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Abstract 

Despite its broad acceptance, the viscoelastic model of anelasticity is problematic 
when applied to planetary deformations and seismology. This model presents the stress-
strain responses phenomenologically, as time-dependent “material memory” or “intrinsic 
transient,” whereas in reality, they are controlled by the thermodynamic environments of 
deformation and spatial interactions. We describe rigorous physical approaches for the 
evaluation of the attenuation (damping) coefficients for planetary oscillations and seismic 
waves. Instead of the material memory and quality factor (Q), several specific 
mechanisms of mechanical-energy dissipation are recognized: 1) solid and pore-fluid 
viscosity, 2) thermoelasticity, 3) several types of kinetic processes, and 4) structural and 
scattering effects. Each of these processes leads to characteristic frequency dependences 
of the attenuation coefficients and apparent Q for various types of oscillations. 
Thermoelastic and kinetic processes can produce absorption peaks in Q-1, and scattering 
is also likely to produce the often-observed “high-frequency background” of Q-1 
decreasing with frequency. For solid viscosity, Q-1  2-1, where  is the rheologic 
exponent of friction which is close to 0.5–0.63 for the Earth’s crust and mantle and ~1 for 
the core. A unified rheologic description for solids and fluids is proposed by using the 
Lagrangian formalism. This description explains the elastic-to plastic transition by the 
nonlinearity of the dissipation function and is consistent with seismic, tidal, lab, and 
geodynamic observations. Because of the interpreted near-dry friction within Earth’s 
materials, solid viscosity increases with temperature and decreases with pressure for 
near-elastic deformations but behaves oppositely for plastic deformations.  
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1 Introduction 

Most observations of seismic-wave and tidal energy dissipation are presently 
explained in terms of the viscoelastic theory [Romanowicz and Mitchell, 2009; 
Cormier, 2011]. The key concept of this theory is material memory, which implies that 
most Earth’s materials exhibit time-delayed responses to deformations. Fading memory 
in Earth’s and presumably other planetary materials is believed to span times from     
~10-9–10-6 s to as long as ~106 years [e.g., Jackson et al., 2005]. Mathematically, this 
property is described by empirical deformation laws [e.g., Andrade, 1910], time-
dependent viscoelastic moduli, or frequency-dependent quality factors, usually 
denoted Q. This model is used in all standard texts on seismology [such as Dahlen and 
Tromp, 1998, and Aki and Richards, 2002] and Earth materials science [e.g., 
Karato, 2008]. Geophysicists tend to believe that material memory and Q, together with 
derived attributes such as q = Q-1 and t*, is the only and correct way to describe 
mechanical-energy dissipation within the solid Earth. Seismological characterizations of 
anelasticity using the material Q factors also influence correlations with mantle 
viscosities inferred from geodynamic studies [Anderson, 1965; Karato and 
Spetzler, 1990; Sato, 1991] and geodetic models of planetary tides [e.g., Efroimsky and 
Laney, 2007; Agnew, 2009].  

The viscoelastic approach is so strongly favored in geophysics that the physical 
framework for anelasticity in solids is poorly known. Nevertheless, this framework is 
well established in theoretical physics [Landau and Lifshitz, 1976, 1986, 1987] and 
routinely used in the more general treatments of materials [Hayden et al., 1965; Guéguen 
and Boutéca, 2004]. This framework covers a much broader range of phenomena than lab 
experiments with rock samples, tides, or seismic waves; it integrates all physical 
interactions and extends into chemistry and physical kinetics [Lifshitz and 
Pitaevskii, 1981]. The key difference of the physical framework from viscoelasticity is in 
its being based on several fundamental principles, which are also common to other 
physical theories:  

1) The universal concepts of energy, entropy and the Hamiltonian principle of least 
action. By contrast, viscoelasticity uses heuristic generalizations of empirical 
creep laws and differential equations of motion. 

2) In mechanics, all interactions are local and instantaneous, and all “constitutive” 
parameters are real-valued and time- and frequency-independent. 

Importantly, the physical framework uses neither the in situ Q nor material memory.  
Instead of the “blanket” Q specialized in only describing the phenomenology of creep or 
damped harmonic oscillations, anelasticity and plasticity is explained by multiple, 
specific physical factors. These factors are meaningful and measurable in many other 
physical interactions. 

The concepts of creep functions, material memory, and Q were originally created 
for convenience, as tools for describing rock-creep observations in the lab [Nowick and 
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Berry, 1972, p. 8; Lomnitz, 1957; Karato, 2008, Chapter 3]. These concepts are indeed 
very convenient for experimentalists, because they explain the observed creep histories or 
oscillation Q’s by practically the same properties attributed to the material. The resulting 
parameterization is very rich (time-variant compliance functions assigned to every point 
of the medium), which allows fitting (usually limited) data well. However, the relation of 
this model to the physics of solids and fluids still appear to be insufficiently understood.  
Physical justifications for viscoelasticity are extensively discussed by many authors in 
materials science, but only from the aspect of chemical kinetics [e.g., Nowick and 
Berry, 1972; Findley et al., 1976; Cooper, 2002, and references therein]. From this point 
of view, it is clear that kinetic processes occurring in solids can produce internal 
mechanical friction. However, kinetic models only deal with spatially uniform, quasi-
static stress environments, in which the issue of spatial heterogeneity remains unnoticed. 
This aspect of spatial heterogeneity is critical for seismology and the theories of 
planetary oscillations. As shown in Morozov [2011a, submitted to AG] and below, this 
aspect is in fact highly problematic for the viscoelastic model. 

One of the fundamental problems in planetary (including geo-)  physics consists 
in merging the laws of plastic flow of materials (known as rheologic laws) with those of 
the near-elastic behavior in weak deformations (the Hooke’s law) [e.g., Turcotte and 
Schubert, 2002; pp. 329–330]. Unfortunately, in combining these concepts, the 
traditional emphasis is made on the differences of the time scales of deformations, and 
also on “mechanical models” of the medium, implemented by various dashpot-spring 
arrangements [e.g., Cooper, 2002; Carcione, 2007]. An assumption of a time-scale 
dependence of rheology produces a qualitatively correct phenomenology (i.e., creep and 
wave attenuation) but may significantly distort the picture of physical interactions. For 
example, the Maxwell model of a viscoelastic material presents its deformation as a sum 
of the “elastic” (e) and “viscous” (fluid, f) strains [e.g., Turcotte and Schubert, 2002; 
pp. 329–330]: 

e f    .  (1) 

Cooper [2002] calls such summation of strains the “parallel” chemical-kinetic model, 
which also corresponds to mechanical elements arranged in a series (Figure 1a). The 
elastic response to a constant stress () is linear and static: e  , but a viscous fluid 

responds with a constant strain rate, f  , leading to f  increasing with time. When 

combined in (1), the strain is shown as responding to the stress at all preceding times by 
means of a time-dependent compliance function, J(t) [e.g., Dahlen and Tromp, 1998]:  

     
t

t J t d    


   . (2) 

In materials science, this linear relation of  to  is often presented via the response of 
step(t) to a step-function stress,    0t t   . This response is often illustrated by 

mechanical models, such as the Burgers solid (Figure 1d) [Nowick and Berry, 1972], 
combinations of standard linear solids [Liu et al., 1976], or Andrade function [Gribb and 
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Cooper, 1998]: 

  0

1 n
step

ss

t
t t

M
  


 

   
 

. (3) 

In this expression, the first term is the static (elastic) response with modulus M, the 
second term is the “intrinsic transient” (with the corresponding empirical magnitude  
and exponent n  1/3 to 1/2), and the third term describes the steady-state creep with 
viscosity ss. By using the Fourier transform of J(t), frequency-dependent Q-1() is 
defined as the ratio ImJ()/ReJ() [Findley et al., 1976, p. 103]. 

However, in classical mechanics, strains do not add up as shown in eqs. (1)–(3), 
and the conceptual approach is actually opposite [Landau and Lifshitz, 1986]. The 

displacement field u and its derivatives   2ij i j j iu u      (strain tensor) represent the 

independent state variables describing the deformation of the medium, and they are not 
decomposed into a priori elastic or fluid components. When describing the dynamics of 
the medium, u is arbitrary, and the stress field is uniquely determined by this variable and 
its time derivative, u , but not vice versa. Even if in some cases the displacement is 
viewed as a sum of solid and fluid parts (as in section 3.2 below), these strains are 
viewed as independent, and the associated stresses are not equal. They are not connected 
in series as mechanical models in Figure 1. 

In mechanical descriptions of materials, there exist no notions of “compliance” J 
(eq. (2)) or characteristic creep function (3). Relations like (1)–(3) only arise as solutions 
for the strain field in a single special case, which is a uniform and constant stress in a 
uniform medium. This is the case typically considered in rock-creep experiments and 
models of chemical kinetics [Nowick and Berry, 1972; Cooper, 2002; Karato, 2008; see 
also subsection 4.4 below]. However, this case cannot be readily extrapolated to 
deformations of heterogeneous bodies. The compliance (2), creep function (3), and the 
corresponding Q-1() in fact only represent the time history of deformation for some 
specific body, under certain (usually poorly known) thermal conditions. Also, kinetic 
processes represent not the only and likely not the most important cause of mechanical-
energy dissipation (section 4 below). 

Because our suggestion for the need to revise the concept of planetary anelasticity 
is strong and contradictory to much what was written on this subject in materials science 
and seismology, we have to devote significant attention to explaining the approach. This 
is done in the present Part I of this study. In section 2, we describe some of the most 
obvious rationale for questioning the viscoelastic approach. In section 3, we outline the 
physical theory of macroscopic solid and fluid continua which (as argued here) should 
replace the viscoelasticity. From this analysis, we infer the general relation of the 
seismic Q to viscosity and the meanings of the viscoelastic mechanical models. In 
section 4, we summarize several key mechanisms of anelasticity: 1) “rheologic” (solid 
and fluid) and pore-fluid viscosities, 2) thermoelastic dissipation, 3) kinetic processes, 
and 4) effects of structure and scattering.  From these models, we derive the general 
frequency dependences of the observable attenuation (damping) coefficients for several 



5 

physical mechanisms of anelasticity. In sections 5 and 6, we discuss the sensitivity of 
viscosities (and Q) to pressure and temperature, and suggest a frequency dependence of 
the attenuation coefficient and Q for a planet.  

Our overall conclusion is that the viscoelastic model can should not replace 
mechanics in application to solid or fluid planets. The classical physical framework [e.g., 
Landau and Lifshitz, 1986] allows solving seismological and tidal, as well as many other 
problems. The fading-memory constitutive laws, “intrinsic transients,” frequency-
dependent medium parameters, and the “material” Q-factors are therefore not required. 
Moreover, by abandoning these concepts and using the more general attenuation 
(damping) coefficients, a simpler, clearer, and physically more consistent picture of 
mechanical-energy dissipation is obtained. In Part II of this study, we utilize this theory 
to derive the frequency dependence of tidal Q values for the Earth and Moon. 

2 Motivation: viscoelasticity, thermodynamics, and mechanics 

In the macroscopic physics of materials, thermodynamics provides the most 
important guiding principles [Hayden et al., 1965]. Unfortunately, the viscoelastic model 
incorporates all thermodynamic relations in the empirical time dependences (2) or (3), 
which makes them not easy to discern. For example, the viscoelastic moduli are 
conventionally differentiated by the “time scales” of their operation [Nowick and 
Berry, 1972, p. 8; Jackson et al., 2005]. The “relaxed” modulus, MR, is defined as the one 
acting at t → , and the “unrelaxed” modulus MU ≥ MR operates at short time scales 
(t → 0). However, in reality, the difference between these moduli is thermodynamic and 
not related to the time scales. For deformations conducted at constant temperatures 
(regardless of their timing), the medium responds with the isothermal modulus, MI 
(Figure 2). For adiabatic processes (again regardless of how early or late in the process, 
but with zero heat exchange), the adiabatic modulus MA is in effect. Because of the 
dissipation of heat, the deformation cycle is irreversible, and therefore MA ≥ MI (Figure 2) 
[Hayden et al., 1965]. For bulk modulus M  K, the ratio of the adiabatic and isothermal 
moduli depends on the temperature, T, thermal expansion coefficient, , and the specific 
heat at constant pressure, Cp [Landau and Lifshitz, 1986, p. 15]:  

2

1A A

I p

K K T

K C


  . (4) 

 This ratio determines the relative energy dissipation during hysteresis (gray area in 
Figure 2a).  

Apart from its steady-state creep term, the time-dependent (t) in eq. (3) [Gribb 
and Cooper, 1998] could in principle be entirely thermoelastic, i.e. caused by the 
temperature T in eq. (4) rapidly rising during stage AB and slowly decreasing during 
stage BC in Figure 2. Such dissipation occurs even in a perfectly elastic material, and it 
depends on how the body is thermally insulated during deformation, and also on its shape 
and thermal conductivity. If kinetic changes, such as diffusion [Gribb and Cooper, 1998], 
occur within the material under stress, additional terms would also contribute to the KA/KI 
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ratio in eq. (4).  In any case, the response of a material to stress is not a function of time 
but depends on the thermodynamic environment. 

Another serious problem in applying the viscoelastic approach to planets consists 
in its placing zero shear dissipation in liquid zones. For example, in all global Q models 
of the Earth [e.g., PREM by Dziewonski and Anderson, 1981], shear dissipation within 
the liquid outer core is set to zero merely because its shear modulus equals zero. 
Nevertheless, the Earth’s outer core possesses viscosity and substantial shear 
deformations, and therefore it clearly dissipates the shear energy. This shows that some 
types of energy dissipation cannot be included in the time-retarded viscoelastic moduli. 
Two more examples of energy dissipation inconsistent with viscoelasticity are given in 
Morozov [submitted to AG]. For planetary applications, it is very inconvenient that 
viscoelasticity only applies to solids and uses so different terminology compared to the 
mechanics of fluids (Q-1 versus viscosity). Because fluids and solids are intermixed in the 
compositions of planets, and their mechanical behaviors are similar, it is desirable to find 
a unified approach to their internal friction. Such an approach is readily supplied by the 
“physical” model in the following section.  

3 Mechanics of anelastic solids and fluids 

Classical mechanics is formulated in the time domain, which is already 
fundamentally different from viscoelasticity. The response of an elastic medium to 
deformation is described by the functional form of its Lagrangian density, which is a 
quadratic functional of displacements ui and velocities iu : 

 ,
2 2i i kk ll ij ijL u u
       u u   ,  (5) 

where i = 1, 2, or 3 denotes the spatial dimensions, and summations over all pairs of 
repeated indices are assumed. Parameters  and  are the Lamé elastic constants, and  is 
the mass density. Most importantly, all medium parameters (,  and ) are real-valued 
and (normally) time-independent. In addition, the density, shear modulus  and the bulk 
modulus 2 3K     are non-negative: 0  , 0  , 0K  , which makes the kinetic 
and potential energies in expression (5) real and non-negative for all deformations. By 
replacing ij with a combination of the dilatational strain,  = kk, and deviatoric strain, 

3ij ij ij     , the Lagrangian density becomes expressed in terms of the bulk and 

shear moduli: 

2

2 2i i ij ij

K
L u u

         .  (6) 

The Lagrangian completely describes the dynamics of the elastic medium. It is 
most important to see that the mechanical properties of the medium (including its ability 
to dissipate mechanical energy) are described before any deformations (such as waves) in 
it are considered. This is another conceptual difference from viscoelasticity, in which 
energy dissipation and Q are always associated with some kind of an oscillatory or creep 
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process [e.g., Aki and Richards 2002, pp. 162–163]. 

In order to describe a fluid, we only have to drop the shear-energy part in (6). 
This can be achieved by setting  = 0, as it is usually done. To describe an 
incompressible fluid, we can also take K  , or alternately, drop the 2 2K  term as 

well but constrain all deformations to the dilatation-free case  = 0 (in which case K is 
replaced with a “Lagrange multiplier”). Thus, in terms of conservative forces, fluids are 
not significantly different from solids. As shown below, they are also quite similar in 
terms of the rheologic (viscous friction) and other energy-dissipation laws. 

3.1 Dissipation functions as rheologic laws 

Energy dissipation is not included in the Lagrangian and is described by another 
function, D, called the dissipation function or pseudo-potential [Landau and 
Lifshitz, 1976]. Unlike the potential energy, D principally depends on the strain rates. For 
small deformations, if we assume a viscous-friction force proportional to the deformation 
rate, D should be second-order in terms of ij . Because at this point we have no 

justification for an internal structure of planetary material similar to the model or porous 
saturated rock by Biot [1956] or to any of the mechanical models in Figure 1, we 
construct the dissipation function without internal variables, by generalizing expressions 
(6). When using only ij  in an isotropic medium, the only three rotationally-invariant 

second-order scalar functions are 2 , ij ij    , and  2 3
det  . The last of these invariants 

still leads to nonlinear equations of motion, and similarly to the case of elasticity, it is not 
considered here.  The generalized dissipation function is therefore constructed by 
combining the first two invariants:  

2

2 ij ijD 
          .  (7) 

Here,  and  are the bulk and shear solid viscosities, which were extensively studied 
for metals [Landau and Lifshitz, 1986]. The same dissipation function applies to fluids 
[Landau and Lifshitz, 1987], for which parameter  is called simply viscosity, or 
dynamic viscosity, and  is called second viscosity and often disregarded for 
incompressible fluids. For solids, the dissipation function (7) corresponds to the Kelvin-
Voigt model (Figure 1b). Jeffreys and Ricker studied its mechanical behavior, which they 
called “firmoviscous” [see Knopoff and MacDonald, 1958].  

Spring-dashpot models of the “linear solids” commonly used in viscoelastic 
arguments can be viewed as diagrammatic illustrations of the (L, D) pairs above 
(Figure 1, insets). Note that linear solids often contain “hidden” internal variables, 
denoted  in Figures 1a, c, and d, plus another variable  in Burgers model (Figure 1d). 
These internal variables are responsible for the “realistic” behaviors of such models, such 
as plastic flows and the time delays in developing the “relaxed” elastic moduli. Because 
these internal variables are considered massless (no kinetic-energy terms 2 2m   in the 
Lagrangians; insets in Figure 1), they instantly respond to the external stress rates applied 
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to the whole bodies and are excluded from the equations of motion. However, the 
assumption of zero mass is not very realistic, and detailed physical models [e.g., 
Biot, 1956] show that internal variables usually have inertial effects associated with them. 

The diagrams in Figure 1 also explain the (apparent) dilemma about whether Q-1 
should be correlated or anti-correlated with viscosity, as mentioned in the Introduction. 
For viscoelastic solids (Figures 1a, c, and d), the elastic limit is usually obtained by 
making the viscosity high:   , and this is also the empirical association made in 
seismology [Anderson, 1965; Sato, 1991]. However, in fluid- and solid-state mechanics, 
viscosity is a measure of energy dissipation, and the elastic limit is   0 (Figure 1b). 
This difference is due to the internal variables in the viscoelastic solids. Viscosity  in a 
Maxwell, Zener (standard linear), or Burgers solids (Figure 1a, c, and d, respectively) is 
analogous to the pore-fluid viscosity (see subsection 4.2) and is not the viscosity 
encountered when the rock flows as a whole. An increase of  in Figures 1a, c, and d 
“freezes” the internal variables, and the body becomes elastic. By contrast, viscosity  in 
a Voigt body (Figure 1b), and also  and  in eq. (7) are the solid/fluid viscosities 
experienced in a whole-rock flow. These viscosities are meaningful for tidal and seismic 
deformations and can be compared to the viscosities measured from very slow (e.g., 
glacial rebound or tectonic) flows of mantle rock. It is straightforward to show [e.g., 
Morozov, submitted to AG], that the inverse Q-factor, for example, of an S wave in such 
a medium is proportional to viscosity: 

1
SQ  


  ,  (8) 

where  is the shear modulus and  is the circular frequency. 

From geodynamic and lab studies [e.g., Karato, 2008], it is known that 
Newtonian viscous friction (7) is not appropriate for the Earth’s and presumably other 
planetary mantles. In rocks, friction forces appear to be increasing slower than the strain 
rate. To account for this observation, we introduce exponents  and k into (7): 

 
2

2 2
2

1

2 r ij ij r
r

D





     






  
   

   

    .  (9) 

With such D, the frictional stress associated, for example, with dilatational deformation 
  is: 

12
2

2 r

D


   
 

  

  
       

 
 ,  (10) 

which is proportional to   for Newtonian fluid ( = 1) and constant for dry (Coulomb) 
friction ( = 0.5). A time-scale parameter r is required in this equation in order to 
maintain the correct dimensionality of D. However, this parameter can be absorbed by 
the measurement units for  and selected by convention (for example, equal 1 s). 
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Analysis of the Earth’s free oscillations [Morozov, unpublished] suggest that in its crust 
and mantle, the values of  range from 0.5 to 0.63, and so they are close to “dry” 
rheologies. 

3.2 Unified solid-fluid rheology 

Rocks behave nearly elastically under certain conditions, and under some other 
conditions they flow. Conventionally, such conditions are specified by the differences in 
the time scales of deformations [e.g., Turcotte and Schubert, 2002; Jackson et al., 2005]. 
This point of view is inspired by the observation that most Earth’s materials become 
more “fluid-like” after stress is applied for an extended time. This is illustrated in 
Figure 3, in which the “flowing” rocks occupy the lower-right part of the diagram, where 
the characteristic time scales of deformations  increase. However, such a view may only 
be apparent. Time-variant material properties are actually not required, and the same 
elastic-to-plastic transition can be explained simply by strains exceeding the level of 
0 ≈ 10-4–10-3 (Figure 3). This suggests that a nonlinear rheology can naturally explain 
the apparent “time-scale” dependence of material properties. The fact that materials 
indeed behave non-linearly at strains ~0 is quite clear from lab studies. At such strains, 
the elastic energy is comparable to the energy of bonds between mineral grains, and 
rocks start fracturing and “flowing” when larger volumes are considered. 

3.2.1 Conservative part (Lagrangian) 

If a material exhibits plastic creep with a “viscoelastic” transient (as in eq. (3)), it 
can be described by decomposing the displacement vector into “solid” and “fluid” parts: 

s f u u u , similarly to eq. (1). For example, us could consist in the deformation of solid 

blocks of rock (for example, of its grains), and uf – in relative movements of these 
blocks. Then, the Lagrangians (6) would only apply to us, and for uf, there would be no 
elastic-energy terms (i.e., Kf = f  0):  

2
, , , , , , , , ,2 2 2

fs s
s i s i s s ij s ij f i f i sf ij s i f j

K
L u u u u u u

                ,  (11) 

where additional subscripts s and f correspond to the solid and fluid parts of the 
displacement, respectively. 

In general, recognition of the two variables us and uf, leads to two additional 
complications of the kinetic-energy terms in (6): 1) the values of density in them may be 
different: f ≠ s, and 2) the total kinetic energy may contain cross-terms (with sf  in 
(11)), which intermix the velocities su and fu . Generally, the description would be 

similar to the saturated porous rock model described in subsection 4.2. Fortunately, in 
cases of practical importance, the deformations are either 1) near-elastic (for 
oscillations), for which we can likely disregard uf compared to us, or 2) very slow (for 
creep and tectonic movements), in which case the entire kinetic energy is negligible, and 

s fu u . Thus, it appears that f and sf in (11) should be insignificant in all practical 
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cases, and the conservative part of the mechanical model is simply determined by the 
solid density and elastic moduli (6). 

3.2.2 Dissipation (rheologic) part 

The strain dependence of rheology can be incorporated in the nonlinear 
dissipation function (9) in several ways. For example, the following functional form of D 
appears to account for the observed strains and strain rates of deformations within the 
Earth (Figure 3): 

s fD D D  , (12) 

where the dissipation functions for “solid” and “fluid” deformations are: 

 
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,
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 

      
     

    

      , and (12a) 

 
,

,

2
, ,2 2

, ,2 22

f

ff f f
f r r f ij f ij

r r

D



 

   
 



  
   

 

     . (12b) 

A detailed discussion of the effects of rheology (12) on the interpretation of 
observations is done in Part II. As shown there, exponents  for solid and fluid 
deformations can be taken approximately equal. Note that in Ds, we also introduce a 
power-law dependence on strain. By taking 0 ≈ 10-4,  ≈ 0.47, s, ≈ 0, s, equal ~0.6 
and 1.0 within the Earth mantle and core, respectively, dissipation function (12) 
quantitatively reconciles the glacial-rebound, tidal, free-oscillation, broad-band seismic, 
and lab creep observations for the Earth. Note that it turns out that within the crust and 
mantle, s,  +  ≈ 1, which means that the dissipation functions scales with  as 
approximately 2D  . Therefore, for low strains, energy dissipation within the Earth is 
nearly independent of strain amplitudes. However, this observation may change for the 
Moon or other planets. 

3.3 Elastic and viscous stresses 

Once the functional forms for L and D are selected, the dynamics of the system 
becomes completely described. Elastic stresses within a deformed body are given by 

ij
ij

L



 


, and frictional stresses are: 

 D D


 


 for dilatational, and D

ij
ij

D



 
 

for deviatoric deformations.  (13) 

Note that in the viscoelastic model, such elastic and frictional stresses are both included 
in the “viscoelastic” stress and cannot be separated. In consequence, the strain energy is 
non-unique in viscoelasticity [see section 2.1 in Carcione, 2007]. 
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 From (13), the dissipated power per unit volume equals 

 ij ij
ij ij

D D D
P  

 
  

   
  

   
.   (14) 

This mechanical power dissipated by friction is associated with the “rheologic” 
mechanism of anelasticity in section 4. In addition, several non-mechanical energy-
dissipation mechanisms add up to P. These mechanisms are also discussed in section 4.  

3.4 The Q’s 

As shown in section 4, in all physical models, the inverse Q-factor arises as a 
ratio of the temporal attenuation coefficient () to the frequency of the selected 
oscillation (): 

1 2
Q




  . (15) 

This Q-1 is an apparent (observable) property of the wave. Similarly to , this is also the 
temporal Q-1 [Aki and Richards, 2002]. For a traveling wave, spatial Q-1 can be defined 
similarly: 

1 2
spatialQ

k

  , (16) 

where k is the wavenumber and  is the spatial attenuation coefficient [Morozov, 2010]. 
Expressions (15) and (16) also show that  and  represent the primary attributes of 
attenuation, to which we need to devote most attention.  

4 Mechanisms of mechanical-energy dissipation 

In this section, we outline four groups of physical processes causing mechanical-
energy dissipation: 1) solid and pore-fluid viscosity, 2) thermoelasticity, 3) kinetic 
processes, and 4) scattering and the effects of structure. Only the first of these groups is a 
purely mechanical process, which represents a stress to strain-rate relation and can 
therefore be associated with a “rheologic law.”  In addition to viscosity, many non-
mechanical processes also dissipate mechanical energy. Strictly speaking, they should not 
be called “rheologic,” because the stresses produced by them are generally dissimilar to 
viscous friction and not related to the strain rates. Among such processes, the distinctive 
characteristic of thermoelasticity is the importance of thermal expansion and temperature 
anomalies spreading in space. A broad group of “kinetic processes” includes various 
types of transformations taking place within the local microscopic structure of a material 
occurring under stress. Such processes receive the most attention in viscoelasticity 
[Nowick and Berry, 1972; Karato and Spetzler, 1991; Cooper, 2002]. Finally, the 
distinctive feature of scattering consists in elastic dissipation, i.e., mechanical energy 
being conserved but redistributed in space and time. 
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In the following, many details and illustrations are left aside, and our principal 
goal consists in explaining the characteristic frequency dependencies of  and Q-1 for 
each group of dissipation processes, as summarized in Figure 4. Note that for each of 
these processes, there exists a characteristic relaxation time 1

r   . Consequently, if not 

looking at their physical differences and spatial variations, and staying limited to a 
certain oscillation type, these processes can be (somewhat loosely) treated as viscoelastic 
“relaxation mechanisms” [Liu et al., 1976].  

4.1 “Rheologic” solid and fluid viscosity 

Rheologic equations for a fluid flow are usually written as giving the stationary 
strain rate,  , resulting from a quasi-static stress, . This relation is often taken in the 
power-law form: n   [Karato, 2008]. In more detail including the dependence on 
pressure (p) and temperature (T), the rheologic relation for plastic creep is [Karato and 
Wu, 1993]: 

exp
n m

a aE pVb
A

h RT




         
    

 , (17) 

where A is some pre-exponential factor,  is the shear modulus, h is the grain size, b is 
the lattice spacing, Ea is the activation energy, Va is the activation volume, and R is the 
Boltzmann’s constant. Exponent n ranges from about 1 for dislocation creep to ~3.5 for 
diffusion creep [Karato and Wu, 1993]. 

As mentioned in the Introduction, from the viewpoint of fluid- or solid-continuum 
mechanics [section 3; Landau and Lifshitz, 1986], eq. (17) represents not a constitutive 
law but its inverse, i.e. a solution for a stationary flow under some boundary conditions. 
To describe the viscosity of the medium itself, we need to write the dissipation function 
D, from which the frictional stress is derived, as in eqs. (12) and (13). Thus, the 
dissipation function plays the role of the rheologic law. The above dependence 

1 n   arises from the power-law form of the dissipation function (9) and (12), which 
gives 2 1    for each of the two types of deformation (bulk and shear). For values of n 
from 1 to 3.5, exponents  1 1 2n    vary from 1 to ~0.65, respectively. For a fixed 

deformation amplitude and variable frequencies, ij  , and the attenuation (damping) 

coefficient for volume V of a wave is: 

2

22
2

ij
ijmech V

mech
ij ij

V

D

E

E





 
  




  
 

 
 (18) 

for both bulk and shear deformations in D, where the overbars indicate the quantities 
averaged over a period of oscillation, and angular brackets 

V
 are the volume averages. 

In Figure 4a, such dependences are shown for  = 0.5 and 1, and the corresponding 
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1 2Q    are shown in Figure 4b. 

4.2 Pore-fluid viscosity 

Another instructive and well-developed example is the case of fluid-saturated 
porous medium. In this case, at least a two-phase medium, such as porous rock saturated 
with fluid, is required. By relative movements of the two phases, mechanical energy is 
dissipated, and various kinematic and dynamic effects are produced. We only briefly 
outline the general sense of this theory here, following Bourbié et al. [1987, p. 69–81]. 

In Biot’s [1956] theory, the dimensions of the macroscopic elementary volumes 
are assumed to be small compared to the wavelength, and the deformation is weak. It is 
therefore sufficient to consider only quadratic terms in the volumetric density of the 
kinetic energy: 

2 2
u w

k i i i i uw i iE u u w w u w
          , (19) 

where  w U u   is the “filtration” velocity of the fluid U relative to the rock matrix u . 
The kinetic matrix-fluid coupling parameters  above are determined by the porosity and 
permeability of the rock. For example, u in this expression is the average density: 

 1u s f        ,  (20) 

where s and f are the densities of the matrix and fluid, respectively, and  is the 
porosity. 

Similarly to Ek, the poroelastic dissipation function is also taken to be quadratic in 
filtration velocity: 

2 i iD w w



   ,  (21) 

where  is the fluid viscosity, and  is the absolute permeability, which depends on the 
geometry of the pores among other factors. For P waves, the displacements of rock 
matrix and fluid can be expressed through the corresponding scalar potentials 1 and 2, 
which can be combined in a two-component vector field, 

1

2

  
        

u
Φ

U

 
 ,  (22) 

where 


 denotes the spatial gradient operator. The Euler-Lagrange equations in respect 
to  are:  

2 0   R Φ AΦ MΦ
   , (23) 
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where R and M are the rigidity and mass matrices, respectively, 

 
   

  2

2 2f M M

M M

       
   

    
   

R ,  (24) 

   
 

2 1

1
f f

f f

a a

a a

  
 
   

    
M , (25) 

and A is the damping matrix: 

b b

b b

 
   

A .  (26) 

In these expressions, f is the second Lamé modulus of a closed system (i.e., the modulus 
corresponding to the case of fluid content being constant). Parameter M has the meaning 
of pressure that needs to be exerted on the fluid in order to increase the fluid content by a 
unit value at iso-volumetric conditions (kk = 0). Parameter b is defined as b = 2/ 
where  is the hydraulic permeability, or mobility of the fluid within the rock. 
Parameter   [0,1] quantifies the proportion of the apparent macroscopic volumetric 
strain caused by the variations in fluid content, which can be illustrated by the expression 
of the strain-stress relation: 

 2 2ij f kk ij ij ijM p           ,  (27) 

where p is the mean fluid pressure. 

In the absence of mechanical-energy dissipation (e.g., for  = 0 or  = 0), matrix 
1R M  in (23) is positive definite and symmetric, and consequently it has two real 

positive eigenvalues. These eigenvalues are the squares of the two P-wave velocities, 
2
,1PV and 2

,2PV . The corresponding eigenfunctions have the forms of plane waves with 

wavenumbers equal /VP,1 and /VP,2, respectively. In the presence of energy dissipation, 
these wavenumbers become complex, and their imaginary parts (attenuation coefficients) 
can be expressed through the normalized functions  BP    for both the slow and fast 

P waves: 

 
B

B
P

PV

   

 

  
 

 ,  (28) 

and a similar expression for S waves. Functions  BP    and  BS   were 

tabulated for different combinations of parameters by Bourbié et al. [1987, pp.76–78]. 
Note the Biot’s reference frequency B, which depends on the filtering medium: 



15 

B
f







.  (29) 

Bourbié et al. [1987, p.79] noted that B can be extremely variable, ranging from 30 kHz 
to 1 GHz for water. Nevertheless, B is always quite high, and both tidal and seismic 
frequencies are located deep in the low-frequency limit for poroelastic relaxation. With 
increasing frequencies, both attenuation and phase velocities monotonously increase, 
approximately as 2 (Figure 4). 

4.3 Thermoelastic dissipation  

Thermoelastic effects are pervasive, and they represent the most common cause 
of anelasticity in materials [Hayden et al., 1965; Landau and Lifshitz, 1986]. On the 
Moon, thermoelasticity could be the principal reason for its unusual seismic and tidal 
attenuation properties [Nakamura and Koyama, 1982], and as we argue in Part II, it may 
also be very important for the Earth and other planets.  Thermoelastic effects result from 
the variations of material’s volume or pressure during deformation, which cause 
variations in its temperature, T. Spatial variations in T further lead to heat fluxes, q, 
within and outside the body:  

 i iq T    .  (30) 

where  is the thermal conductivity of the material. For an isotropic body, the total 
mechanical energy-dissipation rate by heat conduction is proportional to the average 
squared gradient of the temperature [see Landau and Lifshitz, 1987, §79]: 

 
2

mechE T dV
T

     
 .  (31) 

The temperature variation can be derived from the adiabatic approximation for entropy 
[Landau and Lifshitz, 1986, §6]: 

   0S T S T K     ,   (32) 

where  is the dilatational strain, S0 is the entropy in the absence of deformation, K is the 
isothermal bulk modulus, and  is the thermal expansion coefficient at constant pressure: 

1

p

V

V T
     

,   (33) 

where V is the volume. The isothermal modulus K in (32) is related to the adiabatic 
modulus Kad as: 

ad
V

p

C
K K

C
 ,   (34) 

where Cp is the specific heat at constant pressure, and Kad can be inferred from seismic 
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wave velocities (VP and VS) and density : 

2 2
ad

4

3P SK V V    
 

.   (35) 

Therefore, the temperature variation within an adiabatically (for example, very quickly) 
deformed medium is proportional to the dilatational strain (Figure 2): 

0 ad
0

p

T K
T T T

C

      .   (36) 

For a typical rock, this gives roughly 00.4T T    . Combining the above relations 

shows that heat conduction causes energy dissipation at the following rate [Landau and 
Lifshitz, 1986]: 

2

ad
mech

p

K
E T dV

C


  

         

 .  (37) 

Thus, mechanical energy is actively dissipated in areas of high dilatational strain (, and 
also within zones of strong variations in material properties (VP, VS, , , or Cp). 

From eq. (37), only dilatational deformations with  ≠ 0 lead to thermoelastic 
dissipation. However, for shear deformations in grainy, polycrystalline materials, 
mechanical contrasts between the grains cause highly heterogeneous, anisotropic 
deformations of the grains. As a result, dilatational deformations always exist at the 
grain-size scale, and consequently shear waves within rocks should also exhibit 
thermoelastic dissipation [Armstrong, 1980]. 

Thermoelastic dissipation shows complex dependences on frequency, depending 
on the relations between the frequency , grain size h, wave speed c, and thermometric 
conductivity C   (Figure 4a). For Newtonian viscosity ( = 1) within the grains 
(“crystallites”), three regimes of thermal relaxation in polycrystalline bodies are 
recognized [Armstrong, 1980; Landau and Lifshitz, 1986, pp. 139–140]: 

1) For very low frequencies 2h  , crystallites equilibrate within each 
period of oscillation, and the oscillation occurs nearly isothermally 
(Figure 2). In this case, 2  , similarly to the case of linear viscosity. 
The effective value of viscosity is much higher than that of the individual 
crystallites (Figure 4a). 

2) For frequencies 2h c h   , thermal equilibration takes place by 
means of “temperature waves” across the boundaries of crystallites. This 
process is similar to the skin effect in electromagnetism. Only a small 
portion of the volume is involved in relaxation, and consequently the 
corresponding   (Figure 4a). 



17 

3) For c h  , the wavelengths are much shorter than the dimensions of 
the crystallites, and the deformations are nearly adiabatic (Figure 2). The 
resulting thermoelastic dissipation is again similar to Newtonian viscosity, 
with   2 (Figure 4a). 

Similar regimes should clearly exist for our nonlinear rheologic laws (9) and (12). 

Thermoelastic relaxation times lie within the common periods of seismic and tidal 
deformations. It is easy to estimate (even from dimensionality considerations) that a 
spatial variation in temperature of size a would dissipate over time  

2
2 24
p pC C

a
k

 


  
  ,  (38) 

where 2k a is the characteristic wavenumber of perturbation. For a typical rock, 

  2800 kg/m3, Cp  800 J/kg/K and   2–7 W/m/K, and therefore   (8000–30,000)a2 
in SI units. Consequently, for seismic periods of   1 s, thermoelastic perturbation sizes 
should be a  0.5–1 cm. This a is close to the scale-length of layering commonly found in 
crustal sedimentary sequences, and also to the dimensions of laboratory devices in which 
material properties are usually measured. For tidal deformations of the Earth 
(  4.3105 s), a  3–6 m, and for   2.6106 s (one-month lunar tide), a  8–16 m, 
which is also reasonable for crustal heterogeneity. These scales show that the crustal and 
mantle structure is an important factor for thermoelastic dissipation.  Note that all of 
these scales are much larger than grain sizes usually considered in microstructural 
interpretations of anelasticity [Karato and Spetzler, 1991]. 

4.4 Kinetic processes 

A broad range of non-mechanical processes of energy dissipation can be 
described by internal variables [Chapter 5 in Nowick and Berry, 1972; also see Figures 1a 
and c]. Such variables are used to describe certain types of internal changes within the 
material that give rise to anelasticity. Examples of such variables include squirt flow 
densities, concentrations of point dislocations or defects within the crystalline lattice, 
ionic or chemical concentrations, spin orientations, and other. For simplicity, let us 
consider a single internal variable, denoted . In terms of its effect on the mechanical 
system, assume that a variation of the vector of  causes the mechanical energy to 
dissipate at a certain rate: 

  mechdE

dt
  ξ . (39) 

Function  may also depend on  mechanical parameters of the system, temperature and 
other factors. 

The dynamics of internal variables is described by kinetic equations, which are 
similar to the equation of diffusion [Nowick and Berry, 1972; Cooper 2002]. The internal 
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variables are assumed to possess some equilibrium levels, designated  , which depend 
on the strain and stress within the body, as well as on its temperature. The kinetic 
equation is then: 

 1d

dt

  


   . (40) 

For a fixed   (such as in a static creep), the kinetic variable exponentially approaches its 

equilibrium value   after a “relaxation time” : 

exp
t

A 


    
 

. (41) 

For a harmonic process at frequency  (such as a seismic wave), the internal parameter is 
coupled to the mechanical state of the system, and therefore the “equilibrium level” 
 oscillates as: 

  0 i tt e      . (42) 

The first of these terms again gives the relaxation law (41), which is insignificant if only 
stationary oscillations are considered. The second term in (42) leads to an oscillation of , 
which is phase-delayed relative to  :  

i te     , where
1 i







 . (43) 

For this general example, it appears reasonable to take the dissipated power as a 
function of the amplitude of  , i.e. of   . Let us consider a power-law dependence: 

    
 

22
1







  


 

  

 , and 
 
 

1

1
22

1
Q










 

  

. (44) 

In Figure 4, such dependences are illustrated for  = 2, which corresponds to kinetic 
processes considered by Nowick and Berry [1972]. Note that similarly to thermoelastic 
relaxation, kinetic processes exhibit absorption peaks in Q-1 (Figure 4b). 

4.5 Effects of structure and scattering 

The effects of structure and scattering on mechanical-energy dissipation represent 
an extensive subject discussed in Morozov [2008, 2009a, b, 2010, 2011a, b]. Here, we 
only summarize some key points of these arguments. Scattering on small random 
heterogeneities is both practically and theoretically indistinguishable from the uncertainty 
of the “background model” (such as the geometrical spreading or reflectivity) in an 
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imperfectly-known structure. Therefore, the best approach is to treat them together, by 
using the empirical temporal attenuation coefficient, . Depending on the structure (e.g., 
spherical or near-surface layering), the dependence of  on frequency can be very 
general. However, analysis of many datasets for the Earth shows that within typical data 
errors, near-linear () dependences are often observed: 

 
2 eQ

    . (45) 

In this expression,  is interpreted is the “geometrical attenuation,” and the dimensionless 
parameter Qe is the “effective quality factor.” Notably,  is positive for most crustal 
datasets and correlates with tectonic types of the crust. It can also be predicted from 
theoretical models of random reflectivity or ray bending [Morozov, 2011c] and from 
numerical seismic waveform synthetics [Morozov et al., 2008]. Positive   values could 
also be responsible for the commonly observed decrease of the apparent Q-1 with 
frequency: 

 1 12 1
1e

r

Q Q

 

   
   

 
. (46) 

where 2r eQ   is the characteristic “relaxation time” for geometrical effects. 

Scattering represents an “elastic attenuation,” which means that it does not reduce 
the total amount of mechanical energy in a closed system. In application to planetary 
deformations, it may therefore appear that scattering should not affect the phase lags 
between the torque caused by an orbiting satellite and the resulting tidal deformation. 
However, elastic scattering should in fact affect the tidal bulge, which can be shown as 
follows. The deformation of a planet can be represented by a sum of spherical harmonics, 

 , ,nlmY r   : 

   , , , ,nlm nlm
nlm

u r c Y r    . (47) 

Only a few of the lowest-order harmonics are available for seismological and tidal 
observations, whereas the entire spectrum of high-frequency modes is very rich and 
incorporates all high-frequency body and surface waves. In a radially-symmetric planet, 
harmonics with different l, or m do not interact and oscillate with their own natural 
frequencies, nl . However, in a heterogeneous planet, all harmonics interact by means of 

the non-zero cross-terms in the Lagrangian (5): 

      2
; , , , , , ,n l m nlm n l m nlmK p r Y r Y r r drd d                ,  (48) 

where p is some material property, such as , , or . In the state of thermodynamic 
equilibrium, these harmonics are distributed according to the (canonical) Gibbs 
distribution [Landau and Lifshitz, 1980]: 
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exp nlm
nlm

E
w A

T
   
 

, (49) 

where wnlm is the probability to find the system in state (n,l,m), T is the temperature, and 
A is some normalization constant. This shows that although weak, high-frequency modes 
are always present in the state of equilibrium.   

An external force, such as the tidal potential created by an orbiting satellite, acts 
on some modes preferentially (n, l = 0, 2 for tides [Agnew, 2009]) and brings them above 
the equilibrium level. As a result, modes Y02m begin to “diffuse” into the higher-order 
modes, according to the Boltzmann’s transport equation [Lifshitz and Pitaevskii, 1981]: 

  dw
C w

dt
 , (50) 

where C(w) is the “collision integral,” which in our case describes the interaction of a 
given mode with all other modes. For the mode amplified by the external field, C(w) < 0, 
whereas for most high-order modes, C(w) > 0. Thus, although the total energy is 
preserved, it is removed from modes Y02m into the higher-order modes and lost for the 
observation. The spectral line for modes Y02m should therefore broaden by the amount of 
dissipation  C w   ( > 0), and the corresponding phase lag appears between the 

orbital torque and tidal deformation. 

The frequency-independent geometrical attenuation appears to be the most 
important part of seismic-wave energy dissipation found in most datasets (note that it is 
also disregarded by the conventional parameterization 2Q  , which implies that 

  0 for   0). Such  =  = const with the corresponding Q-1 from eq. (46) are 
shown in Figure 4. Note that similarly to kinetic and thermoelastic processes, scattering 
and structure can account for the observed “high-frequency background,” with 1Q  

approximately proportional to . 

5 Dependence on temperature and pressure 

The dependence of mechanical-energy dissipation on pressure and temperature is 
a very interesting subject requiring extensive analysis. If viewing solid viscosity as the 
common cause of internal friction, an apparent controversy between the (p,T)-
dependences of the near-elastic and plastic deformations is revealed. As suggested by 
expression (17), for strong (fluid-like) deformations 0  , viscosities  and  in (12) 

increase with p and decrease with T as [Karato and Wu, 1993]:  

exp
m

n
a aE pVb

h nRT


       
   

. (51) 

Such dependence (p,T) is typical for fluids. However, for near-elastic deformations, the 
following empirical dependence was proposed from global Q models and lab 
measurements [Sato, 1991]: 
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         
, (52) 

where Q0, V0, and g are some constants, and Tm is the melting temperature. Considering 
that generally 1Q   , this dependence on (p, T) is opposite to (51) and suggests that 
viscosity  increases with temperature and decreases with pressure. From similar 
observations, Anderson [1965], Sato [1991], and other authors inferred that it is the Q but 
not Q-1 that should correlate with viscosity. 

Nevertheless, from first principles (section 3), the dissipation (Q-1) should still be 
directly related to viscosity. The solution to this controversy is that for near-elastic 
deformations ( 0  ), solid viscosities in (12) do indeed increase with temperature. 

Generally, this could be because of the nearly “dry” character of internal friction, 
corresponding to   0.5 in our dissipation functions (9) and (12) (more detail on this 
given in Part II) and nearly frequency-independent Q for seismic waves [Knopoff and 
MacDonald, 1958]. For dry friction, the actual deformation (slip) likely occurs along a 
small portion of grain boundaries, with the rest of them being locked by static friction, 
adhesion, mineralization, etc. Therefore, the volume V within which the mechanical 
energy is dissipated in eq. (18) likely represents only a small portion of the total volume. 
This volume could be similar to the volume affected by “unpinning” of dislocations 
[Karato and Spetzler, 1990]. With increasing temperature and decreasing pressure, this 
volume should increase, similarly to what is shown by eq. (52). In such a way, “dry-
solid” viscosity is a thermally-activated process, and both  and 1Q  for seismic-scale 
(weak) deformations increase with mantle temperatures and decrease with pressures. In 
terms of our rheologic law (12), this behavior can be described by the elastic-to-plastic 
transition strain threshold, 0, decreasing with T and increasing with p.  For the same 
reason, the effective viscosity  should likely decrease with increasing relative lattice 
spacing b/h, as shown in expression (51). 

Thermoelastic dissipation also quickly increases with temperature (see eq. (37) in 
subsection 4.3). In heterogeneous near-elastic bodies, its effect is roughly similar to that 
of viscosity, and it therefore contributes to the noted increase of solid viscosity with 
temperature.  

6 Frequency dependence 

The phenomenon of frequency dependence of Q receives much attention and is 
often viewed as the primary source of information about the rheology in Earth-materials 
science [Karato, 2008], geodesy [e.g., Efroimsky and Laney, 2007] and seismology [e.g., 
Romanowicz and Mitchell, 2009]. In these contexts, the frequency-dependent Q is viewed 
as a key material property.  However, in our interpretation, the primary quantities are  
and  (subsection 3.4), and therefore we only need to examine their frequency 
dependences for planetary oscillations and seismic waves. 

Two general causes for  and  varying with frequency can be recognized: (I) 
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combination of physical processes of mechanical-energy dissipation discussed in section 
4, and (II) measurement artifacts. The second of these alternatives refers to using 
different wave types, or utilizing temporal, spatial, phase-lag, or near-resonance 
observations and different corrections for the “elastic” background, such as selection of 
the geometrical-spreading exponent. This can lead to a variety of frequency dependences 
(particularly for Q), which may be difficult to compare but nevertheless artificial 
[Morozov, 2008, 2010]. 

Let us now assume that factor (II) is leveled by using some consistent 
measurement procedures, and focus on the physical factors (I) using the results of 
section 4. Note that for all types of energy dissipation, the attenuation coefficient 
increases with frequency (Figure 4a). Thermoelastic processes and kinetic phenomena 
often show bands of increased Q-1 near frequencies  = -1, where  are the characteristic 
relaxation times (Figure 4b). A broad ”absorption band” was inferred for mantle and 
crustal materials [Anderson et al., 1977], and its upper flank is called the “high frequency 
background” in materials science [Cooper, 2002]. Scattering and structural effects can 
also produce similar patterns of Q-1 rapidly decreasing with frequency (Figure 4b). 
However, once again, note that such dependences of  and Q-1 on  only relate to the 
apparent quality factors for certain oscillations, and should not be attributed to the 
material. 

Combinations of the () dependences in Figure 4a produce the observed energy-
dissipation properties for bodies and oscillation modes. For example, for tidal 
deformations of a planet, () should be: 

2 2 2 2
struct struct dry dry wet wet kin kin

2

2ad
thermo ,W

p

a a a a

K

C

    

 

    

  
        

W W W W

   (53) 

where W is the amplitude of the corresponding free oscillation (principally, the 
fundamental spheroidal mode with l = 2), W is the dilatational strain in this mode, Kad is 
the adiabatic bulk modulus,  is the thermal expansion coefficient and Cp is the specific 
heat at constant pressure, and brackets ...  denote spatial averages. Contributions of the 

different factors denoted ‘a’ are determined by the distributions of physical properties 
within the planet. For the Earth, along with the general effect of the spheroidal geometry, 
astruct is likely dominated by the crust and upper mantle, adry comes from the upper mantle 
(with  ≈ 0.63) and lower mantle (with  ≈ 0.5), and awet appears appropriate for the outer 
and inner cores, in which  ≈ 1 [estimates for  from Morozov, unpublished]. The 
contribution from thermo is proportional to the squared gradients of physical properties, 
which should be strong near major boundaries and within heterogeneous zones, such as 
the crust. These models are discussed in detail in Part II. 

If desired, the  for the free-oscillation mode (53) can be converted into a tidal 
phase lag tan = 2/ and also into a phenomenological time-domain response to a step-
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function torque, which will likely be close to the Andrade [1910] law (3). For each 
dissipation type in (53), its time-domain response can be further transformed into a 
frequency dependence of Q-1. These transformations are also illustrated in Part II. 
However, such Q-1() models seem to offer few additional insights into the behavior of 
the planetary body while obscuring the physical meaning of the basic equation (53). 

7 Discussion 

The physical models presented in this paper are very difficult to reconcile with 
the (now) traditional notions of “material memory” or “intrinsic transient.” As shown in 
Morozov [submitted to AG], the effects of material memory can in principle be produced 
by attributing internal (kinetic) variables to the material (as in Figure 1), and yet their 
introduction is artificial and contradicts certain very basic physical observations. At the 
same time, all of the physical mechanisms described in section 4 neither require nor lead 
to a material memory. 

The difference of the theory presented here from viscoelasticity can be clearly 
illustrated on the following summary of the viscoelastic model by Cooper [2002]: “It is 
useful to consider inelastic responses as the relaxation of elastic strain energy: with the 
application of stress, elastic energy is stored into the material <…> instantaneously; 
inelastic, time-dependent relaxation can occur, assuming the applied stress is sustained 
for sufficient time <emphases ours – I.M.>.” Thus, the viscoelastic model assumes that 1) 
it is the elastic energy that is stored and then dissipated, and 2) that the dissipation is 
controlled by time. However, as shown in section 4, the elastic energy is only a part of 
the total mechanical energy, and there exists no reason to believe that only this part is 
dissipated. All dissipation processes in section 4 are quite unlike the elasticity. Also, if 
the relaxation takes place in the form of heat exchange or diffusion, it should occur by 
spatial flows and not as local variations with time. The relaxation should also depend on 
how such flows are maintained (for example, influenced by the shape of the body). 

Kinetic processes form the principal theoretical support for the phenomenon of 
material memory [Nowick and Berry, 1972; Karato and Spetzler, 1990; Cooper, 2002]. 
Indeed, such processes (subsection 4.4) occur locally and are presented as time-delayed 
responses at the individual points within the medium. Nevertheless, an important subtlety 
seems to be often overlooked in this argument. In order to dissipate mechanical energy, 
the process of deformation must be thermodynamically irreversible. Because during 
oscillations (for example, tidal or seismic), the medium periodically passes through 
identical states (and does not, for example, fracture or gradually change its chemical 
composition), the only irreversible change in it is related to the generation and absorption 
of heat. Therefore, kinetic processes should again be not local, “memory” processes but 
depend on the spatial flows of heat (subsection 4.3). If heat flows are prevented, or 
conversely, encouraged by controlling the temperature of the body, kinetic processes may 
proceed differently. 

Once starting to look for the specific physical factors (instead of a Q) controlling 
the attenuation of oscillations in planetary bodies, we realize that they are poorly 
understood at present. For metals (and therefore possibly metal cores of some planets), 
several important results were given by Landau and Lifshitz [1986]. Armstrong [1980] 



24 

applied these results to explaining the near-constant Q() in sedimentary rocks. For an 
isotropic, porous, fluid-saturated rock, Biot’s [1956] framework presented numerous 
insights, which were extended, for example, to Rayleigh waves by Deresiewicz [1960] 
and to cases of more complex porosities by Beskos et al. [1989]. For recent reviews of 
poroelasticity, see Müller et al. [2010] and Singh [2011]. However, for rocks at deep 
crustal, mantle and whole-planet conditions, physical mechanisms of energy dissipation 
remain unclear. 

As shown in section 4, the apparent attenuation coefficients  and  provide a 
good basis for both theoretical and experimental analysis of planetary anelasticity. 
Different physical mechanisms of anelasticity produce characteristic dependencies of  
and  on frequency. Thus, if we measure, model, and invert for  and/or  directly, and 
use the specific models of anelasticity instead of the “blanket” Q, significant physical 
parameters of the medium become constrained. In Part II, this analysis is carried out for 
terrestrial and lunar tides. 

8 Conclusions 

The broadly used viscoelastic model of anelasticity in Earth and planetary 
materials represents only a phenomenological approximation to the full physical 
description. Here, such a physical model of tidal and seismic-wave attenuation is 
outlined. Instead of the “blanket” in situ Q, several mechanisms of mechanical-energy 
dissipation are recognized: 1) solid and pore-fluid viscosity, 2) thermoelastic effects, 3) 
various kinetic processes within the material, and 4) structural and scattering effects. The 
group of viscosity mechanisms 1) is associated with rheologic laws and described by 
Lagrangian dissipation functions. A unified rheologic relation is proposed, which 
combines the near-elastic and plastic deformations. Instead of the conventional 
assumption of rock properties varying with the time scales of stress application, this 
relation explains the elastic-to plastic transition by the nonlinearity of the dissipation 
function in respect to both the strains and strain rates. For the Earth’s crust and mantle, 
this nonlinearity appears to be weak for strains but strong (close to dry-friction type) for 
strain rates. Because of the interpreted dry friction, solid viscosity increases with 
temperature and decreases with pressure for near-elastic deformations but behaves 
oppositely for plastic deformations. This can be explained by the elastic-to-plastic 
transition strain level, 0, decreasing with temperature and increasing with pressure. 

Different dissipation processes and types of oscillations lead to characteristic 
frequency dependences of the temporal attenuation (damping) coefficient, . Solid 
viscosity leads to 2   and the apparent 1 2 1Q   , where  is the rheologic 
exponent, which is near one for fluids and equal 0.5–0.63 for the Earth’s mantle. For 
pore-fluid viscosity, these parameters scale approximately as 2   and 1Q   . 
Notably, the thermoelastic and kinetic processes lead to absorption peaks in the apparent 
Q-1. Scattering is also likely to contribute to the well-known “high-frequency 
background” of Q-1 decreasing with frequency.  
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Figures 

 

 
Figure 1. Mechanical models of viscoelastic solids: a Maxwell, b) Kelvin-Voigt, c) 

standard linear solid (Zener), d) Burgers. Insets give the Lagrangians and 
dissipation functions for each of the models. Note the “hidden” internal variables 
  and  in all models except (b), and the absence of kinetic energies for these 
variables. 
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Figure 2. a) Hysteresis loop (gray) obtained by adiabatic (rapid) loading and unloading of 

a perfectly elastic material, followed by thermal relaxation at constant stress. b) 
The corresponding full Andrade loading curve (3) (black) and with the steady-
state creep removed (gray). Points A, B, and C refer to the hysteresis loop in (a), 
and the adiabatic ((B)) and isothermal deformation levels ((C)) are indicated.   

 
 
 
 
 
 
 
 

 
Figure 3. Characteristic values of decimal logarithms of strains () and strain rates ( ) 

for Earth’s mantle deformations, and the corresponding time scales (, thin dashed 
lines). The proposed boundary between the elastic- and plastic-flow deformation 
regimes is set at strain 0 = 10-4 (gray dashed line) 
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Figure 4. Schematic frequency dependences of wave energy dissipation for different 

mechanisms of anelasticity: a) temporal attenuation coefficient, , b) inverse 
quality factor, 1 2Q    . Scaling of the axes is arbitrary. For viscosity, two 
functions are shown, corresponding to linear (“wet”, gray dotted line), and 
nonlinear (“dry”, black dotted line). The “wet” viscosity case also represents the 
saturated porous rock. Expressions in the labels in (a) indicate three different 
regimes of thermoelastic dissipation.  

 
 
 

 
 


