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Abstract 

Most field and laboratory observations of seismic wave propagation and 
attenuation are explained by using the viscoelastic (VE) model and effective moduli for 
rocks. This model is used to approximate most mechanisms of internal friction within 
materials including poroelasticity and wave-induced fluid flows (WIFF). However, the 
modulus-based viscoelasticity is still fundamentally different from pore-fluid effects. For 
example, wave attenuation in a poroelastic material is best described by a complex-
valued effective density rather than by a VE modulus. In layered poroelastic medium, the 
VE approximation leads to incorrect predictions for the frequency-dependent Poisson’s 
ratios and reflection coefficients. In heavy-oil compounds and media with WIFF, 
frictional forces should generally behave intermediately between the VE stresses and 
body-wave Darcy forces characteristic for poroelasticity. Thus, a broader theoretical 
framework is needed to incorporate the traditional viscoelasticity and poroelasticity and 
to extend them to broader WIFF models. Such a unified framework called the General 
Linear Solid (GLS) is proposed here. The GLS is a first-principle approach based on 
Lagrangian continuum mechanics, and it can be summarized as multiphase poroelasticity 
extended by solid and fluid viscosities. The formulation is carried out strictly in terms of 
measurable physical properties and boundary conditions from which the observable 
effects such as wave velocities and attenuation are predicted. Explicit differential 
equations are formulated in matrix form, from which a variety of numerical modeling 
schemes can be derived. In the GLS framework, the viscoelasticity represents an end-
member characterized by zero Darcy-type friction, whereas the poroelasticity is an end-
member with zero solid viscosity. Transitions between these end-members and their 
extensions yield new models such as ‘visco-poroelasticity’ and poroelasticity with 
multiple saturating fluids. The approach is illustrated on practical models of layered 
poroelastic and visco-poroelastic media. Applications of this framework are continued in 
Part II of this study. 
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Introduction 

Reservoir rocks are heterogeneous, porous media saturated with potentially 
complex combinations of fluids and gases. When heavy oil is included in the saturation, 
the distinction between solid and fluid properties of the compound may become 
complicated or even completely blurred. Pore-flow effects become intertwined with solid 
and fluid viscosity, so that neither the poroelastic nor viscoelastic models alone provide 
accurate descriptions of the physics of seismic wave propagation. In this two-part paper 
(for Part II, see Morozov and Deng, submitted to Geophysics), we propose a formulation 
integrating both of these models and providing transitions between them. This 
formulation, hereafter called the General Linear Solid (GLS), is only constrained by the 
macroscopic character, isotropy and linearity of mechanical interactions, and therefore it 
provides a common framework for describing a broad range of rocks in field and 
laboratory environments. 

The notion of equivalent medium is commonly used for modeling the propagation 
and attenuation of seismic waves in media with complex microstructures. The GLS 
framework attempts generalizing two broad groups of approaches to macroscopic 
equivalent media:  

1) Poroelastic and wave-induced fluid flow models (WIFF), in which a fluid 
filtrates through microscopic pores (Biot, 1962) or between ‘mesoscopic’ 
heterogeneities (for recent reviews, see Toms et al. (2006) and Müller et 
al. (2010)).). We are interested in macroscopic expressions of such 
models, such as the squirt flows being represented by imaginary shifts in 
the effective bulk modulus of the pore fluid (Gurevich et al, 2010; 
Mavko, 2013).  

2) The broadly-defined, linear viscoelastic (VE) model based on no specific 
mechanism but empirical, complex-valued and frequency-dependent 
effective moduli including the quality factors (Q) (e.g., Knopoff, 1964). In 
fluid dynamics, a similar approach uses effective viscosities instead of the 
effective moduli (e.g., Debautt and Thomas, 2004). With regard to weak 
oscillatory motions in a seismic wave, these approaches are equivalent, 
and we do not differentiate between them here. Note that despite their 
breadth, VE models are still distinctly different from poroelastic and 
WIFF ones but are often used to approximate them (Geertsma and 
Smit, 1961; Carcione, 1998). 

One of the key differences between the above groups is in the significance of the notion 
of the effective VE modulus, which is only an approximate, derived quantity for 
models 1) but the core concept for 2).  

In this study, we consider questions that may sound paradoxical, given a large 
body of research utilizing the VE moduli: Is it always appropriate to attribute the effects 
of internal friction within rock to the effective moduli? For example, for poroelasticity 
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and diffusive waves in fluids, the effective complex density represents a better alternative 
to the VE modulus (Johnson et al., 1987; Dupuy and Stovas, 2014). Further, is a single P-
wave modulus sufficient for interpretation? Do we need a more general model combining 
multiple effective moduli and densities?  

The GLS framework answers the above questions by generalizing the poroelastic 
and VE models and allowing transitions between and extensions beyond them. Instead of 
debating between the complex-valued moduli, viscosities, or densities, we show how the 
mechanics of the medium can be described simply and compactly without such 
quantities. The unified approach also helps constructing and analyzing VE 
approximations for poroelasticity (Geertsma and Smit, 1961; Carcione, 1998).  

Within the GLS rheology, the end-member models 1) and 2) above are clearly 
identified as limits of zero solid viscosity ( = 0) or zero Darcy friction (d = 0) specified 
in section Approach. These limits reflect a fundamental difference in the physical 
characters of internal friction in these models. In viscoelasticity, frictional stresses are 
caused by velocity gradients, and their tensor forms are analogous to those in viscosity 
and elasticity. By contrast, in poroelasticity and likely WIFF, the internal friction is 
caused by the relative velocities of the constituents of the mixture. The pore-fluid 
frictional force is a body force analogous to the effects of inertia, and this force does not 
reduce to VE stress tensors (Carcione, 1998). However, it appears that realistic rocks 
should likely possess both of these properties, and hence we can generally expect  ≠ 0 
and d ≠ 0. 

The GLS is a first-principle approach based on Lagrangian mechanics, 
thermodynamics, symmetry and linearity of interactions, and it can thus be viewed as an 
extension of Biot’s model of poroelasticity. The approach is macroscopic, i.e. formulated 
in terms of quantities averaged over scales shorter than the characteristic seismic 
wavelengths (about a meter) but longer than the micro- (m) and mesoscopic (crack-size, 
cm) scales of structural heterogeneity. Only the macroscopic scale is ‘felt’ by the waves 
at seismic frequencies. At the same time, the values and petrophysical meanings of 
macroscopic parameters are determined by the micro- and mesoscopic-scale structures.  

As in most applications of continuum mechanics, all interactions within the GLS 
framework are instantaneous and described by differential equations (Landau and 
Lifshitz, 1986). This ensures causality and naturally leads to finite-difference, finite-
element, spectral and other types of numerical simulations. All parameters of the medium 
are real-valued and (generally) time- and frequency-independent. Frequency-dependent 
properties such as empirical moduli, viscosities, permeability and tortuosity (Johnson et 
al., 1987) arise when considering specific solutions. This is the key difference from many 
current models, which are usually developed for harmonic waves and include frequency-
dependent material properties up front. The Lagrangian approach clearly differentiates 
between the observed properties of the seismic waves (such as velocities and apparent 
attenuation) and those truly belonging to the material (such as its density, rigidity, and 
viscosity). Explicit separation of the elastic, viscous, and Darcy forces allows 
differentiation between various physical mechanisms.  
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The goal of this Part I is in presenting the GLS methodology (section Approach) 
and demonstrating its links with poroelasticity and viscoelasticity (section Applications). 
However, section Examples also makes two important practical points that are rarely 
noted. In the first example, we use the GLS formalism to derive poroelastic models for 
brine- and gas- saturated sandstone. We model the frequency-dependent, complex-valued 
reflectivity r* from a contact between brine- and gas-saturated zones and show that this 
reflectivity does not equal the expression for reflectivity usually expected from a VE 
approximation: 

                                                        
* *

* * 2 1
* *
2 1

VE

Z Z
r r

Z Z


 


, (1) 

where * *
1,2 1,2 1,2Z M  are the complex-valued impedances inferred from the P-wave 

moduli *
1,2M  for the two zones. The frequency dependence and the phase of reflectivity r* 

from a zone of high poroelastic Q-1 (i.e., containing pore gas) are opposite to those 
predicted by *

VEr . Note that the expectations of * *
VEr r  in relation 1 motivated some of 

the recent experiments with proxies of heavy oil (Lines et al., 2014). 

 Thus, reflection amplitudes in a layered poroelastic medium cannot be inferred 
from a single effective modulus or Q in each of its layers. The same observation should 
apparently hold for WIFF. In fact, it is hard to say for what realistic rock type the true 
reflectivity r* would equal the viscoelastic *

VEr . This observation is similar to the 

“common fallacy” noted by White (1986), which consisted in inferring the P-wave QP 
from laboratory measurements of Young’s (QE) and shear Q-factors (QS) and the 
Poisson’s ratio () by using VE relations between the moduli: 

                                           
       1 1 2 1 2 2

P E SQ Q Q

       
  . (2) 

 Unfortunately, this fallacy is still broadly encountered today. White (ibid) urged 
researchers “to recognize the losses due to simple fluid viscosity”, i.e. to use first-
principle models when interpreting the data on extensional deformations of rock samples.  

In the second example, we illustrate the behavior of a more general, ‘visco-
poroelastic’ material combining both poroelastic and VE properties. This model should 
be relevant to porous rock saturated with heavy oil, although the appropriate values of 
physical parameters are still poorly known. 

Applications of the GLS model are continued in Part II, where we discuss the 
“homeogenization” (construction of macroscopic models from micro- and meso-
structural ones), mixing and fluid-substitution relations for GLS media consisting of 
multiple constituents. It is shown that an equivalent 1-D WIFF medium formed by 
interlayered brine-and gas-saturated layers (Gurevich et al., 1997; Pride and 
Berryman, 2003; Müller and Gurevich, 2004) can be approximated by a visco-poroelastic 
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model. Finally, a VE model broadly used for simulating attenuation in seismic waveform 
modeling software (the Generalized Standard Linear Solid; e.g., Zhu et al., 2013) is also 
extended by using the GLS point of view (Part II).  

Effective moduli, effective densities, Darcy friction, or GLS? 

Comparisons of wave-propagation and attenuation models with observations are 
commonly based on measuring or modeling the effective VE moduli (e.g., Rubino and 
Holliger, 2012). These moduli represent the observed phase velocities and Q-factors of 
plane P- and S waves combined in complex-valued phase velocities: 

 *
P,S P,S P,S1 2V V i Q    , which are further combined with the density, : 

                                               * *2
eff PM V  and * *2

eff SV  .  (3) 

The use of complex moduli is inspired by the VE theory predicting characteristic 
frequencies in the absorption spectra of the several standard linear solids, Andrade, or 
Cole-Cole models (e.g., Geertsma and Smit, 1961; Lakes, 2009; Mavko, 2013). 
Poroelasticity can also be approximated by VE (e.g., Geertsma and Smit, 1961; Carcione, 
1998), but this approximation is limited to modeling the spectra of Vphase()  and Q-1() in 
the primary wave mode and in a uniform space. In a non-uniform poroelastic medium, 
VE attributes such as the dynamic moduli and Q do not behave “viscoelastically.” To see 
this, note that treating the quantity *

effM in relations 3 as a ”P-wave modulus” implies that 

it is also related to the Young’s modulus *
effE  and the Poisson’s ratio *

eff as in elasticity: 

                      
* *

* * eff eff
eff eff * *

eff eff

4

3

E
M

E








, and 

   
*

* * eff
eff eff * *

eff eff

1

1 1 2
M E


 




 
. (4) 

These relations are often used to derive the *
effM  from *

effE , *
eff  and *

eff  measured in 

laboratory experiments (Tisato and Madonna, 2012; Spencer, 2013; Batzle et al., 2014). 
However, both relations 4 can be modeled and turn out to be false for a poroelastic rod 
(White, 1986; Morozov, submitted to Geophysical Journal International). 
Phenomenologically, the reason for this discrepancy is that in poroelasticity (section 
Applications below), the complex-valued velocities in equations 3 are achieved through 
complex effective densities * i     and not through the effective moduli.  

Although the limitations of VE approximations to uniform media are well known 
in poroelasticity (e.g., Carcione, 1998), the effective-modulus paradigm is broadly used 
in practical studies. Adopting this paradigm leads to many significant implications. 
Describing wave attenuation by effective moduli allows extrapolating the Gassmann-type 
fluid substitution to nonzero frequencies (e.g., Makarynska et al., 2010; Mavko, 2013). 
By contrast, if we assume frequency-dependent effective densities, fluid-substitution 
equations for them should be different. Upscaling and averaging the effective densities 
would also lead to dramatically different models of equivalent media. Relations 4 
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between the different moduli would no longer be automatic, and the values of M, QP, K, 
and QK reported from laboratory experiments would change. Additional effects of the 
effective density would be in its frequency dependence, differences between the densities 
required to model P and S waves, and similar undesirable consequences. The VE-moduli 
paradigm is also instrumental for the theories of dynamic Poisson’s ratios (Tschoegl et 
al., 2002; Lakes and Wineman, 2006). 

Thus, neither by itself nor as an approximation, the VE model covers the 
variability of internal friction in realistic solids. We therefore need a more general 
formulation that could encompass the VE, poroelastic, and possibly WIFF models and 
allow transitions and comparisons between them. 

Approach 

In this section, we describe a broad class of linear rheologic laws that we call the 
General Linear Solid (GLS). This class contains the Newtonian fluid, models of saturated 
porous rock (Biot, 1962; Bourbié et al., 1987), their VE approximations 
(Carcione, 1998), and also all of the conventional VE models. The formulation also 
includes the models of linear solid viscosity used in earlier studies of wave attenuation 
(Ricker, 1941; Kolsky, 1963; Ben Menahem and Singh, 1981) and acoustic attenuation in 
metals (Landau and Lifshitz, 1986).  

The key point of this approach is that since most of the dynamic variables within 
a composite medium are coupled, the density, elastic moduli, as well as the internal-
friction properties should be represented by matrix quantities. The matrix character of 
inertial, elastic, and pore-fluid effects is recognized in poroelasticity (Bourbié et 
al., 1987; Pride and Berryman, 2003), and we only extend it to include the solid viscosity 
and potentially larger numbers of constituents.  

With the use of the Lagrangian formalism and real-valued physical quantities, the 
above difficulties of preferring the complex moduli over complex densities or 
determining the mutual relations between the moduli disappear. A correspondence 
principle similar to that in conventional viscoelasticity (Ben Menahem and Singh, 1981; 
Lakes, 2009) can still be constructed. This principle also attains a matrix form, in which 
the VE effects are described by the imaginary parts of effective moduli, and the 
poroelastic and (likely) WIFF effects are replaced by imaginary effective densities. The 
resulting model is rigorous, allows transitions between the poroelastic and VE cases, and 
naturally extends to more complex media with multiple internal degrees of freedom. In 
the following subsections, we describe the key elements of the theory. 

Lagrangian continuum mechanics with energy dissipation 

The Lagrangian formalism is one of the most powerful and productive approaches 
to the mechanics of continuous media (Landau and Lifshitz, 1986). Because of its origin 
in the Hamiltonian variational principle, the Lagrangian approach greatly simplifies the 
mathematical formulation. This approach starts by identifying the relevant macroscopic 
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variables describing the deformation of the medium. For fluid or solid substitution in a 
porous medium, such variables are the volume fractions of the respective constituents and 
optionally other quantities that yet remain to be determined: areas of capillary solid-fluid 
contacts, statistical averages of heterogeneity, thicknesses of viscous boundary layers, 
etc.. These state variables are called the ‘generalized coordinates,’ and their time 
derivatives become the generalized velocities.  

The dynamics of an elastic medium is completely described by specifying the 
Lagrangian density as a function of the generalized coordinates and velocities. Note that 
the coordinates and velocities are considered independent, and therefore deformations not 
satisfying the wave equations are also considered. For a linear and isotropic medium, the 
Lagrangian density is a combination of three scalar, second-order, rotational and 
translational invariants: the squared velocity i iu u   and two invariants of the strain tensor: 

 22
1 kkI   and 2 ij ijI   . Two useful forms for this function are (e.g., Landau and 

Lifshitz, 1986; Aki and Richards, 2002): 

                           2,
2 2 2 2i i kk ll ij ij i i ij ij

K
L u u u u

             u u       ,  (5) 

where i = 1, 2, or 3 denotes the spatial dimensions, ij is the strain tensor,   kk  tr  is 
the volumetric strain, 3ij ij ij      is the deviatoric (pure shear) strain, and 

summations over all pairs of repeated indices are assumed. Parameters  and  are the 
Lamé constants, 2 3K     is the bulk modulus, and  is the mass density. All 

medium parameters (,  and ) are real-valued and constrained by relations  > 0, 
K  0, and   0, which guarantees non-negative elastic and kinetic energies (ibid). To 
describe a fluid, we only need to set  = 0.  

The internal mechanical friction (due to fluid or solid viscosity) is described by a 
similar function called the dissipation function or pseudo-potential, D. Unlike the elastic 
energy, D principally depends on the velocities and strain rates. If we assume no internal 
variables (such as pore fluids) and linear internal friction, then similarly to expression 5, 
the dissipation function can only depend on the quadratic invariants of ε (ibid): 

                                      2 2,
2 2

K
ij ij ij ijD 

 
           u u       .  (6) 

This viscosity law (‘rheology’) leads to the Navier-Stokes equations for a Newtonian 
(compressible) fluid or to linear viscosity in a solid.  

The General Linear Solid rheology  

The construction of the GLS model can be viewed as a generalization of the 
matrix form of poroelasticity (Bourbié et al., 1987).  Consider a mechanical continuum 
with N variables. The first of these variables will normally be the observable 
displacement u of the material, whereas others can be the volume fractions of pore fills or 
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some other displacement-like properties. Similarly to equations 5 and 6, consider the 
following second-order forms for the Lagrangian and dissipation function:  

                                              

1
,

2
1 1

,
2 2

T
i i

T T T
i i K ij ij

L V

D 

  

   


u ρu

u du Δ η Δ ε η ε

 

      
  (7)  

where V is the elastic-energy density: 

                                                
1

2
T T

ij ijV  Δ KΔ ε με  , (8) 

and all matrix products are evaluated in the N-dimensional model space. In these 
equations, is the density matrix,  and are the elastic moduli matrices,  and  are 
the corresponding viscosity matrices, and i,j = 1,2,3 denote the spatial coordinates. An 
additional ‘damping’ matrix d is included in D based on the invariant i iu u  , by analogy 

with the kinetic energy in L. This term represents the strain-unrelated mechanical friction 
that may (and therefore also should) arise between the different components of the 
system. Matrices , K, , d, , and  should be symmetric in the space of state 
variables. As in equation 5, each of these matrices should be positive definite. 
Translational invariance of the model (Galileo’s principle) also requires that the element 
d11 of matrix d equals zero.  Because one of the matrices , d, and  can be diagonalized 
by selecting the internal variables, model 7 contains    1 5 2 6 1N N    independent 

mechanical parameters.  

To complete the general description of the model, note that the moduli K and  
are isothermal properties of the material (Landau and Lifshitz, 1986). In empirical 
theories, such moduli are often called ‘relaxed’ because they operate at the state of 
equilibrium (Lakes, 2009). However, moduli K and  contain no relaxation with time. 
Increased values of the effective (empirical) moduli observed in fast transient processes 
or in high-frequency oscillations represent the apparent stiffness resulting from the 
internal friction  and d. Such effects are demonstrated in the following sections.  

Equations of motion 

The equations of motion for the displacement field are obtained from the Euler 
variational derivatives of functions 7 and 8 (Landau and Lifshitz, 1986): 
                                                      i i j ij   ρu du σ  ,  (9) 

where the strain-related (elastic and viscous) stress tensor equals: 
                                         2 2ij ij ij K ij ij    σ KΔ με η Δ η ε   .  (10) 
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As in viscoelasticity (Kolsky, 1963), for harmonic waves, the elastic and viscous stresses 
in equation 10 can be combined, yielding the correspondence principle. 

The general form of the Lagrangian 7 leads to an important observation about the 
GLS systems. Only for matrices  containing a single nonzero element 11, the behavior 
of other variables with J > 1 can be eliminated from equations 9 and reduces to memory 
integrals in time (Deng and Morozov, 2013; also see the last subsection in Applications). 
However, this construction of the density matrix is hardly realistic. For less trivial density 
matrices, the internal variables interact spatially (through terms containing , , , and 
 in equation 7) and lead to additional wave modes analogous to Biot’s slow P waves. 
Therefore, simply specifying some Q() dependence at every spatial point and 
implementing it by a set of massless internal variables should generally be insufficient 
for describing an inelastic system. For example, on the boundaries of a GLS body, one 
has to also formulate boundary conditions for all variables uJ with J = 1,…, N. This 
situation is well known in poroelasticity, in which boundary conditions for fluid flow are 
required in addition to the usual continuity of the displacement and stress. 

Correspondence principle 

The correspondence principle is the basis of the VE model (Kolsky, 1963; Ben 
Menahem and Singh, 1981). For a GLS rheology, this principle also holds but takes a 
different form that can be derived as follows. For a harmonic oscillation at angular 
frequency , all variables u are proportional to exp(-it), and consequently equations 9 
and 10 can be written as an “equivalent” elastic problem: 
                                        *

i j ij ρ u σ , where * *2ij ij ij σ λ Δ μ ε ,  (11) 

in which the (matrix) parameters of the medium are complex-valued and explicitly 
depend on : 

                                 * i


 ρ ρ d , * i  λ λ η , and * i  μ μ η .  (12) 

The replacement of viscosities    *Im η λ  and   *Im η μ  represents the VE 

correspondence principle. Note that the portion of the internal friction described by d 
modifies the density matrix *ρ , which becomes complex-valued (equation 12). This is 
fundamentally different from viscoelasticity, in which the density is always assumed to 
be real-valued (Anderson and Archambeau, 1964). Nevertheless, the case of d  0 
and  = 0 represents the essence of the poroelastic and likely WIFF models. 

Wave modes 

In this section, we derive the dispersion relations (frequency-dependent phase 
velocity and attenuation) for a uniform GLS medium. Consider a plane P wave in which 
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all spatial displacements are oriented in the direction of axis X: 1Jk J ku u  , where the 

upper-case subscript ‘J’ enumerates model variables and the lower-case ‘k’ refers to the 
spatial coordinates. The strain equals 1 1Jik J i ku   , where the prime denotes the spatial 

derivative in X. The equation of motion 9 then simplifies to: 
                                               M    ρu du Mu η u  , (13) 

where 4 3 M K μ  is the (matrix) P-wave modulus and 4 3M K  η η η  is the P-

wave viscosity.  

Further, let the wave be harmonic in time:  
                                              exp i t ikx x    u A  , (14) 

where AJ is the amplitude (including the relative phase shift) of the Jth variable,  is the 
frequency, k is the wavenumber, and  is the damping factor (logarithmic spatial 

decrement of the amplitude). Denoting  2 2k i    , equation 13 shows that the 

wave modes (n) and the corresponding (n) can be obtained from the following 
generalized eigenvector problem: 
                                                     * *n n nρ υ M υ . (15) 

where *
Mi M M η  is the complex matrix P-wave modulus as in equations 12. 

The eigenvector problem 15 has normally N eigenvectors corresponding to the P-
wave modes existing in this medium. For example, in poroelasticity (next section), N = 2, 
and the eigenvectors represent the primary and Biot’s secondary P waves. From the 
corresponding values of , the phase velocity of the wave is obtained:  
                                               phase 1 ReV k   ,  (16a) 

and the energy dissipation factor, defined as  1 2Q k   :  

                                               1 Im 2 ReQ    .  (16b) 

The dependences of these Vphase and Q-1 on frequency are illustrated for poroelastic and 
GLS models in section Examples and for GSLS- and equivalent WIFF media in Part II. 

 With weak dissipation, for an eigenmode n satisfying equations 15 and 16, the 
kinetic and potential energies in equation 7 equal each other. This energy 
equipartitioning (also known as the Rayleigh principle; Aki and Richards, 2002) is useful 
for calculating the amount of dispersion and attenuation in heterogeneous media. As 
shown in Appendix A, for dominant - or d-type friction, analogous equal-energy 
relations give estimates of skin depths and wave diffusivities. 
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Effective moduli 

Since the effective moduli are broadly used in interpretation (e.g., Makarynska et 
al., 2010; Mavko, 2013), it is important to see how they fit in the GLS model. The 
meanings of effective moduli are nontrivial when diffusive waves and mesoscopic 
heterogeneity become significant (e.g., White, 1975; Dutta and Odé, 1979a; Pride and 
Berryman, 2003; Carcione and Picotti, 2006). As a practical aspect of these questions, 
consider whether it is sufficient to characterize the internal friction within a medium by 
only giving its Q (e.g. White, 1965, 1986; Lines et al., 2008, 2014; Tisato and 
Madonna, 2012; Spencer, 2013; Zhu et al., 2013). 

Generally, with N internal variables in a GLS body, N effective moduli for each 
wave mode are required in order to describe its P-wave response. The scalar, empirical 
dynamic moduli represent averages of the combinations of , K, , , , and d for the 
selected wave modes (Appendix A). Thus, scalar effective moduli are wave-mode 
dependent and may be difficult to relate to pure material properties. In contrast to the 
scalar modulus, a matrix effective bulk modulus K* can always be defined for a material 
(equation 12). However, this effective modulus must be used together with the matrix 
effective density. Only taken together, these quantities contain all of the effects of the 
internal friction.  

In summary, the use of effective moduli for describing material properties in 
poroelastic and GLS media with N > 1 can be either complicated or ambiguous and 
insufficient. In such cases, we recommend the direct use of the constitutive matrix 
properties , K, , K, , and d, as illustrated in the following sections and Part II. 

Applications 

Equations 7–8 contain all of the standard VE and poroelastic models. In this 
section, we show how each of these models can be compactly solved in matrix GLS 
form.  

Poroelasticity 

With two variables (N = 2), zero viscosity ( = 0), and appropriately selected 
matrices , K,  and d, equations 7 represent Biot’s (1962) poroelasticity. To obtain the 
poroelastic case, we denote by u1 the observable deformation of the fluid-saturated rock. 
If the porosity  is approximately constant, it is convenient to take the internal variable u2 
as the filtration displacement (relative displacement between the fluid and its unperturbed 
position in host matrix) multiplied by :  2 fluid 1    u w u u . The relations for the 

solid stress tensor ij and the pore pressure p follow from the volumetric potential V in 
relation 8: 

                                                ij
ij

V






, and  
V

p






, (17) 
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where div   w  is the fluid content. For an isotropic medium, V is given by the 
following quadratic form (section 2.2.2 in Bourbié et al., 1987): 

                                        2 21 1

2 2w ij ijV K M M           . (18) 

In our notation (expressions 7), the dilatational and deviatoric strains associated with the 
two displacement fields are  1  , 2   , 1ij ij   , and 2 0ij  . Therefore, relation 18 

is the elastic part of the Lagrangian 7, with matrix moduli: 

                                     UK M

M M




 
   

K   and 
0

0 0

 
  
 

μ . (19) 

Here, U is the undrained bulk modulus of the system with constant fluid content 
(u2 = 0), and parameter M is the pressure that needs to be exerted on the fluid in order to 
increase the fluid content  by a unit value at constant volume (i.e., when  = 0). 
Parameter   [0, 1] is the Biot-Willis coefficient measuring the proportion of the 
apparent dilatational strain caused by variations in fluid content. These parameters are 
related to the bulk modulus of drained rock frame, KD, by: 2

U DM K K    (ibid).  

The kinetic energy density in the poroelastic model equals (ibid): 

                                        
2 2

f
kin i i f i i i i

a
E u u u w w w

 


        , (20) 

where f  is the density of the pore fluid,  denotes the porosity, and a  1 is the tortuosity 
of the pore space. This expression is again contained in the Lagrangian 7, with density 
matrix: 

                                                   
f

f f

a

 

 


 
 
 
  

ρ . (21) 

Biot’s dissipation pseudo-potential equals  2i iD w w    , where  is the pore-fluid 

viscosity and  is the absolute permeability(ibid). This D corresponds to the following 
simple form of matrix d in equations 7: 

                                                     
0 0

0  
 

  
 

d . (22) 

Thus, the system of Biot’s poroelastic equations represents a special case of the 
GLS model 7–9 in which N = 2 and  = 0. Considering larger values of N and nonzero 
matrices  gives natural extensions of Biot’s model to multiple pore fluids (below) and 
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visco-poroelasticity (section Examples).  

Poroelasticity with two fluids  

Several authors considered poroelasticity with two filtration fluids. These models 
can be cast as GLS models with N = 3. For example, Pride and Berryman (2003) derived 
equations governing the linear acoustics of composites consisting of two poroelastic 
constituents. Their approach involved averaging Biot’s differential equations of motion 
with boundary conditions to produce linear equations for the equivalent macroscopic 
deformation field. This model can be compactly written in the form of relations 7, with 
N = 3 corresponding to one macroscopic frame and two pore flows. Note that Pride and 
Berryman’s (2003) equations were obtained in three key steps (equations 28, 33, 40, 

and 43 in that paper): 1) averaging the time derivative of the macroscopic energy, E , 

2) relating E  to the derivatives of an effective strain-energy potential denoted R, and 

3) presenting the stresses and momentum transport (Newton’s equations) by matrix 
relations based on the second derivatives of R. These steps are close to spatial averaging 
(Appendix A) of the poroelastic GLS functions 7.  

Pride and Berryman (2003) also suggested a reduction of their model to an 
equivalent Biot’s model with a single pore fluid (N= 2) when one of the fluids is entirely 
embedded within the other (3  divu3 = 0). The number of degrees of freedom in such an 
equivalent medium is a nontrivial problem considered in Part II. In the GLS formalism, 
this reduction can be performed in an elegant manner by using “Lagrange multipliers,” or 
”source terms” for 3 in the Lagrangian (Landau and Lifshitz, 1986).      

Beresnev (2014) developed a quasi-static model for porous rock saturated with 
two nonviscous fluids with interfacial tension. His model was also based on linearity and 
quadratic invariants of strain tensors, and consequently it also belongs to the class of 
GLS models with N = 3. The equations for stresses in the solid and fluid phases were 
derived from the potential V in equation 8, which was defined similarly to equation 18. 
However, to achieve a single wave equation, Beresnev (ibid) additionally postulated that 
the volumetric deformations (  divu) were equal for all three phases, and assumed a 
mixing law combining the stresses within the phases in a common effective stress, .  
Among other simplifications, this modification led to requiring  = 0 in the solid-fluid 
coupling terms in equation 18. This replaced the three-dimensional wave equation (with 
three eigenmodes in equation 15) with a scalar one, leading to a scalar effective P-wave 
modulus M = /. 

Another useful application of the case N = 3 is the model of rock containing ‘soft’ 
(compliant) and ‘stiff’ porosities (Mavko and Jizba, 1991). These two types of porosity 
differ in that only soft pores drain upon passage of a seismic wave. The amounts of the 
two porosities, soft and stiff, can vary with the imposed effective stress (ibid). In the GLS 
form, the difference between the fluids in stiff and soft pores can be described by the 
density and drag matrices: 
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                      stiff

stiff

soft

soft

0

0

f f

f f

f f

a

a

  

 


 


 
 
 
 

  
 
 
 
 

ρ   and stiff

soft

0 0 0

0 0

0 0

 
 

 
   
  

d , (23) 

with variables u2 and u3 being the volume fractions of fluids occupying the stiff and soft 
pores, respectively. The low mobility of fluids in stiff pores suggests that 

stiff soft    and possibly stiff stiff soft softa a  . Large values of d22 and 22 ‘freeze’ 

the fluid within stiff pores at high (ultrasonic) frequencies, creating the apparent 
‘unrelaxed’ effective modulus and faster wave velocities discussed by Mavko and 
Jizba (ibid). 

Viscoelastic solids 

Inelastic solids (in a broad sense, as media dissipating mechanical energy during 
deformation) are often modeled by “viscoelastic (VE) solids.” Frictional forces within 
VE solids are combined with elastic stresses and attributed to time-dependent VE moduli 
(Lakes, 2009). The time-dependent moduli are often implemented by mathematical 
‘memory variables’ (e.g., Carcione, 1998) or by mechanical systems such as the well-
known linear solids (Liu et al., 1976; Carcione, 2007; Lakes, 2009).  

All VE solids implementable by mechanical systems belong to the GLS 
rheologies. Examples of such models are the commonly used Maxwell, Kelvin-Voigt, 
Burgers, and the Generalized Standard Linear Solid (GSLS). Note that spring-dashpot 
arrangements such as shown in Figures 1 and 2 can be viewed as diagrams of the 
construction of the GLS Lagrangian and dissipation function (equations 7 and 8). To 
describe the deformation of a Maxwell solid, we need to use the usual observable 
displacement u1  u plus one internal variable u2 connecting the elastic and damping 
elements (Figure 1a). Therefore, the material-parameter matrices in relations 7 contain 
two rows and two columns: 

                       
0

0 0

 
  
 

ρ , 
M M

M M

 
   

M , and 
0 0

0 
 

  
 

η , (24)  

where the modulus M (M) denotes any type of the viscoelastic (elastic) moduli, and  
denotes the damping element in Figure 1a. The form of the elastic matrix M shown in 
equations 24 corresponds to the strain (for example, shear) energy equal 

  1 2 1 2 1 1 1 2 2 22ij ij ij ij ij ij ij ij ij ij                         (Figure 1a). Note that this matrix 

resembles the matrix M in poroelasticity (equation 19), although it is much simpler and 
singular (detM  0).  
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For a Kelvin-Voigt solid (Figure 1b), there are no internal variables, and the 
corresponding 11 constitutive matrices are: 

                                    ρ ,  MM , and  η . (25) 

The GSLS (which is the Standard Linear solid with N = 2) is constructed by using 
1L N   internal (or memory) variables (usually, L = 5 or 6 in finite-difference 

modeling; Zhu et al., 2013). The GLS matrices for this solid are (Figure 2): 

              

0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 
 
 

  
 
 
  

ρ





    


, 

2 31

2 2

3 3

0 0

0 0

0 0

N

J NJ

N N

M M M M

M M

M M

M M


   
 

 
   
 
  



M






    


,  (26a)  

                                          and 

1

2

0 0

0 0 0

0 0

0 0 0 N






 
 
 
 
 
 

η



 
. (26b)  

The values of MJ and J are usually selected to achieve Q-1()  const within the 
frequency band of interest (ibid). 

Thus, all practical linear VE solids belong to the GLS rheology. At the same time, 
a comparison of the matrices 24 and 26 for VE models with those for poroelasticity 
(equations 21 and 22) reveals that the VE case is only a narrow subset of the GLS, with a 
quite specific construction: 

1) The VE model disregards the direct ‘drag’ friction (matrix d = 0) caused 
by the differential velocities of the variables.  

2) This model ignores the inertia of all secondary constituents and also the 
kinematic coupling between them, which reduces the matrix  to a single 
nonzero element. This appears to be the most restrictive assumption. By 
contrast, realistic physical systems always exhibit inertial effects.  

3) The GSLS model also ignores the elastic coupling between all of its 
Maxwell bodies (Figure 2). As a result, the modulus matrix M is sparse 
and contains only N nonzero values out of possible N(N+1)/2.  

The sparsity of matrices  and M (relation 26) and d = 0 in a GSLS suggests that 
significantly more general effects can be expected from a similar set of internal variables. 
Some of these effects are examined in Part II.  
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Examples 

For realistic quantitative examples, consider a high-porosity, brine- and gas-
saturated rock with parameters by Dutta and Odé (1979b) (Table 1). These parameters 
correspond to young, unconsolidated Texas Gulf Coast sand near 1600-m depths. Gas 
parameters correspond to methane at these depths. Also following Dutta and Odé (ibid), 
we set the tortuosity equal one and disregard the frequency dependence of the dynamic 
viscosity and permeability. We use the poroelastic parameterization of the preceding 
section (N = 2) extended with solid viscosity. For uniform gas- and brine-saturated 
layers, the phase velocities and Q-1 for the primary and secondary P waves obtained from 
equation 15 are shown in Figure 3. In the examples below, we model the reflections and 
mode conversions of these wave modes at the boundary of these layers by using the 
propagator-matrix method (Appendix B). 

Reflections from a contrast in attenuation 

Reflections from “Q contrasts” such as gas-saturated zones attracted significant 
interest in early studies of seismic attenuation (e.g., Lockett, 1962; White, 1965; Cooper 
and Reiss, 1966; Bourbié and Nur, 1984). Recently, this interest was revived in the 
studies of heavy oil (Lines et al., 2008; Wong and Lines, 2013; Lines et al., 2014). It was 
noted that reflections from a zone of increased Q-1 should be phase-shifted (Lines et 
al., 2008). However, Morozov (2011b) also pointed out a significant uncertainty about 
the magnitude and even the sign of this phase shift. The derivations based on the VE 
theory (i.e., using  *

VEr  in equation 1) predict a negative imaginary shift of the normal-

incidence reflection coefficient from a low-Q medium (Lines et al., 2014): 

                                          
 

1
*

0

2

2 4Q

Z i Z Q i
r r

Z Q
 

 
   ,   (27) 

where Z  V is the conventional acoustic impedance and Z is its small contrast 
between the two media, and it is assumed that 1Q . This prediction implies that by 

means of the complex modulus  *
effM , the “attenuation” produces forces acting on the 

boundary of the two media. Forces of such kind could come from viscosity. However, in 
a poroelastic medium, the surface stress (equation 10) is elastic and the Darcy’s friction 
(represented by matrix d in equation 9) is a body force. Such body-force friction does not 
act on the boundary, and consequently a positive sign of Imr* can be expected (Lines et 
al., 2008; Morozov, 2011): 

                                                    1
*

0 4Q

i
r r

Q
 

  .   (28) 

At the same time, poroelasticity requires an additional condition on the fluid flow across 
the boundary. This boundary condition affects the value of r*, and consequently, the 
values of Q-1 for the two media do not contain the information necessary for evaluating 
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the r*. 

To model the r* in Biot’s poroelasticity, consider a boundary between brine- and 
gas-saturated sandstone layers (Table 1). This problem was solved by Dutta and 
Odé (1983), and by taking advantage of the matrix formulation, we give a different form 
of this solution in Appendix B. The reflection and mode-conversion coefficients for an 
incident primary P wave are contained in the first column of matrix R (Appendix B).   
These coefficients are shown in Figure 4b and compared to the *

VEr  derived by using the 

VE formula 1 (Figure 4a). The exact poroelastic solution and its VE approximation are 
similar for frequencies below the absorption peaks (about 104 Hz; Figure 3b), but above 
the peaks, the r* and *

VEr  diverge strongly. Note that Imr* > 0 at all frequencies 

(Figure 4b), whereas *Im VEr is predominantly negative (Figure 4a).  

Thus, the VE approximation does not accurately predict the reflectivity in a 
layered porous, fluid-saturated medium. The differences between the predictions by the 
exact poroelastic model and its VE approximation are of the same magnitude as the total 
variation of the reflectivity with frequency (Figure 4). These differences are due to the 
secondary P waves. Because of their strong attenuation, secondary P waves are not 
observed within long wave paths within uniform media, but they are present near 
reflecting boundaries, with amplitudes strongly variable with frequency and angles of 
incidence (Dutta and Odé, 1983). Similarly, secondary waves strongly affect the moduli 
and Q-1s measured in cylindrical rock samples in the laboratory (White, 1986; Morozov, 
submitted to Geophysical Journal International).  

Visco-poroelasticity 

In the second example, we add the effects of rock and fluid viscosity to the 
poroelastic predictions (Figure 3). It is likely that along with Darcy’s filtration-flow 
friction, the porous rock frame also exhibits some viscous friction. A popular approach to 
modeling such friction consists in making the drained and undrained moduli in 
relations 19 complex-valued, with frequency dependences corresponding to one or 
several Standard Linear Solids (Mavko, 2009). Carcione (1998) proposed 
phenomenological equations of motion for such a “poroviscoelastic” medium by 
constructing L memory variables to represent the GSLS for the rock frame (Figure 2) 
plus an additional memory variable for poroelastic relaxation. In the GLS form, this 
corresponds to using N = L + 2 variables, with matrices , K, , and d combining those 
of the GSLS (equation 26) and poroelasticity (equations 19, 21, and 22). Similarly to 
relations 26, these matrices are large and sparse when L > 0. As argued above, this 
sparsity and massless variables can be viewed as physical drawbacks (although also 
mathematical advantages) of this model. Therefore, we try an opposite approach that we 
call “visco-poroelasticity”, in which we simply add a solid-viscosity matrix  to Biot’s 
poroelastic model with N = 2. 

The values of solid viscosity for rocks are poorly known. Pride et al. (1992) 
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compiled estimates of bulk viscosity in fluids and gases showing that K can be 2.8–5 
times larger than shear viscosity for water and brine, 2 times larger for air, about 150 
times larger for hydrocarbons, and about 450 times larger for carbon dioxide. For a 
conservative estimate, let us take M = K + 2/3  5 as the bulk viscosity of brine and 
pore gas in our models (Table 1) and assume that this viscosity operates 
(macroscopically) within the pores similarly to its action in the free fluids. For rock, the 
viscosity (and particularly the bulk viscosity) is poorly known. Ricker (1941) estimated 
  3.8106 Pas (3.8109 cP) for sandstone; however this value included the mesoscopic 
effects of fluid-filled fractures. In global seismology, it is believed that K  0 (in the 
form of 1 0KQ  ) for most rocks (Anderson and Archambeau, 1964), although 

Knopoff (1964) also offered evidence to the contrary. To assess the likely range of rock 
viscosities, consider a diagonal bulk-viscosity matrix in equation 15: 

                                                 
brine or gas

0

0 5
M

M




 
  
 

η , (29) 

where we try an arbitrarily small value of M = 0.1Pas (100 cP) as well as Ricker’s 
 = 3.8106 Pas (3.8109 cP). The results of this modeling are shown in panels c and d in 
Figures 5 and 6. 

Even with a very weak solid viscosity of M = 0.1Pas, the behavior of the 
composite material changes significantly at higher frequencies (Figure 5a and b). 
Qualitatively, this behavior of Q-1() is similar to  1

PQ   measured in bitumen sands by 

Spencer (2013), although the variations of Q-1 there are located at lower frequencies, 
apparently because of much higher viscosity of the bitumen. The introduction of 
viscosities also dramatically changes the higher-frequency reflection coefficients 
(Figure 6a and b). As in the preceding section, the VE approximation incorrectly predicts 
the imaginary part of the reflection coefficient * *

VEr r as well as its variations with 

frequency. 

For larger  = 3.8106 Pas, viscosity effects dominate the internal friction, and 
the GLS behaves as a Kelvin-Voigt solid up to about 300–1000 Hz (panels c and d in 
Figures 5 and 6). Above these frequencies, the dispersion and attenuation become 
unrealistically high (Figures 5c and d). At such frequencies (more precisely, strain rates) 
the viscosity should likely become nonlinear and effectively decrease with frequency 
(Coulman et al, 2013). Because the material is predominantly viscous, the VE 
approximation for reflectivity is in this case acceptable below frequencies of about 300–
1000 Hz (compare Figures 6c and d), and conversions to secondary waves are extremely 
weak (gray lines in Figures 6d; note that their values are multiplied by 100 for plotting).  

Above about 300–1000 Hz, significant differences are observed between the 
reflectivities r* in the GLS solution and its VE approximation *

VEr  (Figures 6d and c, 

respectively). Thus, whenever a “poroelastic” effect is significant in a GLS model, the 
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reflectivity *
VEr  inferred by a VE approximation to it appears inaccurate. 

Discussion 

For a given N, relations 7 and 8 give (nearly) the most general form of functions L 
and D for a multiphase, linear isotropic medium. The only simplification made in this 
form is the absence of coupling between the macroscopic bulk () and shear ( ε ) 
deformations. As shown above, because of such generality, the forms 7 and 8 contain the 
entire viscoelasticity and poroelasticity. Similarly, this general form should also contain 
macroscopic descriptions of WIFF mechanisms as long as they satisfy the criteria of 
isotropy and linearity, and a suitable value of N is determined (Part II). 

The unified GLS approach offers substantial methodological benefits. The 
formulation is simple, expressed by instantaneous differential equations and is therefore 
automatically causal. By contrast, causality is a nontrivial issue for frequency-domain VE 
models (Aki and Richards, 2002). The focus on physical internal variables encourages 
specific, detailed analysis of the microstructure and of the processes of internal friction. 
The notions of elastic-energy density and dissipation rates are simple and directly 
correspond to the observed quantities (again unlike in VE, where they represent elaborate 
time-delayed integrals subject to significant uncertainties; see section 2.1 in 
Carcione (2007)). Relaxation of the moduli can be studied under specific experimental 
conditions and not assumed to be purely time-dependent. Finite-difference and other 
numerical algorithms directly follow from the equations of motion and mechanical 
variational principles. The averaging relations (Appendix A) lead to natural 
“homogenization” methods for heterogeneous media. 

For practical applications, the simple GLS model 7–8 requires further 
development in several broad areas, such as: 1) nonlinearity and/or boundary layers to 
explain the dynamic elasticity, viscosity (Coulman et al., 2013), and permeability 
(Johnson et al., 1987), 2) explicit models for WIFF effects in various geometries of the 
microstructure, 3)  capillary effects, and 4) thermodynamic effects. Although each of 
these topics requires extensive studies, they completely fit within the GLS framework, 
similarly to the full range of physical phenomena being captured by the Lagrangian 
formalism (see Landau and Lifshitz (1986) and other volumes of this classic series). 
Replacing empirical frequency-dependent parameters with explicit models based on 
matrix material properties and differential equations would allow closer insights into the 
physical character of deformations, fluid flows, and internal friction. Studies of such 
models are continued in Part II of this paper. 

Conclusions 

An extending of Biot’s approach to fluid-saturated rock, solid/fluid viscosity, and 
matrix medium properties leads to a general linear macroscopic model for wave 
propagation in solids, fluids, and their mixtures. The model called the General Linear 
Solid (GLS) is only constrained by the mechanical principles of linearity, energy, and 
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isotropy. Due to such generality, the model incorporates all results from both 
poroelasticity and the conventional linear viscoelasticity and also allows combining the 
poroelastic and viscoelastic behaviors. Such combined properties should likely be present 
in porous rocks saturated with heavy oil and/or containing wave-induced fluid flows 
(WIFF). Because of its roots in mechanics, the model is free from the complexities of the 
viscoelastic model caused by the reliance on time-dependent material properties.  

An application to poroelasticity shows that the frequency-dependent and phase-
shifted reflectivity between poroelastic media disagrees with the predictions based on the 
conventional viscoelastic relations based on effective moduli. Therefore, for realistic 
media, the viscoelastic approximation may be problematic when analyzing heterogeneous 
media, such as in modeling seismic reflections or interpreting laboratory experiments 
with rock samples. 
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Tables 

Table 1. Physical parameters of brine- and gas-saturated sand used in the 
examples (after Dutta and Odé (1979b) 

Rock 
VP 1500 m/s P-wave velocity of dry matrix 
VS 1000 m/s S-wave velocity of dry matrix 
Ks 35 GPa Bulk modulus of solid grains 
s 2650 kg/m3 Density of solid grains 
 0.3 Porosity 
 9.86923310-13 (1 Darcy) Permeability 
a 1 Tortuosity 

Brine 
Kfl 2.4 GPa Bulk modulus 
fl 1000 kg/m3 Density  
 110-3 Viscosity 

Gas 
Kfl 0.0022 GPa Bulk modulus 
fl 100 kg/m3 Density  
 1.510-5 Viscosity 
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Figures 

 
Figure 1. Spring-dashpot diagram of: a) Maxwell medium, b) Kelvin-Voigt medium. 

Black dots indicate the observable variable (displacement), u1, with the 
corresponding spatial derivative (strain, 1). White dot is the internal variable, u2, 
and the corresponding strain is 2. The spring denotes both bulk and shear 
elasticity, and the dashpot similarly represents both types of linear viscous 
friction.  
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Figure 2. Generalized Standard Linear Solid commonly used in finite-difference 

modeling of seismic waves in VE media. Variable u1 and its gradients 1 represent 
the observable variable, and variables uJ (J = 2…N) are the internal variables 
added to implement band-limited attenuation (Liu et al., 1976). With N = 2, this 
model represents the Standard Linear Solid. 
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Figure 3. Properties of P waves in uniform brine- and gas-saturated sandstone (Table 1): 

a) Phase velocities; b) Attenuation factors. Black lines correspond to brine-
saturated rock, gray lines – to gas-saturated rock. Solid lines correspond to the 
primary modes, dashed lines are the Biot’s (1962) slow modes. 
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Figure 4. Reflection coefficients from a boundary between zones saturated with brine and 

gas (solid black lines – Rer*, dashed black lines – Imr*): a) Evaluated using the 
viscoelastic effective moduli; b) The solution from poroelasticity. Gray lines in 
plot b) show the respective conversion amplitudes to the reflected slow mode. 
Note that the two models are close at low frequencies, qualitatively similar up to 
frequencies of ~104 Hz, and completely dissimilar at higher frequencies. 
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Figure 5. P-wave propagation in fluid-saturated media (Table 1) with bulk solid viscosity. 

The labels and line styles are as in Figure 3. a) Phase velocities for M = 0.1Pas 
in equation 29; b) Attenuation factors for this M ; c) and d) are the same for 
 = 3.8106 Pas.  Black lines correspond to brine—saturated rock, gray lines – 
to gas-saturated rock. Solid lines correspond to the primary modes, dashed lines 
show Biot’s slow modes. 
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Figure 6. Reflection coefficients as in Figure 4 but with additional rock- and fluid P-wave 

viscosities: a) Solution based on the effective viscoelastic moduli inferred from 
the GLS model with M = 0.1Pas (equation 29); b) Reflectivity in the full GLS 
model (equation 15) with the same M; c) and d) are the same for 
 = 3.8106 Pas.  In plot d), the mode conversion amplitudes (gray lines) are 
multiplied by 100. 
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Appendix A: Energy equipartitioning, diffusion, and skin layers 

For a selected eigenmode (n)   (here we drop the superscript for brevity), 
equation 15 in the text gives a relation between the average elastic energy υ Mυ , 

kinetic energy υ ρυ , viscous dissipation  υ ηυ  , and Darcy-type frictional 

dissipation υ dυ : 

                          2 2k i i i         υ Mυ υ ηυ υ ρυ υ dυ , (A1) 

where T υ υ  denotes the Hermitian conjugate. In several limiting cases, this relation 
gives useful energy relations within the wave:  

1) For negligible energy dissipation (  0 and d  0), the kinetic and elastic 
energies in a propagating wave are equal (energy equipartitioning; Aki and 

Richards, 2002):  2 2k i   υ Mυ υ ρυ , and therefore: 

                                                  2 2k i 



 

υ ρυ

υ Mυ
. (A2) 

This gives the standard relation for wave speed: phaseV k    υ Mυ υ ρυ . 

2) For viscosity forces dominant over all others (M  0 and d  0), the wave is 
diffusive, with complex wavenumber:  

                                                  2
k i i 




 

υ ρυ

υ ηυ
. (A3) 

This relation describes a ‘skin layer’ within the material, with the wavenumber 
and logarithmic amplitude decrement being equal each other (Landau and 
Lifshitz, 1987):  

                                              2k     υ ρυ υ ηυ .  (A4)                               

The thickness of the skin layer decreases with frequency: 
                                                         1 1    .  (A5) 

3) For low viscosity and low frequency (  0 and   υ ρυ υ dυ , as in 

poroelasticity), a similar diffusion equation is obtained from Darcy’s law: 

                                                   2
k i i 




 

υ dυ

υ Mυ
. (A6) 
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Appendix B: Transmission and reflection of multi-modal wavefields in 
layered structures 

We model the wave propagation and reflections in a stack of multiple layers by 
using the propagator-matrix method by (Kenentt and Kerry, 1979). This method was also 
used by Pride et al. (2002). Consider a time-harmonic wavefield at frequency  that is 
common to all layers. Within each layer, denote A1 and A2 the amplitudes of the two 
wave eigenmodes and denote k1 and k2 their complex wavenumbers from equation 15. Let 
us use the superscripts ‘+’ and ‘–‘ for the waves traveling in the positive and negative 
directions of axis X, respectively. With this notation, the wavefield at the rear boundary 

of each layer is represented by a four-component vector  1 2 1 2

T

r A A A A   q . At 

the front of the layer, the amplitudes are f rq Pq , where P is the ‘propagator’ matrix: 

                                             

1

2

1

2

0 0 0

0 0 0

0 0 0

0 0 0

ik x

ik x

ik x

ik x

e

e

e

e





 
 
 
 
 
 

P . (B1) 

Let us also denote U the matrix relating the eigenmode amplitudes to the displacements 
on the rear and front boundaries, respectively:  

                          , ,r f r fu Uq , where 
(1) (2) (1) (2)
1 1 1 1
(1) (2) (1) (2)
2 2 2 2

  
    

υ υ υ υ
U

υ υ υ υ
. (B2) 

The negative signs for the backward-traveling modes correspond to the usual convention 
about the positive direction of particle motion P-wave being the direction of wave 
propagation. For the elastic and viscous stresses on the boundaries, we can similarly 
define matrix  from equations 13: 

             , ,r f r fσ Σq , where  
(1) (2) (1) (2)

1 1 2 1 1 1 2 1
(1) (2) (1) (2)

1 2 2 2 1 2 2 2

M

k k k k
i i

k k k k


 
   

 

υ υ υ υ
Σ M η

υ υ υ υ
. (B3) 

We can then combine the displacements and stresses in a single boundary-condition 
matrix B: 

                                          ,

,
,

r f

r f
r f

 
 

 

u
Bq

σ
, where 

 
  
 

U
B

Σ
. (B4) 

The boundary condition between the layers requires continuity of both 
displacement and stress. Let us assume that the fluid can freely flow across the boundary, 
which means that the pore pressure is also continuous. From relation B4, this boundary 
condition for layers 1 and 2 is: 
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                                                         1 1 2 2
f rB q B q , (B5) 

where the superscripts ‘j’ are the layer numbers. The case of an impermeable boundary 
between the layers ( 1 2

2 2 0u u  ) can be treated analogously and shows a distinctly 

different behavior (Part II). 

Using this boundary condition between layers j = 1 (brine) and j = 2 (gas), we can 

express 1
fq  through the field in the next layer: 1 2

f rq Bq , where   11 2
B B B . Let us 

consider a wavefield traveling in both directions within layer 1:  1 1 1 T

f
 q A A  but 

only forward within layer 2:  2 2 T

r
q A 0 , where superscripts ‘+’ and ‘–‘ denote the 

modes traveling forward and backward, respectively. By partitioning the matrix B into 
22 blocks, we have:   

                                               
1 2

1

   

  

     
     

     

A B B A

A B B 0
. (B6) 

From the first row of this equation, we obtain:   12 1  A B A , meaning that the 

(matrix) transmission coefficient equals   1T B . The forward- and backward-

traveling modes within layer 1 should be related by the reflection matrix R as 
1 1 A RA , and therefore: 

                                                   1   R B B B T . (B7) 

Matrix R contains all reflection and mode-conversion coefficients on the boundary.  
 


