1979a) and consequently possess 
multiple P-wave moduli. Different geometries of saturation heterogeneity need to 
modeled specifically (e.g., White, 1975; Johnson, 2001; Rubino and Holliger, 2012; 
Kuteynikova, et al., 2014). However, it appears unlikely that the differences from 
viscoelasticity noted in the present study would disappear in the more complex WIFF 
cases. 

Conclusions 

The concept of viscoelastic modulus is useful for summarizing laboratory and field 
observations but it may be incomplete or complicated when representing the properties of 
fluid-saturated porous rock. The empirical dynamic moduli measured in various 
experiments represent combinations of the moduli for primary and secondary waves. 
These combinations vary with frequency, wave or oscillation types, and experiment 
geometry. Comparisons of the dynamic moduli modeled for traveling waves and 
subresonant oscillations of a sandstone cylinder show that at nonzero frequencies: 

1) For waves, the dynamic moduli defined from phase velocities ( *2
phaseM V ) 

and stress/strain ratios ( M   ) are different. The amplitudes of the 
attenuation peaks differ by about four times for these moduli. 

2) The dynamic moduli measured in short cylinders are lower than those in 
traveling waves in unbounded media. The attenuation (Q-1) in a sandstone 
cylinder is much higher and starts increasing at ~10–100 times lower 
frequencies than the poroelastic dissipation peaks in traveling waves.  

3) At nonzero frequencies, the P-wave and Young’s moduli and Poisson’s 
ratios deviates from the usually assumed viscoelastic relations. For brine-
saturated sandstone, the deviation becomes significant at frequencies 
above ~10 kHz. 

4) For short cylindrical specimens (below 1 m at 100-Hz frequency), the 
measured modulus decreases and the attenuation strongly increases with the 
length of the cylinder. The dependence of Q-1on the length is nonlinear, 
with very low attenuation for cylinders shorter than about 20 cm. 

Qualitatively, these observations likely apply to the more general cases of wave-
induced flow (WIFF). To avoid the complexity of studying multiple dynamic moduli for 
all primary and secondary modes, first-principle approaches can be used to describe the 
wave-propagating media, compare laboratory and field observations, and make 
petrophysical conclusions. 
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Tables 

Table 1. Physical parameters of brine-saturated sand used in the examples (after 
Dutta and Oté (1979) 

Rock 
VP 1500 m/s P-wave velocity of dry matrix 
VS 1000 m/s S-wave velocity of dry matrix 
Ks 35 GPa Bulk modulus of solid grains 
s 2650 kg/m3 Density of solid grains 
 0.3 Porosity 
 9.86923310-13 (1 Darcy) Permeability 
a 1 Tortuosity 

Brine 
Kfl 2.4 GPa Bulk modulus 
fl 1000 kg/m3 Density  
 110-3 Viscosity 
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Figures 

 

Figure 1. Schematic experiments for measuring the Young’s moduli: a) Using a wave 
traveling in an infinite rod. One fast wave mode is used (arrow) and the modulus is 
defined by relation (1). b) Using constant-frequency loading of a small specimen in 
the laboratory. A superposition of four wave modes traveling in both directions is 
used (labeled arrows), and the modulus is defined by the stress-strain ratio (2). 
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Figure 2. Modeled dependences of the P-wave modulus on frequency for a wave in 
sandstone: a) real part; b) dissipation factor 1/Q for the primary mode. Solid lines 
correspond to the moduli defined from wave velocities (1), dashed lines show the 
stress/strain ratios (2). In plot a), the results for the slow wave are shown in gray. 
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Figure  3. Ratio E/M of the Young’s (E) and P-wave moduli (M) for the fast P wave in an 
infinite poroelastic rod: a) Re(E/M);  b) Im(E/M). Solid lines are the exact values 
obtained by solving the poroelastic equations (8), and dashed lines are inferred by 
transformations of the moduli (5). 
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Figure  4. Frequency dependence of the Poisson’s ratio for a traveling wave in sandstone 
rod (Table 1): a) real part; b) imaginary part. Solid lines show the exact solution of 
equations (8), and dashed lines – solution inferred from viscoelastic moduli (the 
second equation (4)). 
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Figure 5. Fast- (solid lines) and slow-wave (dashed lines) wavelengths  (black) and skin 
depths  (gray) in an infinite rod or cylinder modeled in this paper (Table 1). Gray 
bar schematically shows the range of cylinder lengths L used in laboratory 
experiments for attenuation. 
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Figure 6. Young’s modulus modeled for a short sandstone cylinder (Table 1) using 
equation (2) (solid lines): a) Real part, ReE; b) Scaled dissipation rate for E 
( 1100 EQ  , where 1

EQ   is obtained from the phase lag in relation 2: 
1 Im ReEQ E E   ). For comparison, dashed lines repeat the results for the “fast” 

wave traveling within an infinite rod shown in Figure 3. 
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Figure 7. Dependences of the observable parameters on cylinder length at loading 
frequency 100 Hz: a) Real and imaginary parts of Young’s modulus; b) Scaled 
dissipation rate 1000/QE; c) Poisson’s ratio.  
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Figure 8. Deformation amplitude distributions within the cylinder of length L = 11 cm: 
a)  displacement of the solid (solid line) and pore fluid (dashed) at frequency 
1.8 kHz; b) Frequency dependence of the ratio of fluid and solid displacement 
amplitudes at the center of the cylinder. 
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Appendix A: Dynamic moduli for traveling waves 

To utilize the matrix equations (8) and (9), it is convenient to define additional 
matrices relating the strains to the independent variables of the problem. Matrix 
computations are compact and can be readily implemented in engineering software such 
as Matlab or Octave. 

Let us consider the boundary conditions related to evaluating the P-wave and 
Young’s moduli concurrently. In both the P-wave and infinite-rod problems, the axial 
displacements u1x(x,t) and u2x(x,t) can be taken as independent variables combined in a 
model vector: 

                                                1

2

x

x

u

u

 
  
 

q . (A1) 

As shown in equations 17, the transverse deformation of the rod can be parameterized by 
the transverse strain yy(x,t)  xx(x,t). Then, the strains and the three components of 
displacement for the rock and axial displacement of the filtration fluid can then be written 
as: 
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where: 

                                             

1 0

0 0
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0 1

 
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 
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 

U , (A3) 

and matrices U, and E depend on the conditions on the transverse boundary. For the P-
wave case (zero transverse strain), these matrices equal:  
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In this case, the second and third rows in these matrices can be dropped, as well as the 
corresponding columns in E and matrices  and V below. For a rod with free transverse 
boundary (equations 17): 

                1 2

1 2

1 0

0 1

y y

z z

 
 
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 
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 
 
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 
 
  

Ε . (A5) 

Note that for attenuating harmonic waves, the spatial derivative operators can be replaced 
by  sgnx i k i k     , and the time derivatives by t i   .  

From E, a similar matrix for deviatoric strain Ε  can be obtained by subtracting 1/3 
of their sum from each of the first three rows in E. The dilatational strains can be 
combined in a 2-component vector and also written as a matrix product: 

                                            1

2

    
ΩUq , (A6) 

where, for the P-wave case:  

                                       
1 0 0 0

0 0 0 1

 
  
 

Ω , (A7) 

and for the free transverse boundary case: 

                                 1 21 2 0 0 2

0 0 0 1

  
  
 

Ω . (A8) 

The simplest approach to deriving the equations of motion for q(t,x) is to consider 
the functional forms of the potential and kinetic energies and the dissipation function on 
q and q  (the overdot denotes the time derivative of q; Bourbié et al., 1987). With the 
strains given by equations (A2) and (A6), the elastic energy density is quadratic with 
respect to q (ibid): 

                                 
1 1

2 2
T T T

ij ijV    Δ KΔ ε με q Λq  , (A9) 

where matrix K is given in relations 10, and matrix: 

                                    2T T T Λ U Ω KΩ Ε VΕ U  (A10) 
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acts as the effective elastic modulus for the type of deformation considered, i.e., the 
coordinates (A1)–(A5). In this expression, matrix  1,1,1,2,2diagV  is needed for 

evaluating the tensor product T
ij ijε ε  as dot product of the vector (A2).  

The kinetic energy is also quadratic with respect to u : 

                                                
1

2
T
i iT  u ρu  . (A11) 

Taking into account the first equation A2, this energy can be expressed 
through q  and q : 

                                  
1 1 1

2 2 2
T       qΓq qΓ q q Γ q      , (A12) 

where matrices  Γ , and Γ  describe the kinematic coupling between the rock and pore 
fluid within the rod. For harmonic oscillations, the second and third terms in this 
expression are proportional to 3 and 4, respectively, and therefore we disregard them at 
low frequencies. The kinematic coupling matrix in the first term equals (ibid; compare to 
relations (10)): 

                                

0 0

0 0 0

0 0 0

0 0

f

T

f f

a

 




 


 
 
 

  
 
 
  

Γ U U . (A13) 

The kinetic energy density increases towards the surface of the rod, as yu and zu  linearly 

increase with distance from the axis of the rod. However, the contributions from yu and 

zu  belong to the terms containing q (eqs. (A2) and (A12)), which are disregarded in the 

low-frequency approximation.  

Pore-fluid flow (Darcy) friction is described by the dissipation pseudo-potential 
that has a functional form similar to the kinetic energy above: 

                                      
1 1

2 2
T T
i iD  u du qU ΘUq   , (A14) 

where: 
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0 0 0 0

0 0 0 0

0 0 0 0

0 0 0  

 
 
 
 
 
 

Θ . (A15) 

With the above quadratic expressions for all energies and D, and considering a 
harmonic wave attenuating in the positive direction of axis X (relation (13) in the text), 
the wave equation becomes (ibid): 

                                       22 Ti k i      Γq U ΘUq Λq ,  (A16) 

Note that the right-hand side of this equation represents a divergence of the elastic stress 
(surface force for an elementary volume), and the left-hand side contains the inertial and 
frictional body forces. This equation represents a generalized eigenvalue problem for 
vector q: 

                                                      * ρ q Λq ,  (A17) 

where the eigenvalue  2 2k i    , and the matrix * can be viewed as “effective 

complex density”: 

                                                  * Ti


 ρ Γ U ΘU .  (A18) 

Equation A17 represents an eigenvalue problem for , from which the complex phase 
velocity can be obtained as * 1V  . For the P-wave case (matrix U in (A4)), the two 

variables responsible for thickening of the rod in the directions Y and Z can be dropped, 
and then the 22 matrix = M represents the matrix P-wave modulus in equations (10): 
 = , Θ d , and equations (A16) and (A18) reduce to equation (14) in the text (ibid). 

The scalar P-wave or Young’s moduli are measured as ratios of the axial 
components of stress and strain in the respective experiments (equation (2) in the text). 
This ratio needs to be evaluated separately for the fast and slow modes of the P wave, 

given by the corresponding eigenmode  nq  in (A17). For eigenmode n, the strain xx is 

given by the first component of vector    ( ) ( )

1 1
3n n ikxik e  ΩUq ΕUq , where subscript 

‘1’ denotes the first element of the corresponding vectors, and k is the complex 
wavenumber. The first term in this expression contains the xx-component of the 
dilatational strain, and the second is the deviatoric strain. The strain xx is (in principle) 
readily measurable. Regarding the stress, its measurement within the wave is more 
difficult. Hypothetically, let us assume that xx is measured by inserting a small 
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piezometer in a gap within the wave and ensuring that this insertion does not alter the 
wave pattern. Then, the axial stress measured by the piezometer is the surface stress: 

                                       ( ) ( )

1 1
2n n ikx

xx ik e    KΩUq ΕUq .  (A19) 

This value is affected by neither the Darcy friction nor inertia, because both of these are 
body forces. Consequently, the measured empirical scalar modulus equals: 

                                    
   
   

( ) ( )

1 1
( ) ( )

1 1

2

3

n n

xx n n
M






KΩUq ΕUq

ΩUq ΕUq



 .  (A20) 

As illustrated on an example of sandstone in the text (Figure 2), this modulus is 
frequency-dependent and differs from the modulus defined by using the phase 
velocity, 2

phaseM V . 

For  → 0, the effects of both inertia  and friction d are negligible, and the fast 

wave contains no fluid motion:  (fast) 1,0
Tq . As it can be readily verified, the modulus 

Mxx in equation (A20) then equals the P-wave modulus 4 3f fM K    for U and E 

given in (A4), and Young’s modulus  12 1fE     in (A5). 
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Appendix B: Transverse elastic stress in a poroelastic cylinder 
(equation (16)) 

Denoting the two nonzero components of the axially-symmetric strain for the body 
by 1xx and 1yy = 1zz and the relative strain of filtration fluid 2xx, the dilatational strain of 
the body becomes 1 1 12xx yy    , and the transverse component of the deviatoric strain 

 1 1 1 1 13 3yy yy yy xx        . From relation (9), the dilatational stress then equals: 

                            1
1 1 1 2

2

2f xx yy xxp K M   
 

      
K , (B1) 

and the transverse deviatoric stress  1 1 12 3yy yy xx     . By adding these stresses, we 

obtain the total transverse stress 1 1yy yyp      as a function of arbitrary 1xx, 1yy, and 

2xx, given in equation (16). 


