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SUMMARY 

 Observations of seismic attenuation within the Earth can be explained in terms of depth 
variations of viscosity. This allows a description of anelasticity in terms of rigorous mechanical 
principles without the use of equivalent models or viscoelastic constitutive equations. Compared 
to the conventional viscoelastic Q, viscosities have a far more general significance in mechanics, 
are directly measurable and allow straightforward comparisons between different deformations 
and wave types. “Wet” (Navier-Stokes), “dry” (Coulomb), and other friction regimes are 
specified by the functional forms of Lagrangian dissipation functions. All creep phenomena and 
attenuation of traveling and standing waves are consistently described in the viscosity model. The 
characteristic rock viscosity in laboratory creep experiments is estimated as ~1014 Pas. 

The model is illustrated on the whole-Earth free-oscillation Q dataset by Widmer et al. 
(Geophys. J. Int., 104, 541–553, 1991). When transformed into temporal attenuation coefficients, 
 = fQ-1, the data reveal near-linear trends with frequency,   , for fundamental modes, and 
quadratic trends   2 for radial modes. Similar relations   2 are also found for PKIKP body 
waves within the inner core. This shows that energy dissipation is mostly “dry” within the mantle 
and more “wet” within the core. Inversion suggests pronounced layering of viscosity within the 
Earth, and particularly within its lower mantle. Seismic viscosity is ~301010 Pas within the 
mantle lid, ~6–101010 Pas within the upper mantle, and 6 to 201010 Pas within the lower-mantle 
layers. Broadly, this is similar to the existing Q models, although a quantitative comparison is 
difficult because of the frequency dependencies built into the viscoelastic model. The layering of 
mantle viscosity is also similar to that in geodynamic models. Within the outer core, the viscosity 
is near zero, and the inner-core viscosity is ~0.5–11010 Pas. Thus, by contrast to the existing Q 
models, the attenuation within the inner core is found to be much weaker than within the mantle. 
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Introduction 

Analysis of energy dissipation at the global scale is most important for understanding the 
temperature and physical state of the Earth’s interior. Several depth profiles of the quality factor 
Q have been developed, which are generally close to the reference model PREM (Dziewonski 
and Anderson, 1981), and extensive development of 3D tomographic models is underway 
(Romanowicz and Mitchell, 2009). The analysis of anelasticity is complicated by the difficulties 
of accurate measurement of Q, which is often affected by noise and the effects of structure, such 
as normal-mode splitting and beating or variations of geometrical spreading. Since the observed 
quality factors usually exceed ~100, anelasticity represents a relatively small effect compared to 
the geometrical and elastic factors, and its measurements are accordingly delicate. Some 
difficulties arise from the discrepancies between the surface-wave and normal-mode attenuation 
measurements at 200–500-s periods (Durek and Ekström, 1997). 

However, in addition to the observational difficulty, there also exists another, conceptual 
problem in analysing the global anelastic structure: the concept of Q as an in situ parameter of the 
medium may be inadequate for describing the anelasticity of the Earth. This fundamental problem 
has received no attention so far, and yet its effect can be much greater than the observational 
uncertainties. Looking back at the history of the seismic Q, one can see that it was inferred from 
analogies with mechanical oscillators or electrical circuit theory (e.g., Knopoff and MacDonald, 
1958). However, if taken to the level of local medium properties, such analogies may become 
imprecise or misplaced. The mechanical or electrical “quality” Q is a parameter of a resonator, 
equal to the ratio of its natural frequency to the spectral bandwidth; by contrast, a wave-
propagating medium shows no resonance peaks. 

The existing models of anelasticity are formulated in terms of the bulk and shear quality 
factors QK and Q, which are associated with the corresponding elastic moduli K and  
(Dziewonski and Anderson, 1981; Widmer et al., 1991; Dahlen & Tromp, 1998; Romanowicz & 
Mitchell, 2009). This two-parameter description is formalized in the viscoelastic model, in which 
the dissipation of elastic energy is explained by some “imperfect” behaviour of the elastic moduli, 
which is mathematically expressed by phase delays shifts in the strain-stress relations (Anderson 
& Archambeau, 1964). Such treatment of anelasticity as extrapolation of the elastic case into the 
complex planes of elastic parameters is also known as the correspondence principle (Aki & 
Richards, 2002). Although the pair of viscoelastic parameters is sufficient for reproducing most 
of the available observations of seismic-wave attenuation, this description is nevertheless 
unsatisfactory. Physically, it is difficult to agree that dissipation of elastic energy would occur in 
different but fixed proportions of the bulk and shear energies and at the same time be unrelated to 
the kinetic energy. As discussed below, in mechanics, the situation is the opposite. Seismic 
viscoelasticity may be the only theory in which the observable attribute (Q) is also viewed as an 
intrinsic property of the medium. Instead of being derived from real physical properties, the in 
situ Q-1 is basically defined as such a quantity which reproduces the observed Q-1 when treated as 
complex argument of the wave speed. This leads to a mathematical model which describes the 
selected group of observations but may not extend to the more general cases. Note that seismic 
viscoelasticity contains no rigorous definition of elastic energy (e.g., Carcione, 2007), which 
makes it questionable with respect to predicting energy balance and dissipation.  

From the viewpoint of elastic-continuum mechanics, energy dissipation does not have to 
be “viscoelastic.” Successful physical models of attenuative media (e.g., Biot, 1956; Deresiewicz, 
1960; Beskos et al., 1989) are neither based on nor lead to the concept of a “medium Q.” Instead, 
such models reveal numerous properties (such as porosity, permeability, fluid content, viscosity) 
that are responsible for the dissipation of elastic-wave energy. Most of these properties are 
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unrelated to the elastic moduli and require specific mechanisms and descriptions. 

Along with the use of only two in situ parameters QK and Q, serious practical limitations 
also arise from the viscoelastic model of seismic attenuation. For example, in this model, the rate 
of shear-energy dissipation equals Q

-1, which is proportional to . Therefore, the shear-wave 
part of energy dissipation within the liquid outer core is automatically zero, and consequently its 
Q

-1 is also set equal zero in all existing models (e.g., Dziewonski & Anderson, 1981; Widmer et 
al., 1991). However, such a priori absence of energy dissipation within the outer core appears 
unnatural, as shear deformations within this region are significant for many free-oscillation 
modes, and it should also possess some viscosity. In additional illustrations, the correspondence 
principle leads to incorrect phases of the acoustic impedance in anelastic heterogeneous media 
(Morozov, 2011) and to 10–20% over-estimations of dissipation for mantle Love waves 
(Morozov, submitted to PEPI). 

Thus, it appears worthwhile to try an alternate characterization of the whole-Earth’s 
attenuation, which would be based on the traditional mechanics rather than on viscoelastic 
postulates. As shown below, such formulation can be based on the concept of macroscopic 
viscosity of the Earth. This quantity has a tangible physical meaning, and unlike the in situ Q, it 
can in principle be measured in other than Q-type experiments. An interpretation in terms of 
physical properties should also help reconciling the free-oscillation attenuation models with those 
derived from ScS and core body-wave datasets (Bhattacharyya et al., 1996; Cormier & Li, 2002; 
Li & Cormier, 2002; Lawrence & Wysession, 2006). However, changing the viewpoint so 
dramatically still does not mean that the existing attenuation models presented in terms of Q 
become completely wrong or irrelevant. Several features of the existing Q distributions are also 
present in viscosity models discussed below. At the same time, switching to a more “physical” 
picture shows that some of the assumptions intended as simplifying (such as a frequency-
independent or smoothly-varying Q) may in fact be unjustified and even lead to some confusion. 
The question of frequency dependence of Q (e.g., Lekić, et al., 2009; Morozov, 2010a) also 
disappears and is superseded by the more general problem of the physical mechanisms of 
anelasticity. 

Unfortunately, it is already clear that a realistic “physical” theory of the Earth should be 
significantly more complex than the viscoelastic model, and even the key principles of such a 
theory are unclear at present. Early researchers (e.g., Knopoff & MacDonald, 1958) attempted 
strictly mechanical descriptions but were apparently discouraged by the difficulties of explaining 
the frequency-independent Q, which was the predominant observation at the time. Since then, this 
argument has lost its power, as it is now commonly known that Q varies with frequency. 
Nevertheless, mechanical models of attenuation seem to have been nearly forgotten in global 
seismology. 

In this paper, we try reviving the mechanical approach by using a simple Lagrangian 
formulation close to the model of saturated porous rock by Biot (1956). The key principle of this 
approach is in describing the dynamic properties of the medium before any equations of motion 
are formulated. This is the most important requirement to consistent physical theories (Landau & 
Lifshitz, 1976), which is also not satisfied by the viscoelasticity. Instead of the in situ Q, we 
describe the energy dissipation by bulk, shear, and kinetic viscosity parameters, denoted ,  
and k below. Although still phenomenological (macroscopic) in character, these parameters have 
clear physical meanings, act “instantaneously” and are local within the structure, which cannot be 
said about the “medium Q” (cf. Morozov, 2009). Although bearing some mathematical 
similarities to K,  and , these viscosity parameters may (or may not) be totally unrelated to the 
elastic moduli. Once the physical mechanisms of energy dissipation within the Earth become 
better understood, this model can be further developed by adding other parameters and functional 
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forms. 

The free-oscillation problem represents a good case to study the fundamental physics of 
Earth’s attenuation. Normal modes behave as mechanical oscillators, for which the quality factor 
is meaningful and the physical theory is developed in detail. Free oscillations are sensitive to all 
three elastic parameters of the Earth, and they provide the critical constraints for global elastic 
and anelastic models (Dziewonski & Anderson, 1981). The free-oscillation problem is also where 
the Lagrangian mechanics is recognised and used by seismologists (Woodhouse and Deuss, 
2009). The whole-Earth environment also offers a broad range of variations in mechanical 
parameters, which allows studying their effects on the observed frequencies and quality factors of 
normal modes. At the same time, the general methodology of the present study naturally extends 
to many other areas of elastic-wave attenuation analysis. In the following sections, we introduce 
this basic methodology, discuss its relation to the existing theory of and the key effects of seismic 
attenuation, and finally apply to the inversion of normal-mode Q. 

Approach 

We will use the Lagrangian formalism for describing the mechanics of an elastic medium. 
This description starts with the Lagrangian density, which is a quadratic functional of the 
displacements ui and velocities iu : 

 ,
2 2i i kk ll ij ijL u u
       u u   , (1) 

where i = 1, 2, or 3 denotes the spatial dimensions,   2ij i j j iu u      is the strain tensor, and 

summations over all pairs of repeated indices are assumed. Parameters  and  are the Lamé 
elastic constants, and  is the mass density. Note that both the displacements and velocities are 
viewed as independent variables in the functional (1). Most importantly, coefficients ,  and  
are real-valued and non-negative, which makes expression (1) real and positive-definite with 
respect to all variables. This is already the first and most important difference of this model from 
viscoelasticity. 

By replacing ij with a combination of the dilatational strain  = kk and deviatoric strain 
3ij ij ij     , the Lagrangian density becomes expressed in terms of the bulk (K) and shear 

() moduli: 

2

2 2i i ij ij

K
L u u

         .  (2) 

Energy dissipation is not a part of the Lagrangian and is described by the dissipation 
function D (Landau & Lifshitz, 1976). In the small-amplitude approximation, if we assume a 
linear viscous friction force proportional to iu , D should be second-order in iu . For an instructive 

mechanical analog, let us consider the linear oscillator. Its Lagrangian is 

 
2

2 20,
2 2k p

mm
L x x E E x x


     , (3) 

and dissipation function: 
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2
02visc k

m
D x E   ,  (4) 

where Ek and Ep are the kinetic and potential energies, respectively, m is the mass, 0 is the 
natural frequency,  is the viscosity, and  = /m0 is the dimensionless dissipation constant. 
This dissipation function corresponds to a linear viscous force of Df D x x       and has 

the physical meaning of energy dissipation rate per unit time. Note that function D for the 
oscillator equals its kinetic energy divided by “relaxation time” 0 = 1/(0) = m/. Mean total 
energy of the oscillator decays with time as: 

 
0 0

exptotalE t t

E 
 

  
 

,  (5) 

where E0 is the total energy at t = 0. If we now consider a Coulomb (“dry”) force of friction D, 

which is independent of velocity:  sgnD Df x   , the dissipation function (4) is replaced with 

 1/22
dry D D kD x E

m
   , (6) 

i.e. it becomes proportional to a square root of the kinetic energy. In this case, the mean energy 
decay law (5) is non-exponential, but it can be approximated as such for relatively short times: 

 
2

3

3
0 00

6
1 exptotal D

E t t
t

E mE




   
         

,  (7) 

where  3
0 0 4 DmE  . In all cases, the quality factor of the oscillator simply represents the 

ratio of the energy decay time 0 to the period of oscillation, T0:  

0
0 0

0

2Q
T

    .  (8) 

Note that Q is a property of the entire oscillator and not of any of its elastic constant or 
mass. The often-discussed “frequency dependence if Q” thus represents a scaling problem rather 
than a fundamental property of the material (Morozov, 2010a, b). If we scale the frequency of the 

oscillator by increasing its elastic constant 2
0k m , then Q increases proportionally to 0. 

Conversely, if we increase 0 by decreasing m, Q decreases as 1
0
 . We can also increase k and 

decrease m proportionally to 0 , which will keep Q constant. Apart from this (somewhat 

confusing) scaling, Q-1 is actually proportional to the friction constants  in (4) or D in (6). 

In constructing a functional D similar to (4) and (6), and also in defining a Q similar to 
(8) for the Earth’s medium, there exists a fundamental difficulty, which is the absence of an 
analog to the natural frequency 0. Traveling waves represent purely forced oscillations, and 
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although there exist natural analogs to  and 0, quantities 0 and  above can hardly be defined 
as medium attributes (Morozov, 2009). For guidance in describing the elastic-energy dissipation 
within the medium, we can use Biot’s (1956) model of saturated porous rock. In this model, 
energy dissipation is caused by relative movement of the pore fluid with respect to the rock 

matrix. This movement is described by the filtration velocity,  w U u  , where U and u  are 
the fluid and matrix velocities, respectively. The dissipation-function density is defined as the 
only rotationally-invariant scalar which is quadratic in w :  

2 i iD w w



   .   (9) 

Here,  is the fluid viscosity, and  is the absolute permeability, which depends on the geometry 
of the pores and other factors. The Lagrangian density (1) is also modified by the presence of 
pore fluid, into which we will not go at the moment. A good summary of Biot’s theory is given 
by Bourbié et al. (1987). 

Because at this stage we have no justification for a multiphase model of the mantle which 
would contain internal variables similar to w  above, we construct the dissipation function by a 
heuristic generalization of expressions (2), (4), and (6). When using only iu for parameterizing 

the flow in an isotropic medium, the only three rotationally-invariant second-order scalar 

functions are i iu u  , 2  and ij ij    . Therefore, we define a generalized dissipation function by 

combining these invariants: 

20

02 2
k

i i ij ijD u u
K 

              .  (10) 

Here,  and  are the bulk and shear viscosities known in Navier-Stokes equations in fluid 
mechanics (Landau & Lifshitz, 1987). These terms were briefly considered in the “hypothetical” 
anelasticity model in Morozov (2010c). The term with  in (10) also corresponds to a Kelvin-
Voigt solid, and Jeffreys characterized such behaviour as “firmoviscous” (see Knopoff and 
MacDonald, 1958). For fluids, parameter  is usually called simply viscosity, or dynamic 
viscosity, and  is called second viscosity and often disregarded for incompressible fluids. The 
“kinetic viscosity” term k here is added for completeness. Because this term depends on the 
velocities iu and not on their gradients, it may violate the Galilean principle of relativity and 

should be taken with some caution. However, this principle may not be required in the whole-
Earth problem, in which there exists a preferred frame of reference. In the examples below, k is 
not considered, but it was used in the surface-wave model by Morozov (submitted). Reference 
elastic module K0 and density factor 0 are included in (10) in order to ensure the same units 
[Pas] for k,  and , and they play the role of the absolute permeability factor  in (9). 

To clarify the terminology, note that the model defined by expressions (2) and (10) is 
truly “visco-elastic,” in the sense of combining the viscous and elastic properties of the medium. 
However, historically, the term “viscoelastic” has been firmly linked to a specific model 
addressing the same general question by using time-retarded constitutive equations, equivalent 
dashpot-spring models, and complex wave speeds (Cormier, 2011). In this paper, we also retain 
such specific meaning of this term.  

To explore a non-linear energy dissipation similar to eq. (6), we can introduce exponents 
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 and k into (10) to accommodate the transitions from the viscous-flow ( = 1, similarly to 
eq. (4)) to dry-friction regimes ( = 1/2, as in eq. (6)): 

 
2

2 2 20
2

0

1

2 2

k

k i i
r r ij ij r

r

u u
D

K







        







        
    

     .   (11) 

This shows that non-linearity also leads to a characteristic time scale, r, which is required in 
order to maintain the correct dimensionality of D. With varying r,  and k would scale 
accordingly. Because of this scaling ambiguity and without loss of generality, parameter r can 
therefore be set by convention, for example, equal 1 s. 

Viscosity parameters  and k represent the in situ physical variables of our model 
and can be viewed as extensions of the heuristic “intrinsic attenuation coefficient” of the medium 
proposed by Morozov (2010b). To form the system of equations to invert for these parameters, 
we need to express the observed attenuation coefficient for any given wave mode n: 

  
2

2 2 20
2

0

1

2 2

k

n k i i
n r r ij ij r

ntotal r totaln n n n

D u u

E E K







        







              

     ,  (12) 

where ...
n
denotes an integration over the entire space, and Etotal is the total energy density. Note 

that for both traveling and standing harmonic waves with low dissipation, the total energy is 
equipartitioned (Dahlen & Tromp, 1998): 

1

2kinetic potential totaln nn
E E E  ,   (13) 

In the approximation considered here, the forward problem (12) is linear in  and k.  

Creep, Q, and dispersion 

The linear viscosity model (10) readily explains all of the observable effects of seismic 
anelasticity, such as creep, wave attenuation and dispersion. This model can even be used to infer 
the viscoelastic bulk and shear quality factors of the medium. Let us illustrate these properties on 
a simple case of unidirectional deformation.  

For a deformation in the direction of axis X, u = (u,0,0), and the Lagrangian density (2) 
simplifies to: 

 22

2 2 x

M
L u u


   ,   (14) 

where 
4

3
M K   is the P-wave modulus. Similarly, the dissipation density (10) is: 

 220

02 2
k M

xD u u
K

  
    ,  (15) 
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where 
4

3M     . 

To derive the equation of creep, consider a quasi-static deformation, under which a body 
of thickness H is uniformly extended by strain factor (t):    ,u x t x t , where 0  x  H. Let 

us assume that this deformation is achieved by an external force f applied at point x = H. Taking 
for simplicity k = 0 and considering only linear dissipation ( = 1), the total Lagrangian and the 
dissipation function from (14) and (15) become: 

3
2 2

0 6 2

H H MH
Ldx fH fH

         , and 2

0 2

H
M H

Ddx
     .  (16) 

The Euler-Lagrange equation of motion is therefore: 

3

0
3 M

d H
MH H fH

dt

       
  

         
 

 
 
  

. (17) 

The corresponding homogenous equation (with f = 0) has two exponential solutions: 

 1,2 1,2
1,2

exp
t

t A


 
   

 
 ,  (18) 

where 1,2 are the relaxation times: 

1
2 2

1,2 2

2 4
1 1

3 3M M

H H M 
 


 

    
 

.  (19) 

For 2 24 3M H M  , these relaxation times equal
2

1 3 M

H


 and 2
M

M

  , and consequently 

1<< 2. Thus, over some initial time interval, the system quickly equilibrates, after which it 
continues to “creep” slowly (Figure 1). In the process of equilibration, other “normal modes” 
need to be considered in addition to the uniform deformation above, such as 

   , sin
2n n

n
u x t x t

H

    
 

with n = 1,2,3,... However, these initial oscillations should decay 

within several natural oscillations of the specimen: 

2
n

H
T

n M


 .  (20) 

For typical laboratory specimen sizes, 1 << T1, and therefore T1 can be taken as the characteristic 
equilibration time. The total deformation U at t >> 1 is therefore:  
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   
2

1 expU R U

t
t   


  

      
  

 ,  (21) 

where R f M  is the static, “relaxed” deformation at t  , and U is the “unrelaxed” 

deformation after the equilibration, at T1 << t << 2. This quantity can be derived by setting the 
inertial term containing   equal zero in eq. (17):  

2
2

2

2 3

U R

M

f

H

 
 

 


 .  (22) 

From the above relations, taking typical values of 2  103 s and M  1011 Pa in a 
laboratory creep experiment, we can estimate rock viscosity as M  1014 Pas. For a rock sample 
of H  0.1 m size, the equilibration times are then 1  10-13 s and T1  10-5 s. The inverse of T1, 
a = 1

-1  105 Hz, could correspond to the characteristic frequency a in the empirical creep law by 
Lomnitz (1956). 

As we see, the model (10) naturally describes creep phenomena (Figure 1) without 
assuming phase-delayed strain-stress relations. Obviously, this example can be continued by 
constructing the creep function, equivalent models, frequency-dependent Q, absorption band, and 
all other attributes of viscoelastic constitutive relations.  

For another important example, let us now consider plane waves traveling within a 
uniform attenuating medium. Such waves decay exponentially, and the corresponding Q factors 

can be inferred from their spatial attenuation coefficients. By contrast to the case of creep, we 
now deal with weak energy dissipation: M << M, where  is the angular frequency. For a 
harmonic P wave,      , expu x t u x i t  , and eqs. (14) and (15) lead to the spatial 

(Helmholtz) equation of motion: 

 2 20

0

0
2

k
M x

L D
i u M i u

u u K

      
 

 
       

 
.  (23) 

Again considering k = 0, we obtain the complex wavenumber: 

 1
2

M
P

M

i
k

M i M M

  


      
.  (24) 

The “specific attenuation factor” (Knopoff and MacDonald, 1958) for P wave is therefore: 

1 2 arg M
P PQ k

M

   .  (25) 

as expected in a Kelvin-Voigt solid. Note that it turns out that 1
2PQ   , where 2 is the creep 

relaxation time (19) (Figure 1). Similarly, for an S wave, QS
-1 equals: 
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1 2 argS SQ k 


   .  (26) 

Formula (24) also shows that viscosity leads to weak phase-velocity dispersion: 

 
2

7
1

Re 8
M

PV
k M M

  
      

   
.  (27) 

It should be noted that as all of the above results, this equation only describes the plane-wave 
dispersion in a uniform medium. In more general cases, dispersion is principally controlled by the 
propagating structures, such as layering for surface waves and normal modes. Once again, we 
have to disagree with the popular notion of “physical dispersion” as a V() variation resulting 
purely from anelasticity (Kanamori & Anderson, 1977). Simple phase-velocity relations like  

    1
1 lnr

r

V V
Q

 
 

  
   

  
,  (28) 

or the corresponding relations inferred for the moduli, such as (Dahlen & Tromp, 1998): 

     2
1 lnr

rQ

   
 

  
   

  
,  (29) 

indeed arise, but only in viscoelastic models, in which Q is the only medium parameter 
responsible for any deviations from the elastic case and in which one can take  = V2. In reality, 
multiple factors influence the attenuation and dispersion, and both Q() and V() are determined 
largely independently by complex combinations of these factors. Expression (28) is usually 
derived from the Kramers-Krönig causality relations (Kanamori & Anderson, 1977; Aki & 
Richards, 2002); however, these relations only represent integral identities satisfied by the 
resulting wave solutions. These identities do not directly constrain any properties of the 
propagating medium. Any wave in the medium described by eqs. (2), (10), and (11) would be 
causal and automatically satisfy the Kramers-Krönig relations. 

From the above plane-wave Q’s, values of QK
-1and Q

-1 can be further inferred by using 
the following postulates of seismic viscoelasticity (Anderson & Archambeau, 1964): 1) both 

phase velocities, cP,S = /k P,S, equal the P and S-wave speeds, PV M   and SV   , 

respectively, 2) VP, VS, and the viscoelastic moduli M and  become complex-valued, with (-Q-1) 
interpreted as their complex arguments, and 3) density  remains real. From these assumptions, 

1 1
M PQ Q  and 1 1

SQ Q
  . The bulk viscoelastic attenuation is then: 

1 1

1

4
3arg

P S

K

MQ Q
Q K

K

 




   ,  (30) 

where the complex moduli are related by 
4

3
K M     . Taking into account expressions (25) 

and (26), this gives: 
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1

4
3M

KQ
K K

    


  .  (31) 

Thus, the linear model (10) leads to spatial attenuation coefficients ImkP and ImkS 
proportional to 2 (see eq. (24)), and accordingly, QP and QS are proportional to-1. Such 
behaviour commonly arises in mechanical systems with weak linear dissipation (Knopoff & 
MacDonald, 1958), including Biot’s (1956) model of saturated porous rock. Similar 1  
dependencies also follow for QK and Q (eqs. (31) and (26)). However, note that as the above 
derivation shows, these quantities are quite artificial and only remotely related to the 
corresponding elastic moduli. Their principal meaning still remains as the transformed QP and QS 
values, which in their turn, only arise in special cases of plane or spherical waves in a uniform 
isotropic medium. 

Existing whole-Earth models from free oscillations 

Two well-known spherically-symmetric models of Earth’s seismic anelasticity: PREM 
(Dziewonski & Anderson, 1981) and QM1 (Widmer et al., 1991), are shown in Figure 2. Both 
models were developed within the viscoelastic paradigm and parameterized by frequency-
independent 1

KQ and 1Q
  (Figure 2a). By using eqs. (25) and (31), we also transformed them 

into the corresponding bulk and shear viscosities (Figure 2b). 

The above transformation from Q-1 to viscosity highlights several issues inherent in the 
existing parameterization of Earth’s attenuation. First, it is often noted that the upper mantle is the 
region of the highest attenuation within the mantle (e.g., Anderson & Archambeau, 1964; 
Widmer et al., 1991; Durek & Ekström, 1996; Romanowicz & Mitchell, 2009). However, this is 
only true if the term “attenuation” is understood as the value of Q-1 (Figure 2a). If we interpret the 
attenuation in the more intuitive (or physical) sense, as the relative energy dissipation per second, 
then the lower one third of the mantle turns out to be more attenuative than the upper mantle 
(Figure 2b). The attenuation within the inner core also becomes ~2 times greater than within the 
upper mantle. 

Second, it is generally known that the frequency dependence of Q is difficult to constrain 
from normal-mode or surface-wave data (Widmer et al., 1991; Durek & Ekström, 1996), 
although some authors argue the contrary (Lekić et al., 2009). In consequence, many models use 
what appears to be the simplest parameterization, which is the frequency-independent Q. 
However, this leads to viscosities decreasing with frequency (Figure 2b), which may not be easy 
to understand. As our mechanical argument above suggests, a “natural” frequency dependence of 
the in situ Q corresponding to constant viscosity would be somewhere between Q  -1to 0. 
Unfortunately, such frequency dependencies are not commonly considered in attenuation studies. 

The third serious issue with the models shown in Figure 2b is the built-in correlation of 
their viscosity parameters with the elastic moduli. This leads to preferentially positive depth 
gradients in  and the amount of detail that can hardly be constrained from attenuation data. In 
particular, this results in a virtual disappearance of attenuation across the core-mantle and inner-
core boundaries because of the zero shear modulus of the outer core (Figure 2b). Note that in the 
existing Q models, such zero shear attenuation within the outer core is dictated not by the data but 
purely by an abstract methodological (i.e., correspondence) principle. However, this principle is 
only inferred from simple uniform-medium cases and may not apply to the heterogeneous Earth 
(Morozov, 2011). 

Nevertheless, with the above uncertainties, the ranges and general pattern of viscosity 



12 

variations shown in Figure 2b should be correct. This will be illustrated by a new inversion 
performed in the following section. As expected, these viscosities are much lower than those 
inferred from geodynamic studies (~51020 Pas within the upper and 1018–1024 Pas within the 
lower mantle; also see Discussion below), but are within the range of values estimated for the 
outer core (103–1011 Pas; S. Butler, personal communication).  

New model of normal-mode attenuation 

Dataset 

To measure the seismic viscosity parameters of the Earth, we use a free-oscillation 
dataset compiled by Widmer et al. (1991). For details of data selection and measurements of the 
modal frequencies and Q, the reader is referred to that paper. Although new and corrected 
normal-mode data have been acquired since its publication, the dataset is still significant in size 
(116 spheroidal and 30 toroidal modes), carefully checked, and well presented. Compiling 
normal-mode frequency and Q data is a very substantial and intricate effort in itself (e.g., Laske 
& Widmer-Schnidrig, 2009), and our objective here is only to look at a well-established dataset 
from a new physical standpoint. In this way, we can also directly compare our results to the 
previous inversions, three versions of which were shown by Widmer et al., (1991). 

In order to produce the forward kernels, similarly to Widmer et al. (1991), we used the 
Mineos package currently distributed under an open-source license by the Computational 
Infrastructure for Geodynamics (http://geodynamics.org/cig/). This code has a long history of 
development, starting from J. F. Gilbert in about 1966 and major enhancements by J. Woodhouse 
in 1980, followed by many improvements and maintenance by G. Masters, M. Ritzwoller, and 
M. Barmine since then. We only used the main Mineos program for computing the normal-mode 
frequencies and eigenfunctions, which were further rescaled according to the normalization 
convention of Dahlen & Tromp (1998) and checked for energy equipartitioning. We used the 
elastic part of PREM model without oceans, which was different from the study by Widmer et al. 
(1991), who used an earlier elastic model 1066A (Gilbert & Dziewonski, 1975). Nevertheless, as 
Widmer et al. (1991) noted, the selected modes should not be very sensitive to the detail of the 
elastic structure. Further processing of the eigenfunctions, including interfacing with Octave for 
inversion, was performed by the “well-log” part of our IGeoS package (Morozov, 2008a; 
Morozov & Pavlis, 2011). 

The spherical-Earth eigenfunctions U, V, and W (Dahlen & Tromp, 1998) corresponding 
to four groups of selected modes are shown in Figure 3. Note that each group has a characteristic 
general pattern of amplitude variations with depth. In particular, radial modes are relatively 
uniformly distributed in depth (Figure 3a), and the energy distributions within the fundamental 
modes nS0 progressively shift toward the surface with increasing radial numbers n, which also 
correspond to increasing oscillation frequencies (Figures 3b, d, and e). 

Direct observations from the data 

Some constraints on the resulting models (10), (11) can be derived directly from the 
observed attenuation data (Figure 4). Conventionally, such data are shown in the form of 
q = 1000Q-1, which is cross-plotted against modal frequencies in Figures 4b and d. However, as 
demonstrated on a number of datasets (Morozov, 2008b, 2010a, b), reverse transformation of 
such Q-1 data into the temporal attenuation coefficient,  = fQ-1, often reveals data trends that are 
simpler and often remain unnoticed in the form of a frequency-dependent Q-1. Such (f, ) cross-
plots for the data of this study are shown in Figures 4a and c. Note that in normal-mode 
observations,  represents an estimate for the modal peak in the amplitude spectrum, which is 
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measured directly and from which the Q-1 is inferred. In theoretical modeling, also represents 
the primary variable, which is the imaginary part of complex frequency. Therefore, the entire 
modeling, inversion, and interpretation can be conducted in the form of , and similarly to the in 
situ Q, the use of modal Q is not required. 

In the generalized model (11), because of the time derivatives, the characteristic 

frequency dependence of each term is , ,2 k

i
   . Because each of these terms must be non-

negative, this would lead to the corresponding increase in the observed d/d with frequency. On 
the other hand, the observed attenuation coefficients for spheroidal modes (grey dotted lines in 
Figure 4a) show near-linear trends at f0 < 2.5 mHz and f0 > 3.5 mHz, similar to the empirical 
linear (f) trends suggested from many datasets by Morozov (2008b, 2010a–c). Radial and 
fundamental spheroidal modes with f0 > 2.5 mHz are close to the quadratic trends   2 or 
Q   (dashed lines in Figures 4a and b). The fundamental toroidal modes (Figure 4c) are 
inconsistent with a   2 trend and strongly suggest a near-linear dependence. 

The empirical observations above suggest that exponents k,, and in (11) should be 
variable with depth. In the iterative inversion process described in the following section, we 
therefore selected = 1 within the core and  = 0.6 within the mantle. Thus, the observed quasi-
linear behaviour of (f) (Figures 4a and c) shows that energy dissipation within the mantle is 
almost “dry.” Such behaviour of mantle  may generally be expected from the dry-friction force 
D in (6) increasing with pressure (Knopoff & MacDonald, 1958). Within the liquid core, a 
“fluid-” type dissipation also appears reasonable, which is also supported by the attenuation 
coefficients of radial modes showing a near-2 frequency dependence (Figure 4a).  

Inversion 

In the inversion, we focused on the principal structures within the mantle and look for 
minimal, best-constrained features of the model. Only the shear viscosity parameter  was 
considered, and eqs. (12) were discretized by using a set of basis functions of radius, r. The inner- 
and outer core and the crust were represented by constant- layers, and between these layers, 
(r) were viewed as a continuous piecewise-linear function of radius (Figure 5a). Because these 
basis functions j(r) satisfy   1j

j

r  for any r, eqs. (12) can be written in matrix form as:  

χ Lη , where:    2 2
2

0

4 R

nj ij ij r j
n r total n

L r r dr
E

    
 

     ,   (30) 

R denotes the radius of the Earth, and the integral is evaluated for oscillation mode n (here, n 
denotes both the radial and azimuthal mode numbers). Vector  in this equation contains the 
values of viscosity at the nodal points, between which the viscosity is linearly interpolated. To 
reduce the risk of numerical underflow, model parameters j and Lnj were re-scaled to ensure 
max 1nj

n
L   for every j. Vector  consists of the observed values of n for each mode divided by 

the corresponding measurement uncertainty, n (Widmer et al., 1991). 

Equation (30) was solved subject to the constraint   0 at all nodes by using an iterative 

backprojection-type method. Starting from the least-squares inverse,   1T T



η L L L χ , we 

replaced the inverse matrix with its diagonal:   1
T Tdiag


   η L L L χ , and applied this inverse 

iteratively: 
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  1
1 1i i T T idiag  


        η η L L L χ Lη ,   (31) 

where i is the iteration number, and parameter   0.1–0.3 is used to “slow down” the approach to 
the solution. After each iteration, solution (31) was trimmed by replacing negative values of 
 with zeros. 

Multiple inversions (31) were performed while testing for the optimal placement of depth 
nodes (Figure 5a) and exponent  within the depth intervals mentioned above. During the tests, 
we did not only try minimizing the total squared error for the entire dataset, but sometimes 
sacrificed it to improve the fit within each of the mode groups (Figure 6, bottom). In particular, 
radial modes, apparently as the least represented in the data, have the greatest misfits. The 
resulting model is shown in Figure 5b. The squared normalized data misfit for this model, 

 2model

1

N

n n
n

e N 


  , equals 6.7, and for the radial, spheroidal fundamental, overtones, and 

toroidal modes, the misfits are 21.6, 2.2, 7.0, and 6.8, respectively. The data fit is thus poorer than 
in QM1 (e  2.0; Widmer et al., 1991) but better than for PREM (e  17), and appears reasonable 
overall (Figure 7), considering our modest goal of making the first step in a completely different 
physical picture of attenuation. 

The key features of the seismic viscosity model (Figure 5b) appear to be robust and 
supported by the data: 1) very high viscosity of the lithospheric lid and the crust; 2) viscosity 
generally increasing from the upper to lower mantle, with several (two in the inversion shown 
here) zones of reduced viscosity, and 3) zero viscosity within the outer core. Broadly, the upper 
mantle of this model is similar to model QM1 (Figure 5b), although their quantitative comparison 
appears difficult. As anticipated at the beginning of this article, our model allows some elastic-
energy dissipation within the top of the outer core, although the extent and shape of this zone is 
poorly constrained.  

The relative strength of attenuation inverted within the inner core is much lower than in 
QM1 (Figure 5b). The inner-core  is constrained by spheroidal overtones (Figure 8), and it 
would be useful to estimate whether this  would significantly increase if we could fit the 
overtones more accurately. To estimate this potential increase, we compared the residual data 
errors to the columns of the forward kernel L corresponding to the core layers (Figure 8). The 
root-mean square amplitude of L for these overtones is L  0.17, and estimating the unmodelled 
error of overtone  as approximately   2.0 (Figure 8), we obtain the corresponding error of  
as   L  12. A model with the attenuation within the core increased by the amount of this 
error is shown by thick dashed lines in Figure 5b. As we see, this correction is relatively 
insignificant, and  within the inner core should indeed be at least 5–10 times lower than within 
the upper mantle. 

As our model suggests that the inner-core attenuation is ~10 times lower than in model 
QM1 (Figure 5b), it appears to be in an even stronger conflict with body-wave dispersion studies. 
Cormier et al. (1998) noted that when corrected for the frequency dependence of Q, the inner-
core Q  110 in model QM1 gives a P-wave 1 0.00128PQ  , which is too low for explaining the 

interpreted body-wave levels 1
bodyQ  from ~0.0025 to 0.005. Cormier and Li (2002) suggested 

scattering as the likely mechanism of the additional body-wave attenuation within the inner core. 
However, the above argument is again entirely based on the viscoelastic model. If we are not 
constrained by this model, the 1

PQ    dependence (eq. (25) and Figure 4a) would readily 
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reconcile the relatively high 1
bodyQ  and low attenuation of free oscillations. Frequency 

dependencies of the inner-core t* values from PKIKP observations by Doornboos (1983) also 
show that the   2, 1

PQ   trend is a good approximation for the inner-core attenuation 

(Figure 9). Taking fbody  0.1 Hz and ffree  3 mHz as the characteristic frequencies of these 
observations and the higher estimate for 1

bodyQ above, the free-oscillation 1
PQ  should equal ~10-4, 

from which 1 42 10Q
   . This is ~45 times lower than in model QM1 and ~60 times lower than 

in PREM. Thus, the anelasticity of the inner core should indeed be weak (Figure 5b). Scattering 
within the inner core (Cormier and Li, 2002) and near its boundary should further attenuate body 
waves and decrease the requirement for viscous energy dissipation. 

The parameterization selected in our inversion was relatively crude (14 parameters 
compared to 27 in model QM1; Widmer et al., 1991) and selected to generally correspond to the 
radial periods of the eigenfunctions (Figure 3). Numerous experiments with this parameterization 
showed that increasing the detail of sampling of the upper mantle reduce the data misfits only 
slightly while creating models with strong depth variations. Qualitatively, the cause of such 
variations can be seen from the forward kernels for viscosity (Figure 6). Scaling in these plots is 
roughly proportional to the 1:6:2:1.3 ratios of the attenuation coefficients of the fundamental 
spheroidal, radial, spheroidal overtones, and toroidal modes, respectively, at ~4 mHz (Figures 4a 
and c), so that equal amplitudes in these plots correspond to approximately correct relative 
attenuations of these modes. Most of the response in the observed attenuation coefficients comes 
from the range of radii of 5800–6300 km; at the same time, the contributions from this region 
underestimate the radial-mode  (compare Figures 6a and b). The inversion therefore tends to 
place strong bands of attenuation below this depth, and the radial-mode  ends up somewhat 
overestimated (Figures 6a, bottom, and 7a). In summary, although the inverse problem is 
underconstrained and allows significant uncertainties, the data for the different modes are also 
somewhat inconsistent. Such data conflicts could be resolved by introducing additional detail into 
the model; however, this should apparently be done with an account for the 3D structure of the 
upper mantle. 

Discussion 

The model presented here is far from being complete and only represents an illustration 
of the change in the picture of Earth’s attenuation that arises from replacing the viscoelastic 
medium Q with mechanical quantities. Many questions need to be answered before a more 
detailed model can be constructed and compared to the existing Q models in detail. First, our 
forward kernels (12) differ from the traditional kernels for q = 1000/Q, which are inferred from 
the phase-velocity kernels by using the correspondence principle. As argued before (Morozov, 
submitted to Phys. Earth Planet. Inter.), such phase-velocity kernels overestimate the amount of 
total dissipated energy, and therefore we can expect an increase in the in situ attenuation levels in 
the new model.  

Second, frequency dependencies of the forward kernels are inherently different in the 
present and the Q-based approaches. In viscoelastic inversions, such as QM1 (Widmer et al., 
1991), a constant Q is often assumed, which corresponds to energy-dissipation rates proportional 
to frequency. For free oscillations, this assumption is equally difficult to support or negate, 
because every normal mode has only a single frequency. In our model, the approach to this 
problem is conceptually different. Frequency dependence of the energy dissipation rate is not 
specified (and in fact, undefined at all) but arises from the selected functional form of the 
dissipation function (11), which is based on fundamental symmetries of the dynamic system in 
the time-spatial domain. Therefore, in the Q model, the near-linear increase of attenuation with 
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frequency arises from the postulated constant Q, whereas in our model, this increase follows from 
the spatial variations of the dissipation kernels with frequency (Figure 6). Interestingly, a Q-type 
model is easier to fit to the fundamental-mode data, because its built-in frequency dependence 
mimics the observed near-linear (f) (Figure 7). We tested this by replacing the  2 dependence 
of the dissipation function (10) with , which allowed reducing the data error to e  2.5 in the 
inversions. However, this was achieved at the cost of violating the physical principles of the 
model and making viscosities frequency-dependent (Figure 2b), which does not appear as an 
acceptable approach. 

Interpretation in terms of a rigorous mechanical property (viscosity, i.e., traction per unit 
of deformation rate) is a major advantage of the proposed model. Both viscosity and elasticity are 
naturally incorporated in rigorous mechanical formulations such as described above, and the same 
quantities represent the key attributes of many geodynamic models. By contrast, the in situ Q 
remains a quantity designed specifically for explaining the seismic data, and only within the 
viscoelastic model. At the heart of this model, there lies the notion of material memory, which 
“…is hardly satisfying in view the absence of any observations of memory phenomena in the 
macroscopic behaviour of matter” (Knopoff & MacDonald, 1958). By contrast, the mechanical 
model above explains energy dissipation and many other phenomena by general physical 
principles.  

As shown above, the absolute values of  are difficult to directly compare to Q, and so 
let us check whether the trends of their variations may be correlated. Our model (10)–(11) 
suggests that zones of increased viscosity within the mantle should exhibit a lower Q, i.e. plane 
S waves in them should dissipate faster. However, some authors (Lawrence & Wysession, 2006) 
used an opposite correlation, which was apparently based on an expectation that a more viscous 
part of a fluid should deform less when a wave passes through it. However, such decreased 
deformation means lower amplitudes and still implies a greater relative portion of energy 
dissipated, in accordance with eq. (10). Therefore, Q should still be reduced within viscous parts 
of the medium.  

A comparison of the seismic viscosity model with several mantle viscosity profiles 
derived from geodynamic studies reveals some interesting parallels (Figure 10). Compared to 
PREM and QM1, our model suggests much stronger layering, which is similar to the layering in 
geodynamic models. This correlation is particularly notable near the surface and within the radial 
range of ~ 3500–5000 km (Figure 10). This suggests that such layering could indeed be present 
within the lower mantle. At the same time, the range of  variations across the mantle in seismic 
models spans about an order of magnitude, whereas geodynamic models show viscosity 
variations by 2–4 orders of magnitude. The absolute values of seismic are also 11–12 orders of 
magnitude lower than those of its geodynamic counterpart. Qualitatively, the latter fact can be 
understood if we note that the geodynamic viscosity represents the resistance to persistent mantle 
flows occurring at the time scales of ~105 years, whereas describes the internal friction in 
reversible deformations at time scales less than 1 hour. One can say that in geodynamic models, 
the mantle is treated as a fluid with a near-solid behaviour, whereas in our model (10)–(11), we 
regard the mantle as an elastic solid with some fluid viscosity. The level of M  1014 Pas 
estimated from laboratory creep above is intermediate between these two values, which also 
appears reasonable. However, such large range between the values of seismic, lab and 
geodynamic viscosities deserves further quantitative analysis. 

The model presented here is only an initial attempt and poses numerous questions for 
further studies. In particular, the model needs to be refined to allow constraining the viscosities of 
the inner and outer cores, which should be done concurrently with accounting for the 3D structure 
within the mantle. The physical mechanisms of attenuation, and in particular the selections of the 



17 

power-law exponents  in eq. (11) need to be understood and improved. Relations to the 
attenuation of surface, body, ScS multiples, PKIKP dispersion and other effects used in 
attenuation studies need to be clarified. The strictly mechanical formulation should provide a 
basis for creating a unified description of attenuation for all seismic waves. In addition, the new 
model may have implications not only for the attenuation, but also for the more basic structural 
and geodynamic models of the Earth. If some energy dissipation occurs within the outer core, this 
dissipation should change the distribution of stresses within the Earth and consequently modify 
the normal-mode frequency spectra. Therefore, the internal structure of the Earth may need to be 
altered as a result of the new physics introduced in this model. Finally, the relations of the new 
model to the existing 1D and 3D Q-factor inversions are unclear, principally because of he 
differences in their physical principles and frequency dependencies. These problems are still not 
addressed in the present solution and will need to be considered in the future. 

Conclusions 

Observations of elastic-wave attenuation within the Earth can be explained variations of 
viscosity instead of the commonly used Q and QK factors. Interpretation in terms of standard 
mechanical rather than viscoelastic parameters allows straightforward comparisons between 
different wave types and physical processes. In particular, the seismic viscosity model can be 
directly compared to the viscosities used in geodynamic models. All creep phenomena and 
attenuation of traveling and standing waves are also rigorously described by the viscosity model. 
The level of viscosity required for explaining the laboratory creep is ~1014 Pas. Comparison to 
the traditional Q models of the Earth is less straightforward because of the frequency 
dependencies built into the Q paradigm. 

Free-oscillation data by Widmer et al. (1991) transformed into the attenuation-coefficient 
form show near-linear trends of attenuation coefficients with frequency, which suggests a partly 
“dry” (Coulomb) friction within the mantle. Within the core, the viscosity appears to be of a more 
“wet” type, which is typical, for example, to saturated porous sedimentary rock. This is supported 
by observations of the attenuation coefficients proportional to squared frequencies for both radial 
normal modes and PKIKP body waves.  

Inversion of the normal-mode Q dataset suggests pronounced layering of viscosity within 
the Earth, and particularly within the lower mantle. Seismic viscosity is ~301010 Pas within the 
mantle lid, ~6–101010 Pas within the upper mantle, and 6 to 201010 Pas within the lower-mantle 
layers. Within the outer core, the viscosity is undetectably low in the present model, and the 
inner-core viscosity is ~0.5–11010 Pas. Thus, by contrast to the existing models, the attenuation 
within the inner core should be much weaker than within the mantle. 
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Figures 

 

Figure 1. Quasi-static creep model in eqs. (16)–(21). Constant stress is applied at time t = 0 and released 
at t = T. After a rapid equilibration over time intervals 1, the stress becomes partly compensated 
by viscous forces leading to initial (unrelaxed) strain U. The relaxation time is denoted . At t 
>> , the strain increases to relaxed value of R, and viscous forces disappear.  

 

 

 

 

Figure 2. Global models of seismic anelasticity QM1 (Widmer et al., 1991; solid lines) and PREM 
(Dziewonski & Anderson, 1981; dashed lines): a) in q = 1000/Q form; b) transformed to 
viscosities  and  by using eqs. (25) and (31). Black lines correspond to shear attenuation (q 
and ), and grey lines show the bulk attenuation (qK and , respectively). In plot b), the 
conversion is shown for frequencies of 2 mHz (thick lines) and 6 mHz (thin lines). Label CMB 
indicates the core-mantle boundary. 
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Figure 3. Normal modes in elastic PREM model: a) radial, b) and e) fundamental spheroidal, c) and f) 
spheroidal overtones, and d) fundamental toroidal. In plot b), dashed lines indicate the U scalar 
for modes with frequencies f0 < 2.5 mHz, grey lines correspond to 2.5 mHz < f0 < 3.5 mHz, and 
modes with f0 > 3.5 mHz are shown in black. Grey arrows indicate areas of strong shear strains 
not accounted for in viscoelastic inversions.  
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Figure 4. Normal-mode attenuation used in this study (Widmer et al., 1991): a)  for spheroidal modes, b) 
the same data in the form of q = 1000/Q, c) and d) similar plots for toroidal modes. Radial, 
fundamental, and toroidal-mode data are shown by different symbols (legend). In plot a), note the 
difference in scales for the fundamental and other modes. Dashed lines in plots a) and b) indicate 
the   2, q   trends for radial and higher-frequency fundamental modes suggested in the 
text. Grey dotted lines in plots a) and c) show empirical linear trends in (f). 
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Figure 5. Inversion for : 1) piecewise-linear basis functions, b) resulting model. For comparison, model 
QM1 converted to  at 2 mHz (Figure 2b) is also shown (grey). Thick dashed lines indicate the 
estimated upper bounds on  within the core estimated from the residual errors of the attenuation 
coefficients fro spheroidal overtones. 

 

 

Figure 6. Depth distributions of  kernels for different groups of modes: a) radial, b) fundamental 
spheroidal, c) spheroidal overtones, and d) fundamental toroidal. Bottom plots show histograms 
of the corresponding data misfits resulting from model in Figure 5b. 
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Figure 7. Data fit in the final model (Figure 5b): a) spheroidal modes, b) toroidal modes. Symbols 
indicate the measured attenuation coefficients as in Figures 4a and c, grey symbols are the 
corresponding modelled values. 

 

 

 

 

 

Figure 8. Normalized data errors in the final model (grey line). Mode groups are indicated. Black lines are 
the columns of the forward kernel L for the inner core (solid) and outer core (dashed). 
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Figure 9. Inner-core attenuation data from PKIKP to PKPBC spectral ratios between 147 and 151 
source-receiver ranges by Doornbos (1983): a) the original t* data; b) the same data in the 
attenuation-coefficient form * = ft*. Solid lines indicate the trend interpreted by Doornbos 
(1983), dashed lines show the quadratic trend *  2, which is equivalent to t*and Q-1  . 

 

 

 

 

Figure 10. Mantle viscosities: a) from inversions of free-oscillation seismic data (labelled); b) from 
geodynamic studies: 1) Hager & Richards (1989), 2) Forte & Mitrovica (2001), 3) Forte & 
Mitrovica (1996), and 4) McNamara et al. (2003). 

 


