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Abstract 

Many wave-propagating media important for seismic exploration support 
secondary P waves. The most important types of such media are porous rocks with wave-
induced fluid flows. Although difficult to isolate, secondary waves produce significant 
effects in the presence of any heterogeneity, such as for predicting the seismic reflectivity 
and empirical moduli measured in rock samples in the laboratory. The conventional 
concept of the viscoelastic modulus does not account for secondary waves, but the 
General Linear Solid (GLS) framework described in Part I of this paper yields a 
consistent and rigorous approach. In the present Part II, this approach is applied to two 
types of effective media. First, for a rock consisting of alternating thin sandstone layers 
saturated with brine and gas, the effective medium exhibits not only viscoelastic 
(viscosity) both also fluid-friction (Darcy) properties. The effective-medium model 
predicts the velocity dispersion and attenuation for both the primary and secondary 
waves. Effective-medium relations can be derived in a (relatively) closed form for the 
density and elasticity, but not for the parameters of internal friction. Notably, the 
effective elastic bulk modulus (responsible for low-frequency P-wave velocity) is 
significantly lower than the lower-bound (Reuss) average of the moduli of the constituent 
rocks. In the second example, a Generalized Standard Linear Solid effective medium is 
considered. This model is broadly used for modeling attenuation in seismic waveform 
simulation software. From the GLS point of view, some (petro)physical significance 
should be allowed for the internal (such as memory) variables. Inertial effects and 
interactions between these internal variables cause secondary wave modes with variable 
dispersion characteristics. Overall, to explain the wave propagation and reflections in 
heterogeneous media, realistic effective-medium models need to account for both the 
primary and secondary wave modes and also for both viscous- and fluid-friction effects.  
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Introduction 

In Part I of this study (Morozov and Deng, submitted to Geophysics), we 
described a common framework for describing the linear viscoelasticity, poroelasticity, 
and macroscopic wave-induced fluid flows (WIFF). The approach is based on 
Lagrangian formulation of continuum mechanics, which is well known in theoretical 
physics (Landau and Lifshitz, 1986) and formed the basis of Biot’s (1962) poroelasticity. 
The framework, which we call the General Linear Solid (GLS), describes the mechanical 
properties of the medium by a minimal set of ‘observable’ and ‘internal’ macroscopic 
variables, which are governed only by the fundamental principles of energy, linearity, 
and symmetry. The specific choices of the variables, the character of their interaction, 
and the properties of energy functions involved needs to be determined from the specific 
physical mechanisms. These mechanisms are determined at the microscopic or 
mesoscopic scales and depend on the character of mineral assemblage, granular structure, 
porosity, fracturing of the rock, presence of fluids, etc.. In the present Part II, we focus on 
applying the GLS approach for constructing effective (i.e., macroscopically-averaged) 
media. 

Practical seismology is mostly interested in heterogeneous media and bodies of 
finite dimensions, such as layered rock sequences in the field or small rock samples 
measured in the lab. When approaching a heterogeneous medium, it is important to first 
consider the question whether the conventional description of its mechanical properties 
by a pair of constitutive parameters (density + effective viscoelastic modulus) is sufficient 
and accurate. As shown in Part I, for poroelastic and likely most WIFF media, the answer 
to this question is negative. The reliance on the moduli leads to quantitatively incorrect 
predictions of reflectivity within layered poroelastic media. The Darcy-type friction is 
fundamentally different from both viscosity and elasticity (as a body force differs from a 
divergence of stress), and these mechanisms lead to different properties of reflectivity. In 
a layered poroelastic rock, P-wave reflections result from interactions of two waves 
(primary and secondary, Biot’s), which cannot be modeled by a single viscoelastic 
modulus. Dutta and Odé (1979a) showed that such secondary waves also exist in 
effective WIFF media with patchy saturation. Similarly, both the primary and secondary 
modes contribute to the dynamic moduli measured in small samples in the lab (Morozov, 
submitted to Geophysics).  

To further emphasize the role of heterogeneity, note that poroelasticity represents 
an effective-medium model, in which an elastic rock is mixed with a fluid that is elastic 
with respect to bulk deformation and viscous with respect to shear. Despite both of these 
constituents being purely viscoelastic (i. e. described by complex-valued moduli), the 
resulting effective medium exhibits Darcy friction but no viscosity (Biot, 1962). This 
suggests that Darcy-type friction may naturally arise when multiple constituents are 
combined to form an effective medium. In such cases, the simple viscoelastic (density + 
modulus) approximation should be insufficient. Nevertheless, the more general GLS 
model contains all isotropic linear cases (with the usual assumption about decoupled 
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shear and bulk deformations; Part I). 

In the present Part II, we extend the GLS concept to effective media. The 
approach is based on the idea that all four constitutive properties (density, modulus, solid 
viscosity, and Darcy friction) become “effective”, i.e. averaged when multiple 
constituents are replaced with a macroscopically-uniform effective medium. Each of 
these properties is represented by a matrix, and therefore the resulting model is 
substantially more multivariate and complex, but also more complete and accurate than 
the viscoelastic approximation. An additional nontrivial question arises about the number 
of degrees of freedom (internal variables) necessary for an adequate description of the 
effective medium. At the same time, the constitutive properties of the GLS contain no 
time/frequency dependences, which is much simpler than the viscoelastic moduli (Part I).   

The key observation of this paper is that because most realistic physical models of 
wave propagation contain secondary P waves (such as diffusive, fluid, or 
inhomogeneous), these waves must be important when modeling heterogeneous media, 
i.e. for practically all cases of interest. Even though the secondary waves may be difficult 
to isolate experimentally, they nevertheless contribute to reflectivity and measurements 
with small samples in the lab (Part I; Morozov, submitted to Geophysics). Consequently, 
successful effective-media models should reproduce not only the primary mode but also a 
sufficient number of secondary modes. This can be achieved by using the GLS 
formulation with the total number of variables N > 1. To illustrate such effective media 
quantitatively, we consider two groups of models: 

1) Effective media produced by fine layering of poroelastic materials (Part I); 
and  

2) Effective media extending the concept of the Generalized Standard Linear 
Solid (GSLS; Lakes, 2009).  

The first of these models is often used as a simple example of WIFF (White, 1975; 
Gurevich et al., 1997). As mentioned above, if this model is intended, for example, for 
predicting seismic reflectivity, it cannot be limited to a reproducing a frequency-
dependent effective modulus but should be of the more general “poro-viscoelastic” type 
(Part I). 

The second model above (GSLS) is broadly used to explain the band-limited, 
near-constant Q-1(f) observed within the Earth (Liu et al., 1976) and to implement 
attenuation in seismic waveform simulation software (e.g., Zhu et al., 2013). An 
attractive feature of this model is its ability to simulate seismic wave attenuation without 
considering its mechanisms, which are replaced by constructing a sufficiently complex 
GSLS.  However, is this replacement always adequate? In the time domain, modeling a 
GSLS-type medium is implemented by a set of internal or “memory” variables (ibid), and 
therefore, the GSLS represents a special case of the GLS (see Part I). However, the GLS 
point of view also suggests that the physical meanings of these mathematical variables 
can (and apparently should) still be considered. Once some physical significance is 
allowed for the internal variables, it becomes necessary to also consider the possible 
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inertial effects and interactions associated with these variables. The presence of inertial 
effects would lead to more complex wavefields containing additional wave modes 
analogous to Biot’s waves in fluid-saturated porous rocks. As above, the secondary wave 
modes should likely be nt seen in uniform media but important for modeling reflections 
and transmissions on heterogeneities, i.e. in practically all cases of interest in exploration 
seismology.  

Effective GLS media 

The mechanical properties of a GLS medium are described by six constitutive 
matrix properties , K, , , , and d, which are the density, bulk and shear elasticity, 
bulk and shear viscosity, and Darcy’s friction, respectively. As shown in Part I, by setting 
some of these matrices equal zero, we obtain the elastic solid, Stokean or Newtonian 
viscous fluid, all types of viscoelastic solids, and Biot’s (1962) saturated porous solid. 
These matrices form the Lagrangian (L) and dissipation function (D) densities 
(equations 5 and 6 in Part I): 

                                           

1 1
,

2 2
1 1

,
2 2

T T T
i i ij ij

T T T
i i K ij ij

L

D 

   

   


u ρu Δ KΔ ε με

u du Δ η Δ ε η ε

   

      
  (1)  

where u is the hitherto arbitrary displacement field including both the observable 
deformation and internal variables such as the pore-fluid displacement in poroelasticity, 
and  and  are the corresponding strains. Let us denote the number of components in u 
by N. 

As shown in Part I, the connection between the physical properties of the medium 
and the dispersion and attenuation of a wave in it lies in the following generalized 
eigenvector problem (equation 19 in Part I): 

                                              n n
M

i
i 


    
 
ρ d υ M η υ , (2) 

where  is the wave frequency, and M and M denote some appropriate combinations of 
the elastic moduli and viscosities, such as the P-wave modulus. The complex 
eigenvalue  contains the phase velocity and attenuation: **

phase 1 ReV k   ,and 

eigenvector  nυ contains the information about the internal polarization of the nth mode 
(generally, n = 1…N). 

In a micro- or mesoscopically heterogeneous medium, the displacements, strains, 
and consequently functions L and D are highly spatially heterogeneous. Functional 
derivatives of L and D in equations 1 completely determine the dynamics of the system 
(Part I). For the kinetic and elastic-energy terms in relations 1, these derivatives can be 
evaluated independently of the other terms. Consequently, when replacing a 
heterogeneous medium with an effective one (uniform at scales shorter than the 
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macroscopic wavelength), we must ensure that these terms in the functional forms 1 are 
preserved for the appropriate deformation: 
                            T TΔ ρΔ Δ ρΔ    , T TΔ KΔ Δ KΔ , and T T

ij ij ij ijε με ε με    ,  (3) 

where the underbars indicate the quantities in the smoothed effective medium. 
Equations 3 can be described as “homogenization” of the medium. Clearly, if these 
equations can be satisfied for any deformation by choosing the appropriate ρ , K , and μ , 

the macroscopic behavior of the effective medium would be identical to that of the 
original medium. However, with regard to the frictional parameters d , Kη , and η , the 

situation is more difficult, as discussed below. 

Number of degrees of freedom 

The parameter matrices ρ , K , and other should contain sufficient numbers of 

rows and columns to represent the relevant degrees of freedom in the effective medium. 
This number of degrees of freedom depends on the microstructure and can be variable 
and difficult to determine. For example, within porous saturated rock, both the solid and 
fluid phases have N = 1 and can deform independently. Consequently, the effective 
poroelastic medium contains N = 2 degrees of freedom and supports two P-wave modes. 
Similarly, in a porous rock with two types of patchy saturation (for example, oil and 
brine), each of the phases has N = 2 and generally, we can expect N = 4 and four P-wave 
modes in the effective medium. However, if there exists a distinct boundary between the 
two phases, such as in subsection Wave-induced fluid flow (WIFF) below, the number of 
resulting modes reduces to N = 2. If the solid frame can be treated as uniform and the two 
constituents of the mix only differ by saturation with different fluids, then we would 
have N = 3.   

For a tractable description of an effective medium, we need to approximate it with 
lower number of degrees of freedom. The acceptable value of N can probably be judged 
by the number of wave modes with significant amplitudes generated on boundaries and 
heterogeneities. For example, if we are only interested in wave propagation in a uniform 
medium, than a single P-wave mode (the fastest and lowest-attenuation) could be 
sufficient, and consequently we could use N = 1. This is the conventional approach using 
the scalar effective modulus and density. However, if reflections are of interest, the 
second, ‘slow’ mode is significant near the reflectors and free boundaries (Part I). In such 
cases, N = 2 appears to be the necessary minimum.  

Thus, we argue that in order to be realistic, the effective medium containing pore 
fluids must support at least two P-wave modes. This means that the kinetic, elastic, and 
dissipation properties of the effective medium must be represented by 22 GLS matrices. 

Homogenization relations for  and K 

Homogenization relations for effective media, such as the Gassman’s fluid 
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substitution law or Terzaghi’s principle, require certain models of the microstructure and 
specific meanings of the field variables u. In the GLS model, the derivation of the 
homogenization equations for density () and bulk modulus (K) can be made by 
considering several independent types of deformations (even hypothetical) applied to the 
material and requiring that the effective medium reproduces the kinetic and elastic 
energies of all these deformations. If such a replacement can be achieved, all 
macroscopic equations of motion (arising entirely from the energy forms 1; Part I) will 
correctly reproduce the propagation of long waves in the original medium. As shown in 
Appendix A, for poroelasticity, this approaches yields the equations for the 22 density 
matrix, bulk rigidity matrix, and Gassmann’s fluid substitution equations (Bourbié et 
al., 1987).  

Consider a mixture of Nm poroelastic materials each having N = 2 and obeying 
GLS relations 1. We will replace them with a smooth effective medium also obeying the 
same relations. The distribution of the mixed media can be heterogeneous and ‘patchy’ 
on the microscopic or mesoscopic scales, i.e. short compared to the shortest wavelength. 
As in a 1-D numerical example in the next section, let us assume that each of these 
materials occupies a certain volume fraction fj of the rock (where j = 1..Nm is the number 
of the material) and is in equilibrium with adjacent areas. These requirements reduce the 
number of degrees of freedom in the effective medium to N = 2. 

Let us denote uj the displacement of the jth constituent of the compound and u  the 
locally-constant average displacement of the effective medium. The difference between 
these displacements: j  u u u  is quickly variable in space with zero mean: 0 u . 

To determine the effective density, let us conduct a thought experiment by deforming the 
body with an arbitrary and macroscopic rate u . The average kinetic energy (in relation 1) 
is: 

                              
1 1 1

2 2 2
T T T

kin i i i i i iE    u ρu u ρ u u ρu      .  (4) 

The local spatial average of the density in the first term in this expression is the Voigt 
average of the densities of the constituents:  

                                                         
1

mN
j

j
j

f


 ρ ρ .  (5) 

The second term in expression 4 is more difficult to evaluate, but its general character 
can be understood from an analogy with poroelasticity. If the deformation of the medium 
involves fluid flowing around micro- or mesoscopic heterogeneities (such as the grains 
formed by the constituents), the average flow velocity will be proportional to u . This can 

be written as  1T T
i i a   u u u u    , where a is analogous to the tortuosity of the pore 

space (Appendix A). Therefore, the second term in expression 4 can be written as 
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T T
i i i a i  u ρu u ρ u    , where a is the contribution to the effective density from  the 

tortuosity of the mesoscopic flow. This matrix depends on the structure of the compound 
and is likely very difficult to determine analytically. At the same time, numerical 
modeling of this quantity appears relatively straightforward.  

For an arbitrary u , the expression 4 should equal the kinetic energy of the 

effective medium:   2T
kin i iE  u ρu   . Therefore, the effective density equals: 

                                                      
1

mN
j

j a
j

f


 ρ ρ ρ .  (6) 

The difference of the effective density ρ  from the simple average 
1

mN
j

j
j

f

 ρ  is similar to 

poroelasticity, in which the relative movement of pore fluids modifies the effective 
density experienced within a wave from    to  1 fa   , where f is the density of 

the pore fluid and a is the tortuosity (Bourbié et al., 1987, p.71; also see Appendix A).  

To determine the (matrix) effective bulk modulus, we use the parameterization 
from poroelasticity (equation 29 in Part I; Bourbié et al., 1987): 

                                                   
fK M

M M




 
   

K   . (7) 

As shown in Appendix A, the three parameters fK , M , and   in this expression can be 

determined by considering three different shapes of static deformations and equating the 
elastic energies of the small-scale structure and effective medium. Such deformations can 
be selected as (Appendix A): 1) a closed-system compression with zero fluid flow; 2) an 
open-system deformation with empty pores; and 3) a compression with zero effective 
pressure. The effective modulus  fK  is the “wet” rock modulus measured in the first of 

these experiments. This modulus should be related to the corresponding modulus of the 
constituent materials by some type of average depending on the geometry and other 
properties of the grains. We use the following generalized average: 

                                                     
1

1

1

mN

f j f j
j

K f K






 
  

 
 .  (8) 

With  = 1, this is the Reuss average that should be appropriate an iso-stress model of the 
compound similar to that in the next section. However, as illustrated in the section 
Examples, the effective fK also depends on the boundary conditions between the 

constituents, and the lower-bound average 8 still overestimates the fK . To compensate 

this overestimation, we use an empirical factor . The dry effective modulus and the 
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effective modulus of the fluid can similarly be approximated by Reuss averages: 

                                    1 1
0 0

1

mN

j j
j

K f K 



   and 1 1

1

mN

fl j fl j
j

K f K 



  .  (9) 

The parameters   and M  in matrix 7 can be obtained from these averages by using 

relations inferred from the above three experiments with the compound medium 
(Appendix A): 
                                                           01 sK K   , (10) 

                                                          2
0 fM K K   .  (11) 

Homogenization of internal friction  

Apparently no homogenization equations similar to those for ρ  and K  in the 

preceding section can be derived for the effective internal-friction matrices Kη  and d in 

the effective media. Note that the closed-form equations for ρ  and K  above are possible 

because there exist deformations sensitive to only kinematic or elastic effects. By 
contrast, in any deformation of a heterogeneous medium, the effects of  and d are 
always coupled among themselves and also with those of the density and elasticity. 
Therefore, for example, the effective viscosity Kη would also contain contributions from 

d and K, and also depend on the form of the deformation. These observations differ from 
the conventional viscoelasticity, in which it is assumed that the dynamic (frequency-
dependent) moduli obey all relations for the elastic moduli, including the homogenization 
relations (Makarynska et al., 2010; Mavko, 2013).  

If d  0 (in which case the GLS is a linear, purely viscoelastic medium, the 
effective viscosity matrix can be constructed from the correspondence principle (Part I). 
The elastic and viscous responses for both the original and effective media can be 
combined in a symmetric 22 matrices *

Ki K K η . It appears reasonable to 

speculate that the corresponding viscosity parameters can also be incorporated in the 
observable moduli Kf, K0, and Kfl in equations 8-11, and complex-valued parameters *

fK , 
*  and *M can be evaluated from them. Then, the effective complex modulus becomes, 

similar to equation 7: 

                                         
* * *

* * *
f

K

K M
i

M M





 

    
K η . (12) 

As the effective elastic modulus K is given by equation 7, Kη  can be found from this 
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relation. However, this derivation is still strongly limited, because it makes Kη frequency-

dependent and is only valid under two approximations: 1) linearity of viscosity, and 
2) absence of Darcy friction. Both of these approximations are likely violated in practical 
cases.  

Because of the above difficulty of finding the effective parameter matrices  and 
d for realistic cases, we propose deriving them empirically, by fitting the frequency-
dependent velocity dispersion and attenuation for the available wave modes. This 
approach is illustrated on the first numerical example in the following section. 

Examples 

Wave-induced fluid flow (WIFF)  

WIFF effects occur in a medium containing ‘mesoscale’ heterogeneities with 
contrasting pore-fluid contents, such as brine and gas. Upon passage of a seismic wave, 
fluid flows between these heterogeneities cause characteristic, often lower-frequency and 
higher-magnitude peaks in the wave-energy dissipation. White (1975) modeled such 
effects in a spherical gas-saturated rock enclosed in a spherical brine-saturated shell. This 
model was later improved by Dutta and Odé (1979a) and used in many recent studies 
(e.g., Carcione and Piccotti, 2006; Müller et al, 2010). We also consider this example in 
one dimension, in an infinite sequence of plane, alternating gas- and water-saturated 
layers oriented orthogonally to the direction of P-wave propagation (Figure 1). Each 
layer is governed by the equations of poroelasticity, which means a GLS with N = 2, 
  0, and constitutive matrices , K, and d given in Part I. Layer thicknesses Hi and H2 
are considered small compared with the wavelength. Layered stochastic models of such 
kind were studied by Gurevich et al. (1997), who approximately separated the 
poroelastic, scattering, and fluid-flow effects. We give an exact, numerical solution to 
this problem, which can also be readily applied to a more complex and random layering.  

Using the propagator method for poroelastic layering described in Part I, the 
wavefield in any layer can be related to those in the adjacent layers. We denote the 
wavefield at the rear boundary of each layer by a four-component vector 

 1 2 1 2

T

r A A A A   q , where the subscripts J = 1, 2 of the amplitudes JA  

correspond to the variables of the poroelastic displacement, and superscripts ‘+’and ‘–‘ 
denote the wave modes in equation 2 propagating forward and backward, respectively. 
Using this vector in layer j, the wavefield in the next layer can be expressed as  
                                                            1j j j

r r
 q S q , (13) 

where    11j j j jS B B P  , Pj is the propagator matrix within the layer (equation 38 in 

Part I), and matrix Bj expresses the boundary condition between layers j and j+1 
(equation 41 in Part I). By applying this procedure across two layers, we obtain a relation 
between the fields in the first and third layers:  
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                                                            3 13 1ˆ
r rq P q , (14) 

where 13 2 1ˆ P S S . Because of the periodicity of the structure, the amplitudes within 
layer 3 are proportional to those in layer 1: 
                                                           3 1

r rq q , (15) 

which means that  is an eigenvalue of matrix 13P̂ . Macroscopically (when averaged 
over scale lengths much longer than the thicknesses of the layers but shorter than the 
wavelength), this wavefield represents a harmonic wave with exponentially decaying 

amplitude. The eigenvalue  can be written as  *
1 2exp ik H H     , where k* is the 

complex wavenumber of the macroscopic wave:    * 1
phase 1 2k V iQ   . Therefore, 

propagation parameters for the effective wave equal: 

                              *

1 2

lni
k

H H





, phase *Re

V
k


 , and 

*
1

*

2 Im

Re

k
Q

k
  .   (16) 

With N = 2, the 44 matrix 13P̂  has four eigenvalues corresponding to the ‘fast’ 
(primary) and ‘slow’ (secondary) waves traveling in two directions of axis X. For a stack 
of alternating brine- and gas-saturated layers of 1-cm thickness, with parameters given in 
Table 1, the velocities and attenuation factors of these waves calculated from relations 15 
and 16 are shown in Figure 2. The calculations in this Figure were conducted up to the 
frequencies at which the slow-mode wavelengths became short enough to cause aliasing 
when evaluating the wavenumber 16. This restriction of the frequency agrees with the 
approximation of small-scale layering adopted in this modeling. 

As expected, the effective medium generally behaves as a poroelastic one, with 
the primary (‘fast’)  P wave having a near-constant velocity of about 1460 m/s to about 3-
kHz frequency, after which the velocity increases (Figure 2a). These frequencies 
correspond to the position of the poroelastic effect in gas-saturated sandstone (Figure 5 in 
Part I). The slow effective wave emerges at lower frequencies of ~100 Hz (Figure 2a). 
Note that the increase in the ‘slow’-wave velocity occurs at significantly lower 
frequencies than the dispersion of the ‘fast’ effective wave, and at the same frequencies, 
the attenuation of the ‘fast’ wave increases. Both of these increases affect seismic 
reflections (Part I). The ‘slow’ wave in the effective medium is diffusive above ~1 kHz, 
where its Q < 1 (Figure 2b).  

Note that both the ‘fast’ and ‘slow’ effective P waves contain all four forward- 
and backward-directed modes within the brine- and gas-saturated layers. Figure 3 shows 
the amplitudes of these modes relative to the rock displacement (component u1) of the 
effective wave. For the ‘fast’ effective wave (Figure 3a), the relative fluid motion 
(component u2) within these modes increases with frequency, whereas in the ‘slow’ 
effective wave, the fluid motion decreases with frequency (Figure 3b). 
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Notably, even the lower-bound estimate for fK given by relation 8 with  =1 

significantly overpredicts the primary P wave velocity at low frequencies (about 1687 
m/s compared with the actual 1459 m/s; Figure 2a).  For comparable thicknesses of the 
gas- and brine-saturated layers, the effective velocity is near constant (Figure 4a) despite 
the variable values of fK . The correction factor  in relation 8 is therefore below one 

and near-linearly increases when the relative thickness of the gas-saturated layers fgas 
exceeds about 0.1 (Figure 4b). The above effects occur because the pore fluids flow 
between the brine- and gas-saturated layers in this model (note that this is similar to the 
previously discussed models, such as by White (1975 and Dutta and Odé (1979a,b)). If 
the layers are insulated so that the pore fluids do not cross their boundaries (the second 
boundary condition shown in the inset of Figure 1), then a similar modeling (Appendix 
B) shows that the velocity at low frequencies is correctly predicted by the Reuss average 
of the modulus 7, with  = 1 (Figure 2a). The attenuation is extremely low this case, 
because the pore fluids are effectively “frozen” by the zero-displacement boundary 
conditions on both boundaries of each layer.  

To evaluate the parameters of internal friction, we use a simple Monte-Carlo 
search method to fit both the velocity dispersion and Q-1 curves for both wave modes. 
The effective density is taken in the form 5 and the effective bulk modulus in the form 7, 
with parameter  = 0.63 (Figure 4b) selected to satisfy the velocity limit at low 
frequencies (Figure 2a). As in poroelasticity, the effective Darcy friction matrix is taken 
in the form: 

                                                          
0 0

0 d

 
  
 

d . (17) 

where the variable d is randomly drawn from the interval [0,2brine/],where the viscosity 
of pore brine brine and the permeability  are given in Table 1. The solid bulk viscosity 
matrix is taken in the form  

                                                      1 3

3 2
K

 
 

 
   

η , (18) 

where 1, 2,and 3 are randomly drawn from the interval max0,2 fK    , where max is 

the largest modeling frequency. Such scaling of the parameters allows sampling the 
ranges around the characteristic levels of viscosity and Darcy friction. Negative signs of 
the matrix elements –3 are suggested by the expectation that viscous coupling between 
the rock and its pore fluid should be reduced when they move in the same direction 
(analogous to the negative elastic coupling in relation 7). Cases with det 0K η  are 

rejected from the modeling, as required by the positive definite nature of all constitutive 
matrices (Part I). 

The quality of fitting the phase-velocity and Q data predicted by detailed 
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modeling of the layered structure is measured by an L1 norm evaluated for the logarithms 
of the complex wavenumbers k* for both ‘fast’ and ‘slow’ modes: 

                          * * * *
 Data  Dataln ln ln ln lnfast fast slow slowk k k k d      . (19) 

Here, *
 Datafastk  and *

 Dataslowk  are the wavenumbers modeled within the layered structure 

(Figure 2), and *
fastk  and *

slowk are the wavenumbers within the uniform effective medium. 

Using lnk* in the above objective function allows treating the real and imaginary parts 
of k* symmetrically and also equalizes the contributions from the two modes, for which 
the absolute values |k*| differ by several orders of magnitude. Using d(ln) boosts the 
sampling of the low-frequency part of the spectrum during integration, similar to the 
visual presentation in Figure 2. Note that in the expression 19, the values of k* can be 
replaced with complex phase velocities * *

phaseV k , and therefore fitting by using 

norm 19 can also be viewed as fitting phaselnV and Q-1 simultaneously. 

By testing 5105 random combinations of the four variables above, we obtain a 
solution minimizing the objective function  (Table 2). The velocity dispersion and 
attenuation curves predicted by such GLS rheology are shown by dashed lines in 
Figure 2. As seen from this Figure, both the velocities and attenuation are fit reasonably 
closely, although some deviations still remain. Most importantly, both the ‘fast’ and 
‘slow’ P-wave modes are reproduced by the GLS model. 

Band-limited near-constant Q(f)  

In this section, we consider another type of “effective” medium, i.e. a medium in 
which the possibly complex microstructural interactions are replaced with an equivalent 
GLS model. This model is broadly used to implement a band-limited near-constant Q for 
seismic waves, such as in finite-difference simulations (Zhu et al., 2013). Media with 
prescribed Q(f) spectra are typically implemented by mathematical models equivalent to 
the Generalized Standard Linear Solid (GSLS; Figure 4). As shown in Part I, the GSLS 
represents a special case of the GLS given by the following relations (equation 37 in 
Part I): 

      

0 0

0 0

0

0 0 0

 
 
 
 
 
 

ρ


 

  


, 
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2 2 0 0

0 0

0 0

N

J NJ

N N

M M M

M M

M M


  
 

   
 
  


M



 
, 

1

2

0 0

0 0 0

0 0

0 0 0 N






 
 
 
 
 
 

η



 
, (20)  

and d = 0. The moduli MJ and viscosities J of the Maxwell-solid chains (Figure 4) are 
selected to form the desired spectrum of relaxation times (Liu et al., 1976). The structure 
of parameterization 20 is specific and leads to a peculiar character of the wave mode 
spectrum. For example, with five Maxwell’s bodies (i.e., the total number of variables 
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N = 6) with parameters shown in Table 3, the eigenvalue problem in equation 2 yields 
only one nonzero eigenvalue. The resulting phase velocity and Q-1 spectra are of the 
well-known shapes shown in Figure 5.  

In contrast to the primary mode (Figure 5), the remaining five eigenmodes of the 
GSLS have zero eigenvalues, which are caused by zero mass densities assigned to the 
internal variables (white circles in Figure 4 and matrix  in equation 2). Zero densities 
mean that the kinetic energy for the internal variables is identically zero, which causes 
them to behave as ‘memory variables’, i.e. be uniquely expressed through the preceding 
history of the observed strain (Deng and Morozov, 2013). However, if we seek some 
physical phenomena occurring behind this memory process, massless variables appear 
highly problematic. Real physical processes always possess kinetic energy. It is therefore 
interesting to check how an introduction of small densities for the internal variables 
would affect the predicted dispersion and Q-1 spectra.  

The GSLS model contains a relatively large number of internal variables 
connected in a specific pattern with most coupling parameters set to zero (relations 20). 
This model can be altered in many ways. To illustrate the effects of internal density, we 
only try adding equal diagonal elements to the density matrix: JJ = a1, where 1a   
and J = 2…N. For a > 0, additional P-wave modes appear. Similarly to the poroelastic 
case, we can identify the primary P-wave mode with the one having the largest 
‘observable’ displacement u1. The near-constant spectra of Q-1(f) for the primary mode 
are achieved by progressive ‘freezing’, with increasing frequency, of the internal 
variables containing lower damping factors (Table 3). This freezing increases the 
attenuation at frequencies J J JM  (Figures 6a and c). 

There exists an important dividing case a = a0 for which the ratios of the moduli 
to the densities are equal in all Maxwell’s bodies: 1 2 ,...,J J J N

M M 


  (Figure 4). In 

this case, the internal variables are not excited by the primary wave, and the wave is 
nondispersive and attenuation-free. For the GSLS with parameters given in Table 3, this 
case corresponds to a0 = 0.015. Note that this is a relatively small value of the order of 
the dissipation rate (Q-1) of the original GSLS.  

For values of a below and above a0, the effects of density are different. For a < a0, 
Q-1(f) of the primary mode is near-constant and decreases with a, and the velocity 
dispersion is positive. The secondary modes in this case are faster than the primary Vphase, 
as suggested by their larger MJ/J ratios. This case is illustrated by selecting a = 0.01 in 
Figures 6a and b. For a > a0, the Q-1(f) increases with a, the dispersion is negative, as 
shown for a = 0.05 in Figures 6c and d. In this case, the secondary modes are slower 
than Vphase. Note that the increase of the phase velocity with frequency does not 
automatically follow from a band-limited near-constant Q-1(f), as it is often thought 
(Figure 6d). The low-frequency asymptotes of phase velocities in all models are reduced 
because of the net increases of their densities, and the levels of Q-1 for the primary mode 
vary by 2–3 times. However, these variations can be corrected by adjusting the values of 
1, MJ, and/or J (Table 3). 
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With no physical argument for the internal (‘memory’) variables as well as for 
their densities, damping factors, and moduli, it is of course impossible to say which of the 
above internal-density models is correct or more realistic. In terms of achieving a desired 
Q-1() spectrum for the primary mode within the ~0.01–1000 Hz frequency band, all of 
these models are practically equivalent. Observations of secondary P-wave modes near 
velocity/density contrasts would certainly be a criterion of validity for such models. 
However, to perform such observations, physical meanings need again to be assigned to 
the internal variables and the corresponding measurement procedures need to be 
designed. 

From the theoretical point of view, multiple internal variables with zero densities 
in the GSLS model appear extremely unrealistic. The poroelastic model (Part I) and our 
WIFF model (Table 2) shows that the internal variables should unlikely be so decoupled. 
Models of linear solids were originally designed to explain quasi-static lab experiments 
(Lakes, 2009), in which the density effects are insignificant and cannot be assessed. 
However, the quasi-static limit is inappropriate for seismic waves, in which the effect of 
inertia is intertwined with the elastic and frictional ones (equation 2). The selection of 
sparse matrices M and  with d = 0 in GSLS equations 20 is done only for mathematical 
convenience, and similar spectra of Q-1(f) could likely be achieved with fuller-rank 
matrices. Thus, the GSLS may be an oversimplified physically but overly mathematical 
way to model seismic attenuation. It remains an open question how well this model 
reproduces the actual processes of wave propagation.  

Discussion 

With the use of the GLS formulation, the emphasis in analyzing the wave-
attenuation phenomena is shifted from constructing empirical parameters and 
conventions to looking for physical properties. The properties of the medium (the elastic 
moduli, viscosity and factors of Darcy friction) become matrix and mutually independent. 
These properties also become differentiated from those of the waves and oscillations, 
such as the phase velocities and Q. Replacing empirical frequency-dependent parameters 
with models based on differential equations and variational principles allows closer 
insights into the physical natures of the fluid-flow and internal-friction phenomena. 

The most important practical observation from the examples in this paper is that 
the models of effective media need to explain not only the primary but multiple P-wave 
modes. Only by including both primary and secondary waves it is possible to predict 
seismic reflectivity or to model lab tests with rocks containing pore fluids. In the 
traditional viscoelastic approach, we can course construct an individual effective 
modulus for each of these modes. However, even with frequency-dependent moduli 
defined for all wave modes, the viscoelastic model does not specify how these moduli 
should interact to produce a seismic reflectivity from a boundary. By contrast, the GLS 
model contains all possible interactions in the fairly simple functional forms of the 
Lagrangian and dissipation functions (equations 1), and all observed effects are predicted 
from these forms. 
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The GLS relations 1 are based on only four general principles: 1) the system is 
mechanical, i.e. governed by the principles of energy and energy dissipation; 2) all 
interactions are linear, i.e., the governing L and D functions are quadratic; 3) the medium 
is isotropic; and 4) bulk and shear deformations are not coupled. Note that principles 2) –
 4) can readily be relaxed. These principles are also present in most physics-based models 
of wave propagation. Therefore, it is likely that GLS formulations should be possible for 
most existing models. The examples of poroelasticity (Appendix A) and WIFF in layered 
structures and GSLS above show how these formulations are obtained from the 
microstructure.  

There also exist several areas in which the simple GLS model considered here 
requires extensions: 1) the (arguable) need for viscoelastic (integro-differential in time) 
operators in the equations of motion, 2) dynamic (i.e., frequency-dependent) properties, 
in particular viscosity and permeability (Biot, 1962; Johnson et al., 1987), 3) fluid 
substitution and mixing laws for specific solid/solid and solid/fluid compounds, 4) effects 
of temperature, thermal flows, and ‘thermal waves’ (Landau and Lifshitz, 1986) 
occurring during deformation, 5) effects of surface tension and capillary forces, 
particularly in cases of multiple and partial fluid saturation, and 6) specific effects in 
heavy oils and bitumen, in which the viscosity effects likely dominate the ‘poroelastic’ 
ones  and may be nonlinear. Although these topics require extensive studies, they all fit 
within the general concept of internal variables and Lagrangian approach of the described 
framework.  

Conclusions 

To model wave propagation in a macroscopically-heterogeneous medium, such as 
seismic reflectivity or measurements with rock samples in the lab, it is important to take 
into account not only the primary but also the secondary wave modes. Secondary modes 
occur in the (common) cases of wave-induced fluid flows (WIFF) within porous, grainy, 
or fractured rock. In such cases, the conventional viscoelastic modulus is generally 
insufficient for representing the mechanical properties of the medium. The General 
Linear Solid (GLS) framework described in Part I of this paper is appropriate for this 
purpose.  

In this Part II, the GLS model is used to construct two types of effective media. 
First, for a rock consisting of alternating thin sandstone layers saturated with brine and 
gas, the effective medium is ‘poro-viscoelastic’, i.e. possesses both Darcy’s pore-friction 
and viscosity properties. However, the effective-medium relations can be derived in a 
(relatively) closed form for the density and elasticity, but not for the parameters of 
internal friction. The GLS effective medium predicts the velocity dispersion and 
attenuation for both the primary and secondary P waves. The effective density, moduli, 
and the properties responsible for internal friction are 22 matrix quantities. Notably, the 
effective elastic bulk modulus (responsible for the low-frequency P-wave velocity) is 
significantly lower than the lower-bound (Reuss) average of the moduli of the constituent 
rocks. This modulus reduction occurs because of the WIFF effect, consisting in the fluid 
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flowing across the layer boundaries. If the layers are insulated, the effective modulus 
matches the Reuss average and the wave attenuation is extremely low. 

In the second example, an effective medium equivalent to the broadly used 
Generalized Standard Linear Solid (GSLS) is considered. The GSLS appears to be a 
specific mathematical system with many but weakly connected internal variables. The 
physical, GLS point of view suggests considering the inertial effects and interactions 
between the variables involved in the GSLS. Such inertial effects again lead to secondary 
wave modes with complex dispersion characteristics.  
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Figure captions 

Figure 1. Layered sequence of alternating brine- and gas -saturated sandstone layers. The 
inset shows two types of boundary conditions for fluid content. 

 

Figure 2. Characteristics of effective P-wave in a finely layered poroelastic medium 
(Table 1): a) velocity dispersion, b) attenuation. Black and red lines and 
coordinate axes show the ‘fast’ and ‘slow’ modes, respectively. Dashed lines 
show the predictions by the effective-medium GLS model. In plot a), the effective 
velocity in a structure with insulated layers is also shown. 

 

Figure 3. Amplitudes of the wave modes within the brine-saturated (solid lines) and gas-
saturated (dashed lines) layers in Figure 1, relative to the amplitude of the 
effective wave, for two cases: a) ‘fast’ effective wave mode, and b) ‘slow’ 
effective wave. Labels ‘brine’ and ‘gas’ refer to brine- and gas-saturated layers, 
and arrows ‘→’ and ‘←’ indicate the forward- and backward-propagating modes, 
respectively. Black lines and coordinate axes indicate the displacements of the 
saturated rock, and red lines are the variations of fluid content. 

 

Figure 4. Effects of the proportion of gas-saturated rock in the periodic-layering model 
(Figure 1), as functions of the fraction of gas-bearing layers: a) Velocities of 
effective fast and slow waves; b) Parameter  in equation 7. 

 

Figure 4. Generalized Standard Linear Solid commonly used in finite-difference 
modeling of seismic waves in viscoelastic media. Variable u1 and its gradients 1 
represent the observable rock deformation, and variables uJ (J = 2..N) are the 
internal variables added to implement band-limited attenuation (Liu et al., 1976). 

 

Figure 5. Characteristics of a plane P wave in a GSLS medium (Table 3): a) attenuation, 
b) phase velocity.  

 

Figure 6. Propagation of a plane P wave in a GSLS medium with densities assigned to the 
internal variables: a) attenuation for internal density levels of 1% of the main 
density (Table 3), b) phase velocity for 1% internal densities, c) and d) – the same 
for 5% internal densities (Table 3). The numbers of the wave modes are labeled. 
Black lines indicate the primary mode, and gray lines are the additional modes 
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due to the internal densities.  
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Tables 

Table 1. Parameters of alternating layers in the 1-D WIFF modeling 

 (Figure 1; Dutta and Odé, 1979b) 

 
Layering 

H1 = H2 0.01 m Layer thickness  
Rock 

VP 1500 m/s P-wave velocity of dry matrix 
VS 1000 m/s S-wave velocity of dry matrix 
Ks 35 GPa Bulk modulus of solid grains 
s 2650 kg/m3 Density of solid grains 
 0.3 Porosity 
 9.86923310-13 m2 (1 Darcy) Permeability 
a 1 Tortuosity of pore space 

Brine 
Kfl 2.4 GPa Bulk modulus 
fl 1000 kg/m3 Density  
 110-3 Viscosity 

Gas 
Kfl 0.0022 GPa Bulk modulus 
fl 100 kg/m3 Density  
 1.510-5 Viscosity 
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Table 2. Physical parameters of the effective medium 
Parameter Value 

 1887 g/cm3 
f 101 g/cm3 

fK   1.82 GPa 

  0.95 

M 1.45 GPa 
 1.85 GPa 


1 5642 Pas 


1 5667 Pas 


1 5371 Pas 
d 2 0.51GPas/m2 

1) Equation 18. 
2) Equation 17. 

 

 

 

Table 3. Parameters of the Generalized Standard Linear Solid (GSLS) medium 
   GSLS model 

(Figure 5a, b) 
GSLS with 1% (5%) internal 

densities (Figure 5c, d) 
J J,  (GPa) J (Pas) J (kg/m3) J (kg/m3) 
1 10 0 2000 2000 
2 0.15 9.3108 0 20 (100) 
3 0.15 9.3107 0 20 (100) 
4 0.15 9.3106 0 20 (100) 
5 0.15 9.3105 0 20 (100) 
6 0.15 9.3104 0 20 (100) 
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Figures 

 
Figure 1. Layered sequence of alternating brine- and gas -saturated sandstone layers. The 

inset shows two types of boundary conditions for fluid content. 
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Figure 2. Characteristics of effective P-wave in a finely layered poroelastic medium 

(Table 1): a) velocity dispersion, b) attenuation. Black and red lines and 
coordinate axes show the ‘fast’ and ‘slow’ modes, respectively. Dashed lines 
show the predictions by the effective-medium GLS model. In plot a), the effective 
velocity in a structure with insulated layers is also shown. 
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Figure 3. Amplitudes of the wave modes within the brine-saturated (solid lines) and gas-

saturated (dashed lines) layers in Figure 1, relative to the amplitude of the 
effective wave, for two cases: a) ‘fast’ effective wave mode, and b) ‘slow’ 
effective wave. Labels ‘brine’ and ‘gas’ refer to brine- and gas-saturated layers, 
and arrows ‘→’ and ‘←’ indicate the forward- and backward-propagating modes, 
respectively. Black lines and coordinate axes indicate the displacements of the 
saturated rock, and red lines are the variations of fluid content. 
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Figure 4. Effects of the proportion of gas-saturated rock in the periodic-layering model 

(Figure 1), as functions of the fraction of gas-bearing layers: a) Velocities of 
effective fast and slow waves; b) Parameter  in equation 7. 
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Figure 4. Generalized Standard Linear Solid commonly used in finite-difference 

modeling of seismic waves in viscoelastic media. Variable u1 and its gradients 1 
represent the observable rock deformation, and variables uJ (J = 2..N) are the 
internal variables added to implement band-limited attenuation (Liu et al., 1976). 
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Figure 5. Characteristics of a plane P wave in a GSLS medium (Table 3): a) attenuation, 
b) phase velocity.  



 

28 

 

 

Figure 6. Propagation of a plane P wave in a GSLS medium with densities assigned to the 
internal variables: a) attenuation for internal density levels of 1% of the main 
density (Table 3), b) phase velocity for 1% internal densities, c) and d) – the same 
for 5% internal densities (Table 3). The numbers of the wave modes are labeled. 
Black lines indicate the primary mode, and gray lines are the additional modes 
due to the internal densities.  
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Appendix A: Effective-medium parameter matrices for poroelasticity 

In poroelasticity (Biot, 1962), the microstructural model consists of a fluid with 
density f and bulk modulus Kfl saturating porosity  in a solid matrix with density s and 
bulk modulus Ks. In this Appendix, we show how the effective 22 density and bulk-
modulus matrices are obtained from this microstructural model by preserving the kinetic 
and elastic-energy terms in the Lagrangian (equation 1). Consideration of the elastic 
energy also provides the Gassmann’s fluid substitution equation. The parameters of the 
effective GLS medium are obtained by considering several independent deformations and 
requiring that the kinetic and elastic energies of the effective medium equal those of the 
microstructure in all cases.   

Density  

The density matrix for the effective poroelastic medium is (equation 32 in Part I):  

                                                    
f

f f

a

 

 


 
 
 
  

ρ , (A1) 

where  is the mass density of the effective medium and  a  1 is the tortuosity of the 
pore space. The meanings of these quantities are determined later in this paragraph. This 
matrix can also be obtained by considering a (hypothetical) experiment of applying 
arbitrary velocities to the rock and fluid phases and measuring the kinetic energy. The 
fluid velocity equals  fluid 1 2 r   v v v v , where v  denotes the random component 

of fluid velocity added to the local macroscopic flow v2 (Part I). For this random velocity, 

r v 0 . The average magnitude of rv is proportional to v2 and dependent on the 

structure of the pore space, and therefore we can define the tortuosity parameter a so that 
2 2 2
2 2r a v v v . Note that from this relation, a  1. Therefore, the average kinetic energy 

density for mutually independent v1 and v2 is: 

                          2 2 2 2
1 1 2 21

2 2 2 2
fs

kin s f f f

a
E

    


     v v v v v v , (A2) 

where  1s f       . This expression can be compactly written as a quadratic form 

based on the effective-medium density matrix  in equation A1: 

                                                     
1

2
T

kinE  u ρu  , (A3) 

where  1 2

Tu v v . 
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Bulk modulus  

 To derive the effective bulk modulus matrix, we use the standard selection of 
variables tr    and div   w , where  is the observable strain of the material and w 
is the filtration velocity (Part I). With such parameterization, the dilatation of the solid 
and fluid phases within the specimen are:  

                                                           s

fl 
    

      
U , (A4) 

where the matrix U relates these macroscopic field variables and microstructural 
parameters s and fl: 

                                                          
1 1

1 1 
 

   
U . (A5) 

The elastic property of the material is given in the GLS model by potential 
function V (quadratic form similar to A3; equation 6 in Part I):  

                                                  
1

2
T T

ij ijV  Δ KΔ ε με  , (A6) 

where the matrix K equals for poroelasticity (equation 29 in Part I): 

                                                fK M

M M




 
   

K   . (A7) 

and the corresponding compliance (equation 30 in Part I): 

                                         1

0

11

fK MK




  
   

 
J K  ,  (A8) 

where 2
0 fK K M  . The parameters of these matrices can be obtained by considering 

the variations of the closed-system potential A6 and its open-system counterpart 
(compliance A8; see equation 14 in Part I) in several experiments. This derivation 
follows Bourbié et al. (1987) in a simplified matrix form that can be readily extended to 
more complex GLS systems.  

In the first experiment, consider the system statically compressed with no fluid 
flow allowed ( = 0; closed system). This experiment simply corresponds to the 
measurement of the ‘wet’ bulk modulus in a jacketed specimen by applying an averaged 
deformation . In this case, the double elastic energy density (equation A6) equals 

22 T
fV K  Δ KΔ , showing that Kf in relations A6 and A8 is the measured ‘wet‘ 

modulus. 
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In the second experiment, consider drained rock with zero pore pressure under 
confining stress  . The macroscopic deformation is given by relation A8 

                                                         
00 K

 

   

    
   

J  ,  (A9) 

showing that K0 is the modulus of the drained rock. From relation A4, the strains of the 
two phases equal: 

                                             1
0

1

1
s

fl

K



  


       

           
U  .  (A10) 

The entire deformation and strain energy in this system belongs to the solid, and 
consequently 1

s sK   . Therefore, the (measurable) compliance of solid grains equals 

 1 1
0 1sK K    . As a result, quantity  in expressions A7 and A8 represents the ratio 

of the dry and solid-grain moduli:  
                                                     01 sK K   . (A11) 

In the third experiment, consider the rock matrix and fluid at equilibrium, with 
both the confining and pore pressures held equal p. The deformation of the two phases is: 

                             
1

0

2 13
3

13
s f

fl f

K Mp
pK

K Mp


   


      

            
UJ  .  (A12) 

The volumetric strain within the fluid should satisfy 13fl flpK    , and after some 

simplification, we obtain:  1 1 1
fl sK M K       . Therefore, the elastic coupling M in 

relation A7 can be determined from the following average of the compliances of the solid 
and fluid phases:  1 1 1

s flM K K       . By using this relation, the above 

equation 2
0fK K M   (which can be written as   1 1 2

0fK K M 
   ) yields several 

forms of Gassmann’s equation for the ‘wet’ modulus Kf; for example (Bourbié et 
al., 1987): 

                              
   
   

1 1 1 1 1 1
0 01

1 1 1 1
0

s fl s s

f

s fl s

K K K K K K
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K K K K





     


   

  


  
 .  (A13) 
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Appendix B: Propagator method for layers with sealed boundaries 

In this Appendix, we give a modification of the propagator method for modeling 
the wavefield in a finely layered structure (equations 38–42 in Part I). In the present case, 
we treat the boundaries of the layers as impermeable for pore fluids. In contrast to the 
case considered in Part I, pore pressures within the brine- and gas-saturated layers are 
different, but the relative fluid displacements u2 are zero on both sides of the boundary 
(the second type of boundary condition in the inset of Figure 1). 

As in Part I, let us parameterize the wavefield within any layer by a four-

component vector  1 2 1 2

T

r A A A A   q , where JA  are the amplitudes of the  

forward- and backward-traveling modes. At an arbitrary coordinate x within the layer, the 
wavefield is  
                                                                rx xq P q ,  (B1) 

where  

                                        

1

2

1

2

0 0 0

0 0 0

0 0 0

0 0 0

ik x

ik x

ik x

ik x

e

e
x

e

e





 
 
 
 
 
 

P . (B2)   

The displacement in this field is given by applying an additional matrix U: 
    rx xUq UP q  (equation 39 in Part I). Using this matrix, the boundary conditions 

u2(x = 0) = u2(x = H) (H is the thickness of the layer) can be combined in a matrix 
equation: 

                                                     
 
 

2

2

0 0

0rH

       
    

UP
q

UP
, (B3)   

where the notation jA  denotes the j-th row of matrix A (note that  0 P I ). The 

equations B3 can be partitioned separating the contributions from the ‘fast’ (subscript 1) 
and ‘slow’ modes (subscript 2): 

                                                  1 1 2 2

0

0r r

 
   

 
U q U q , (B4)   

 where vectors qr1 and qr2 are: 1,2
1,2

1,2
r

A

A





 
  
 

q . By solving this equation, modes 2rq  can be 
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expressed as 2 1r rq Qq , where   1

2 1

 Q U U . Again combining the ‘fast’ and ‘slow’ 

modes together, the complete wavefield at any point x equals:  
                                                        1 1rx xq P q ,  (B5) 

where: 

                                               11 12
1

21 22

1 0

0 1

Q Q
x x

Q Q

 
 
 
 
 
 

P P . (B6) 

To derive the transformation of the wavefield r
q  across a boundary of two layers, 

we use the boundary condition (equation 41 in Part I): 
                                                1 1 1 2 2 2

1 1 1 1 10r rH B P q B P q , (B7) 

where the superscripts and subscript in H1 denote the layer numbers. However, in this 
case, matrices B are 24 and only contain the conditions for rock displacement and 
confining stress (the first and third rows of B in equation 41 in Part I). Finally, this gives 
for the field in layer 2: 

                                               12 2 2 1 1 1
1 1 1 1 10r rH


q B P B P q . (B8) 

This relation is similar to equation 13. When applied recursively, it allows computing the 
forward-traveling modes in any layer, and the total wavefield is given by equation B5. 

  


