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Abstract 

Despite its broad use in seismology and geodesy, the physical significance of the 
“viscoelastic” model of Earth’s materials is still not well understood. Viscoelasticity is based on 
the concept of material memory, which implies either a departure from the classical physical 
framework of instantaneous interactions or presence of a rather specific type of internal variables 
within the medium. Nevertheless, such modifications are not needed, and the traditional 
mechanics successfully explains all “viscoelastic” effects in solids and fluids, including creep, 
wave attenuation, velocity dispersion, as well as many other phenomena. Viscoelasticity 
represents a phenomenological, quasi-static approximation to the full physical picture, which is 
only applicable to near-uniform media. Although this approximation is arguably sufficient in 
empirical materials science, it appears inadequate for seismic waves or oscillations of 
heterogeneous planetary bodies. “Memory” is not an inherent property of materials but only a 
time record of deformation for a given body. Contrary to what is often thought, the observed 
variations of material properties, such as the transitions from “unrelaxed” to “relaxed” moduli, are 
governed not by the time but by the thermodynamic conditions of deformation. Several important 
types of mechanical-energy dissipation cannot be accounted for by the material memory at all, for 
example: 1) wet porous rock can dissipate energy without macroscopic deformation, 2) fluid 
zones dissipate shear energy despite their shear moduli being equal zero, and 3) perfectly elastic 
rock also dissipates mechanical energy in spatially-heterogeneous environments. The quality 
factor (Q) is also hardly valid physically when viewed as a local property of the medium and 
related to viscoelastic moduli. Given the above ambiguities and limitations of the viscoelastic 
model, we recommend that rigorous physical approaches are used more often. These approaches 
explain the Earth’s anelasticity by well-defined physical factors, such as the solid and pore-fluid 
viscosity, thermoelastic and kinetic effects, and also the effects of structure and scattering. These 
factors operate at all time scales and conditions, which allows developing a unified and 
quantitative picture of seismic and geodetic anelasticity. 
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1. Introduction 

Among the various approaches to anelasticity in solids, the “viscoelastic” model, 
originally proposed by Bland [1960] and introduced in seismology by Anderson and Archambeau 
[1964] is broadly believed to be most relevant for Earth materials [e.g., Romanowicz and 
Mitchell, 2009; Cormier, 2011]. This model is presented in all standard texts in seismology [e.g., 
Dahlen and Tromp 1998, and Aki and Richards 2002] and Earth materials science [e.g., 
Karato 2008]. Its central point consists in characterizing the anelasticity of crustal and mantle 
rocks by the concepts of material memory and quality factor (Q). The Q-based paradigm is now 
deeply imbued in minds of most geophysicists and used in practically all interpretations, forward 
modeling, inversion methods, and attenuation models [for example, the global Preliminary 
Reference Model (PREM) by Dziewonski and Anderson 1981]. This paradigm also determines 
the correlations of seismic anelasticity with mantle viscosities derived from geodynamic studies 
[Anderson 1965; Karato and Wu 1993; Sato 1991]. Under the influence of seismology, models of 
tidal anelasticity are also formulated in terms of the viscoelastic Q [e.g., Agnew 2009].  

Nevertheless, despite such broad acceptance, it is also useful to see that the viscoelastic 
model in geophysics still remains a mixture of intuitive analogies and axiomatic (and somewhat 
risky) mathematical constructions. The physical basis of its application to the Earth appears to be 
not well studied and understood. In particular, it is generally unnoticed that generalizations of 
rock-creep experiments in the lab, from which this model was inferred, cannot be automatically 
applied to seismic waves and free oscillations of the Earth. In the present paper, we analyze the 
limitations of seismic viscoelasticity and attempt identifying its place with respect to the 
traditional solid- and fluid-state physics. Unfortunately, this leads us to questioning the validity of 
the core concepts of this model, which are the material memory and Q.  

Succinctly, the theory of viscoelasticity can be described as follows. Most materials are 
assumed to possess a “fading memory,” which means that responses of stresses to deformations 
(and vice versa) are localized in space but delayed in time. This memory is expected to span a 
time range as broad as 10-9–10-6 s to 1013 s [Jackson et al. 2005]. In the frequency domain, this 
property is described by extending the elastic modulus M of the material into the complex plane 
and making it frequency-dependent. Such an extension is achieved by noting that for a harmonic 
oscillation at frequency , both the elastic (e) and viscous stresses (f) can be formally rendered 
in the form of the elastic Hooke’s law: 

   e m    , (1) 

     f i        , (2) 

where  is the strain, m is the elastic modulus,  is the viscosity, and overdot indicates the time 
derivative. By combining the two stresses: e f    , and constructing a complex 

“viscoelastic” modulus  M m i   , an equation similar to (1) is obtained, which 

incorporates the internal friction via the imaginary and frequency-dependent part of M: 

     M     , (3) 

This extension of the elastic-medium constitutive equation (1) to the anelastic case is called the 
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correspondence principle [Bland 1960]. At this point, the model is further generalized from the 
original case of m = const and  = const above to an arbitrary M() for  > 0. For   0, the 
values of M are constrained by  and  being real in the time domain, which requires 

that    M M   , where the overbar denotes the complex conjugation. The tangent of the 

complex argument of M is denoted as the inverse of the “quality factor:” 

   
 

1 Im

Re

M
Q

M





   , (4) 

and accordingly: 

     1Re 1M M iQ      . (5) 

Thus, the two fundamental properties describing a viscoelastic solid are m = ReM, which is the 
frequency-dependent elastic modulus, and Q-1 describing the dissipation. Both of these quantities 
are taken at  ≥ 0. Note that from the original expressions (1) and (2), the Q-1 is a proxy for the 
ratio of the viscosity to the elastic modulus, and it is proportional to the frequency: 

 1Q
m

   . (6) 

In the time domain, ReM and Q-1 correspond to a time-dependent “fading memory” of the 

material, M(t). Finally, in order to ensure causality (   0M t  for t  0), ReM() and ImM() 

must satisfy the Kramers-Krönig integral identities [Dahlen and Tromp 1998]. 

The viscoelastic model above is constructed by generalizing the constitutive equation (1) 
into (3), and it is rarely noticed that this procedure does not completely agree with physics. It is 
often unclear whether this model: (i) denies the classical mechanical framework, (ii) extends it, or 
(iii) represents some type of approximation to it. Regarding the first of these possibilities, the 
need for introducing a “fading memory” M(t) implies that the mechanical framework of 
instantaneous interactions is regarded as inadequate [Fabrizio and Morro 1992]. As shown in 
section 4.1 below, if memory M(t) is implemented mechanically, it is achieved at the cost of 
disregarding spatial flows and wave processes within the medium. At the same time, there exists 
no real reason for such denial of the mechanical framework for Earth materials. The experimental 
base of viscoelasticity principally consists of rock-creep measurements in the lab, and such 
observations can be readily explained by viscosity or thermoelastic relaxation and without 
invoking a fading memory. Models of poroelastic media [e.g., Müller et al. 2010] also show that 
mechanical systems exhibit all of the observed “viscoelastic” properties, such as creep, wave 
velocity dispersion, or the frequency-dependent apparent Q. Therefore, it is clear that rock creep 
and seismic waves can be described by the usual “instantaneous” mechanical interactions. This is 
also done with much better precision and revealing many specific details of the dissipation 
mechanisms instead of the “blanket” Q() or M(t).   

With regard to the possibility (ii) above, the mathematical conjecture transforming eq. (1) 
into (3) is not in the same class with the fundamental principles of mechanics, such as the energy, 
Hamiltonian action, and the laws of thermodynamics. The physical framework for solids and 
fluids is well known [e.g., Landau and Lifshitz 1976, 1986, 1987] and used in the more general 
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treatments of materials [Hayden et al. 1965]. This approach explains the full range of physical 
phenomena from mechanics of particles to statistical physics, thermodynamics, and physical 
kinetics [Lifshitz and Pitaevskii 1981]. An application of this theory to deep-Earth and planetary 
conditions are given in Morozov [submitted]. This framework does not require extensions by the 
correspondence principle; on the contrary, the notion of the complex-valued modulus (3) goes 
sharply against the first principles of continuum mechanics. Moreover, the correspondence 
principle itself fails when applied to heterogeneous anelastic media [Morozov 2011a].  

Therefore, if viewed as a valid theory of anelastic or plastic solids, viscoelasticity can 
only represent option (iii) above, i.e. be some type of approximation to the full physical 
description. The character of this approximation may not be easy to determine, which is one of 
the goals of the present paper. 

The focus of our analysis is on the consistency and adequacy of the theoretical concept 
and not on data fitting. Unfortunately, the data available from seismic attenuation studies are 
limited and can often be modeled in various ways, including purely empirical time dependences 
of deformations and moduli [e.g., Andrade 1910]. Viscoelsticity can be described as a semi-
empirical approach, in which a specialized quantity (Q-1) is used to describe the energy-
dissipation data, and a similar empirical fitting is achieved in the frequency domain [Liu et al. 
1976]. This creates a richly (likely over-) parameterized model which is usually capable of 
explaining the available attenuation data well. However, the interpretations of the in situ anelastic 
properties of materials in terms of material memory and Q may still be poorly constrained and 
justified.  

The material Q in eq. (4) (together with derived attributes 1q Q  and * 1t Q dt  ) is 

the commonly used but conceptually challenging constitutive parameter intended to characterize 
the anelasticity of materials. Usually, it is explained from an intuitive analogy with mechanics or 
acoustics, and yet the properties of energy dissipation in mechanics are not always well 
understood. Therefore, in section 2, we review the meanings of Q mechanics and try explaining 
the analogies on which the definition of the seismic material Q (4) is based. As shown there, the 
principal extensions from the mechanical to seismic Q consist in using non-resonant oscillations 
and arbitrary frequencies. Such extensions can be carried out in several ways, which causes 
significant ambiguity in the frequency dependencies of Q. We also show that it is important to 
differentiate between the apparent (observed) and the in situ Q, and that unlike its mechanical 
counterparts, parameter Q should not be viewed as a local property of the material. 

In section 3, we discuss some limitations of the viscoelastic model for realistic solids. As 
illustrated on two simple thought experiments, the viscoelastic model (3)–(4) does not account for 
several most common physical mechanisms of anelasticity. In section 4, we compare this model 
to the physical descriptions of solid and fluid media. As shown there, the viscoelastic model 
represents an effectively quasi-static approximation to the rigorous model, applicable to nearly-
uniform media. Arguably, this approximation appears suitable for describing rock creep 
experiments in the lab or for developing kinetic models [Nowick and Berry 1972; Cooper 2002]. 
In such cases, only responses to spatially uniform stresses are considered, and only a single Q 
value is needed for both the apparent and in situ properties. However, in heterogeneous media 
and/or deformation fields, such as encountered in seismic or tidal problems, this model presents 
the spatial flows and wave processes within the medium as “material memory” occurring at each 
of its points. Unfortunately, this picture is physically inadequate and may be grossly misleading, 
even if viewed as pure phenomenology. 
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2. The quality factor 

Compared to the in situ, material Q, there seems to exist no other “constitutive” property 
devised so specifically to explain only a certain type of observations (which is also the apparent 
Q of oscillations). The material Q was originally introduced phenomenologically, by generalizing 
the observations of creep in rock specimens in the lab [Lomnitz 1957], and supported by 
mechanical models [Zener 1948], the correspondence principle [Bland 1960], and empirical 
analogies of seismology with mechanics and acoustics [Knopoff 1964]. In an axiomatic way, the 
Q was further affirmed in the theory of viscoelasticity (eq. (4)) [Anderson and Archambeau 
1964], combined with a hypothesis of functional holomorphism (analyticity) of relations between 
the in situ and observed parameters of the Earth [Anderson et al. 1965]. Models of spatially-
distributed quality factors were derived for a broad range of frequencies from those of the 
Chandler wobble and Earth tides [Anderson and Minster 1979] to ultrasonic lab measurements. 

Note that the above developments were carried out either by analogy or by mathematical 
conjecture, but in both cases attempting to present the Q as a primary constitutive parameter of 
the material. However, as shown below, by systematically considering the problem of energy 
dissipation in mechanics and solid-state physics, the Q could better be viewed as a secondary 
quantity, derived from the temporal and spatial attenuation (damping) coefficients. Recognition 
of these attenuation coefficients leads to a considerably simplified observational picture of 
attenuation [Morozov 2008, 2009a, 2010a] and also to a straightforward theoretical development 
[Morozov submitted]. 

2.1. The Q and the attenuation coefficient 

As illustrated in the physical models below, the inverse Q-factor always arises as a ratio 
of some temporal attenuation coefficient, , to the frequency of oscillation, : 

1 2
Q




  . (7) 

Similarly to , this Q is only an apparent (observable) property of the wave. The  can be 
frequency independent, but in most cases, it increases with frequency. Note that the basic case of 

 = const in eq. (7) leads to 1 1Q   , which appears to be commonly observed when “elastic” 

or “geometrical” attenuation (such as scattering or variations of geometrical spreading) are 
present [Morozov 2008, 2010a, 2011c].  Because of the division by  in relation (7), Q-1 often 
shows relatively complex frequency dependences, which may include absorption peaks or bands 
[Anderson et al. 1977], or the “high-frequency background” [Cooper 2002].  

Our approach is based on analyzing the attenuation coefficient in theory, measurements, 
and modeling. In the following, we start from the meaning and frequency dependences of  (and 
Q) in mechanics and try relating them to the properties of the Earth and planets. 

2.2. Energy dissipation in mechanical systems 

A wave-propagating medium represents a mechanical system with many degrees of 
freedom. The most important property characterizing any mechanical system is its Lagrangian 
function, which often represents a combination of the kinetic and potential 
energies: k pL E E  . In many practical cases, the total mechanical energy, mech k pE E E  , is 

another key function describing the dynamics of the system. Let us now consider a near-



6 

stationary process and denote by mechE  the short-time average (for example, over a period of 

oscillation) value of mechE . It is commonly observed that in closed systems with weak dissipation, 

the amplitude of oscillations, û , exponentially decays with time (Figure 1c): 

   ˆ expu t t  ,  (8) 

where  is the temporal attenuation (damping) coefficient in eq. (7). Note that  has the 
dimensions of frequency, and its inverse,  = 1/, is the “relaxation time” for oscillation 
amplitude. Broadly, this is the meaning of the empirical relaxation times commonly considered in 
viscoelasticity [Nowick and Berry1972; Karato and Spetzler 1990]. 

Relation (8) gives an unambiguous definition for ; however, it is only available by direct 
measurements of the amplitude or solving the full equations of motion. In practice, this is rarely 
possible, and a useful alternative consists in deriving  from average energy decay rates, which 
may be measurable more easily. For oscillation (8), the dissipation rate of mechanical energy is 
proportional to the energy itself: 

2mech refE E  , (9) 

where Eref denotes some slowly-varying “reference” measure of mechanical energy. Because it 
cannot be established which portion of the mechanical energy actually gets dissipated, Eref is a 
relatively arbitrary level which has to be selected by convention. This level can be the time 

average of mechanical energy, ref mechE E , its peak value ˆ
ref mechE E , or determined in other 

ways discussed below. Depending on the choices for Eref, the values of  in (9) may be different, 

and the “true” value in (8) is obtained by using ref mechE E . 

Free oscillations 

Up to this point, we considered an arbitrary mechanical system, and now let us switch to 
a single harmonic oscillation at frequency , such as a standing wave. Such a mode behaves as a 
damped linear oscillator, which exhibits an amplitude decay in time and a finite-width amplitude 
peak in the frequency domain (Figure 1). In this case, it is convenient to relate  to the oscillation 
frequency, which gives the dimensionless quality factor: 

1

0

2
Q




  .  (10) 

This expression can also be written as: 

1

0

1

2
mech mech

ref ref

E TE
Q

E E 
  

 
.  (11) 

where T is the period of oscillation. At the resonance, mechE  is time-independent and represents a 

natural measure of the reference energy. Because mechTE equals the mechanical energy dissipated 

in one period, Q-1 is often interpreted as a measure of the relative energy loss in one oscillation 
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cycle. In the frequency domain, this quantity corresponds to the resonator's bandwidth relative to 
its center frequency 0 (Figure 1b): 

1 1/2

0

Q



 
 ,  (12) 

where 1/2 is the width of the spectral peak taken at the level of a half of its power. 

The quality factor Q in eqs. (10) – (12) is only defined for systems oscillating near 
resonance (Figures 1b and c). This parameter describes how strongly damped the resonator is. 
Resonators with Q < ½, Q = ½, and Q > ½ are called over-damped, critically-damped, or under-
damped, respectively, depending on whether they exhibit an oscillatory behavior with time or not 
(Figures 1c). Dampers keeping doors from slamming shut are examples of critically-damped 
systems with Q ≈ 1⁄2, seismic geophones are usually slightly under-damped, and atomic clocks 
reach values of Q > 1011. For seismic waves, typical Q values range from ~10 to ~5000; however, 
the meaning of these Q’s and their comparisons to (10) and (11) still need to be discussed below. 

Energy dissipation is always caused by some type of “internal friction,” and in 
seismology, this term is often equated with Q-1 [e.g., Knopoff and MacDonald 1958; Karato and 
Spetzler, 1990]. Thus, Q-1 must be related to certain physical mechanisms of friction. For a 
damped linear oscillator, friction is caused by the force proportional to the velocity (Figure 1a): 

DF u   , (13) 

where u is the displacement, and  is the viscosity constant. From this relation, the mechanical-
energy dissipation rate is always proportional to Ek: 

2 2
mech D kE uF u E

m

       , (14) 

where m is the mass. This is a very important fact that seems to be rarely appreciated: it is the 
kinetic energy that is dissipated by viscous friction, and mechanical-energy loss in a damped 
linear oscillator is practically unrelated to its elastic “modulus” (i.e., the spring constant 
k = m0

2). 

For time-averaged quantities, eq. (14) reads: 

mech mechE E
m


  . (15) 

because, by virtue of energy equipartitioning, 2mech kinE E . Again, equations (14) and (15) 

show that the oscillator’s energy simply dissipates with time as shown in eq. (9) with  = /2m, 
and not with the number of periods as suggested by an intuitive reading of eq. (11). From eq. 
(10), the oscillator’s quality factor (12) equals Q = m0/. 

Thus, for a linear oscillator (or a single oscillation mode in a complex mechanical 
system), the quality factor is a constant combining the strength of its damper, , with m and 0 
(Figure 1a). This factor increases with decreasing viscosity and increasing mass, and also with 
increasing spring constant, k. Linking energy dissipation solely to k is neither necessary nor well-
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justified from first principles; moreover, this would be opposite to the physical significance of Q 
as equal m0/. Nevertheless, such association of attenuation with “imperfect elasticity” is 
currently common in geophysics [e.g., Anderson and Archambeau 1964; Dahlen and Tromp 
1998; Aki and Richards 2002]. In addition, there is no question of frequency dependence of the 
oscillator’s Q, and comparing the Q’s at different 0’s would mean comparing different 
oscillators. 

Forced oscillations 

Traveling seismic waves, low-frequency seismic observations in the lab [e.g., Jackson 
and Paterson 1993], and tidal dissipation (e.g., Efroimsky and Laney 2007) represent forced 
oscillations at frequencies much lower than the corresponding resonances (if such resonances are 
present). To describe such phenomena, the notion of Q in eqs. (10) and (11) needs to be extended 
away from the natural frequencies. However, for forced oscillations, the energy is not 
equipartitioned, and Emech no longer uniquely describes the state of the system. In the right-hand 
sides of eqs. (10) and (11), various measures of energy can be used, leading to several types of Q. 
For example, eq. (14) suggests that the natural choice for Eref could be the peak kinetic energy, 

ˆ 2ref kE E  (denominator 2 here is because of using the peak amplitude of 

   ˆ 1 cos 2 2k kE t E t  as a measure of its average level). Therefore, from eq. (11), the 

“kinetic” quality factor Qk is proportional to frequency (Figure 2): 

0

ˆ

2
k

k

mech

E
Q Q

E

 


  .  (16) 

Alternately, if we relate the dissipation to the peak potential energy, ˆ 2ref pE E , as it is done 

in seismology [Aki and Richards 2002], then such quality factor becomes inversely proportional 
to frequency (Figure 2): 

 0
ˆ ˆ

ˆ2

p p
p k

kmech

E E
Q Q Q

EE

 


   ,  (17) 

because  2

0
ˆ ˆ

p kE E   in a forced oscillation. Next, if we define the quality factor Qt from 

the relative loss of the peak total mechanical energy, then: 

0

0

ˆ  for ,

 for ,
pmech

t
kmech

QE
Q

QE

 
 


      (18) 

since ˆ
mechE equals ˆ

pE  or ˆ
kE  for  < 0 and   0, respectively (Figure 2). 

Further, note that Eref in definition (11) should be best understood as representing the 
stored energy averaged over a period. Peak energies, which are attained only once or twice 

during a period, should unlikely have any definite relation with the average mechE . At resonance, 

ˆ
mech mechE E , and for 0  , the energy oscillates between ˆ

kE and ˆ
pE  above, and its average 
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level equals  ˆ ˆ 2k pE E . Consequently, we can define the “average-total energy Q” as: 

2
k pmech

a

mech

Q QE
Q

E

 
  .  (19) 

This seems to be the most logical choice for the oscillator’s Q away from resonance. Note that it 
stays near constant for   0 (Figure 2). 

Yet another definition of Q comes from force-displacement phase lags  in sub-resonant 
lab measurements of seismic attenuation [e.g., Lomnitz 1957; Jackson and Paterson 1993] and 
observations of Earth’s tides [Efroimsky and Laney 2007; Agnew 2009]. If we consider a 

harmonic force   ˆ i tf t fe   and a logarithmic amplitude decay rate , the stationary solution 

for displacement is (Figure 1b): 

  2 2
0

ˆ

2

f
u

i


  


 
. (20) 

This displacement lags the force by phase : 

 2 2 1
0 2 2

0

2
2 tanArg i

   
 

   


. (21) 

At low frequencies 0  , cotangent of the phase lag  is usually interpreted as the quality 

factor in lab and tidal measurements: 1 tanQ   [e.g., Jackson and Paterson 1993; Efroimsky 

and Laney 2007]. This quantity approximates the quality factors Qp and Qt above, and is inversely 
proportional to the frequency (Figure 2): 

2 2 2
0 0

2 2 pQ Q
  

 


   .  (22) 

As we see, several types of forced-oscillation Q factors can be defined for a linear 
oscillator, based on somewhat different physical ideas and approximations. All of these 
definitions contain strong and variable frequency dependencies (Figure 2). These extensions of 
the “true” resonance Q away from the natural frequency characterize not so much the oscillator 
itself but mostly our preference for selecting the reference energy. Therefore, when applied to 
rocks and wave processes in different environments, the “quality factors” (10), (11), and (16)–
(19) should be compared to each other very carefully, because they may represent quite different 
physical characteristics of the system. 

2.3. Energy dissipation in seismology and geodesy  

The seismological Q is usually introduced as follows [e.g., Aki and Richards 2002, 
pp. 162–163). If a volume of Earth’s material is cycled in stress at circular frequency , such as 

caused by a traveling or standing wave, then the energy loss in one cycle, mechE TE   , is 
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proportional to the peak strain energy, ˆ
strainE , stored in that volume. A dimensionless ratio of 

these quantities is formed and denoted Q-1: 

1 1
ˆ2

mech

strainstrain

EE
Q

EE


 

   


. (23) 

The same definition is adopted for tidal Q [Greenberg 2009]. By its use of the elastic energy for 
reference ( ref strainE E ), this expression corresponds to our mechanical Qp in eq. (17).  

It is important to see that maybe contrary to its intended purpose, the Q-1 defined by 
eq. (23) is an attribute of the entire oscillation (wave) rather than a local property of the medium. 
If the “volume” mentioned in the above definition represents the entire oscillating body, then eq. 
(23) is equivalent to those discussed in section 2, and this Q-1 is a well-defined averaged quantity. 
However, if the “volume” is considered as (macroscopically) small, then ratios (23) taken at 
different points should differ even though the material may be the same. The energy dissipation 

rate depends on a number of different factors, for example, mech ij
ij

D
E dV




 


 


for solid 

viscosity,  2

mechE T dV
T


  

 for heat conduction [Landau and Lifshitz 1986], and 

2 2
mechE u r dV  for random reflectivity [Morozov 2011c]. In these expressions, D is the 

dissipation function, ij is the strain-rate tensor, T is the temperature,  is the thermal 

conductivity, u is the displacement amplitude, and r is the reflection coefficient. These quantities 
depend on deformation amplitudes but none of them are closely related to strainE , and therefore 

ratios (23) should vary for adjacent points in the same material.  

Quantity (23) is measured from the energy dissipation rate from a fixed volume within 
the medium, and therefore this is the temporal Q-1, related to the temporal attenuation coefficient 
 as (compare to (4) and (7)) [Morozov 2010]: 

1 2
temporalQ




  . (24) 

For a traveling wave, the oscillations are often stationary and energy dissipation is manifested by 
a spatial amplitude decay. Therefore, the corresponding spatial Q-1 is:  

1 2
spatialQ

k

  , (25) 

where k is the wavenumber and  is the spatial attenuation coefficient [Aki and Richards 2002]. 
Similarly to (23)–(24), this is a property of the entire wave. Because it refers to the spatial 
harmonic k, it is clearly not localized in space. 

In summary, ratios (23)–(25) principally depend on the distributions of amplitudes, 
temperatures, strains and strain rates within the body, and they are not very suitable for describing 
its material. Perhaps the best way of treating such quantities, along with the Q’s (17)–(19) and 
(22), is to take them as “figures of merit” [Armstrong 1980], or apparent quantities describing the 
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wave processes. Because of this lack of physical basis for the notion of material Q (and also 
because of the way they are produced by viscoelastic inversions), it is difficult to judge about the 
physical significance of, for example, the existing models of spatially-variable Q within the Earth 
(such as PREM). Such a relation might come, for example, from relating the Q’s to mantle 
viscosities and thermoelastic parameters. However, this would amount in refitting the raw 
attenuation data and could be a subject of further studies [Morozov unpublished].  

2.4. Practical issues 

Because of the two ways the material quality factor is defined (empirically in 
observations and axiomatically in the viscoelastic model), this parameter also leads to several 
practical problems. As an empirical quantity, the Q trades off with geometrical spreading and 
depends on the assumptions involved in measurement procedures, modeling and inversion. Some 
debate about these problems was carried out recently [Morozov 2008, 2009a, b; Xie and Fehler 
2009; Morozov 2010], with focus on the geometrical spreading and the frequency dependence of 
Q [Mitchell 2010; Xie 2010]. As we pointed out from several datasets [Morozov 2008, 2010, b, 
2011b], improved corrections for geometrical spreading often eliminate the frequency 
dependence of Q and increase its values at 1 Hz (often denoted Q0) by up to 20–30 times. 
However, the problem is actually much deeper than the frequency dependence of Q. For example, 
another major difficulty can be seen from the fact that in physical models [e.g., Müller 2010], 
wave Q-1 increases with viscosity and decreases with temperature, whereas in seismology, this 
correlation is opposite [Sato 1991]. 

Serious practical issues also arise from the axiomatic definition of Q in the viscoelastic 
theory (eq. (4)). For example, when ReM = 0, this Q-1 is undefined, and the whole viscoelastic 
model of attenuation does not work. In consequence, in all global Q models of the Earth [such as 
PREM, Dziewonski and Anderson 1981], shear dissipation within the outer core is set equal zero: 

1 0Q
  . Nevertheless, the outer core possesses viscosity and substantial shear deformations (for 

example, in free oscillations), and therefore it clearly dissipates the shear energy.  

3. Two thought experiments 

Similarly to the case of damped linear oscillator in section 2.1, physical models of 
anelastic materials often show that energy dissipation is caused by their internal movements and 
not only by deformation [e.g., Biot 1956]. This again contradicts the assumed definition of 
seismic Q-1 in (23), which can be seen from a simple thought experiment (Figure 3). Consider a 
small specimen of “wet” porous rock welded into a tight, infinitely rigid casing, so that it does not 

deform, and consequently its ˆ 0strainE  for any form of the viscoelastic moduli. Let us now 

assume that the casing is subjected to some movement by an external force (Figure 3). Despite the 
absence of macroscopic deformation, the mechanical energy should still dissipate within the 
specimen due to internal pore-fluid movements. This would lead to unreasonable Q = 0 from eq. 
(23).  

Another thought example shows that the “material memory” and Q actually depend on 
the way the experiment is conducted (Figure 4). Consider a specimen of perfectly elastic material 
subjected to cyclic creep testing. First, let the specimen be thermally insulated during the initial 
compression or expansion (stages AC or BD in Figure 4a). Because of the effect of thermal 
expansion, the temperature of the specimen will change (increase in AC and decrease in BD), and 
we will allow it to equilibrate at constant stresses during stages CB and DA (Figure 4a). In this 
case, despite the perfect elasticity of the specimen, mechanical energy would still be dissipated, as 
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indicated by the area of the hysteresis loop ACBDA, and the resulting Q-1 would be positive 
(Figure 4a). Of course, in a more realistic case of incomplete insulation, thermal relaxation would 
proceed concurrently with deformation, and the hysteresis loop would have a shape closer to the 
one shown by the dashed line in Figure 4a. 

By contrast to the case in Figure 4a, if the temperature of the specimen is maintained 
constant, the specimen would respond with the isothermal modulus [Hayden et al. 1965] and 
deform from A to B and back reversibly (Figure 4b). The net energy dissipation would then equal 
zero, and Q-1 = 0 (Figure 4b). This shows that the Q measured in lab creep tests (as well as in all 
other situations) actually depends on how the heat is supplied or removed from the various parts 
of the body. 

The above examples show that energy dissipation is not always (if ever) related to the 
“imperfect” elastic moduli. Many types of energy dissipation cannot be accounted for by the 
viscoelastic moduli with fading memory. If such moduli are still used phenomenologically, they 
become dependent on the experimental environments and may be tricky to interpret. Furthermore, 
the fading memory should depend on the parameters of experiments, such as the shapes and 
dimensions of the specimens. This is difficult to illustrate on an intuitive thought example, and a 
more theoretical argument is given in the next section.  

One can argue that the viscoelastic model is only intended for relatively uniform, “dry” 
materials which do not exhibit thermoelastic effects. However, such cases are of hardly any 
significance in geophysics. The rocks comprising the Earth exhibit significant thermal expansion, 
they are generally grainy and porous, and pore fluids and melts are well known as important 
contributors to both seismic velocities and attenuation. The dimensions of rock samples 
sometimes comprise only ~5% of those of the attenuation measurement apparatuses [Gribb and 
Cooper 1998], and therefore the spatial heterogeneity is the first-order factor. Spatial gradients, 
heterogeneity, and wave processes are also the most important phenomena studied in 
observational seismology. 

4. Viscoelastic approximation 

4.1. Character of viscoelastic approximation 

In viscoelasticity, the complexity of dissipation mechanisms is replaced with a 
phenomenological strain-stress relation within the deformed material. All interactions within the 
medium are expressed as a time-dependent stress-strain relation applied at each point [e.g., 
Dahlen and Tromp 1998]: 

     
t

t M t d    


   ,  (26) 

where the convolutional kernel M() is related to M in eq. (3) by M M   . This general form 
representing the stress as a linear combination of the preceding strain rates is known as the 
Boltzmann’s superposition principle. In materials-science literature [e.g., Nowick and Berry 
1972; Cooper 2002], this relation is often reversed, giving the strain responding to stress rate: 

     
t

t J t d    


   , (27) 

where J() is the time-retarded compliance. Functions M(t), M (), J(t) and/or their frequency-
domain counterparts are constructed so that they lead to the observed creep curves, phase 
velocities and apparent Q-1spectra for the deformations of interest. Such functions can be found 
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by combining multiple dissipation mechanisms operating at different frequencies. Hayden et al. 
[1965], Nowick and Berry [1972], and Karato and Spetzler [1990] gave examples of such 
mechanisms, generally related to several kinetic processes taking place within the material under 
stress. Each of these processes can be phenomenologically described as a response of some 
“equivalent mechanical system,” such as the standard linear solid [Zener 1948]. Liu et al. [1976] 
modeled the general forms of relations (26)–(27) by multiple standard linear solids connected in 
parallel (Figure 5).  

Although integral expressions (26)–(27) are able to describe rock-creep observations in 
the lab, they are nevertheless unsatisfactory as a constitutive law, because they contradict the 
common observations of perturbations always spreading spatially in solids and fluids. It is 
important to clearly understand whether these equations describe the behavior of a material or a 
finite body (rock specimen) in a lab experiment. In reality, near-linear relations between  and  
similar to (26) result from interactions within the body. Time-delayed interactions do not occur at 
single points but result from deformations, heat flows and waves spreadng through the body and 
affected by its boundaries and heterogeneities. Therefore, the apparent “memory” associated with 
a point largely represents the structure of the surrounding body. A more general form of the 
Boltzmann’s superposition principle valid for heterogeneous and wave-propagating media should 
be: 

     3, , , ,
t

t d M t d    


    r r r r r ,  (28) 

where M(r,r,) is the (tensor) impulse response of the stress at point r to strain at point rat time 
 in the past. To ensure causality, this response must equal zero for  exceeding the travel time of 
the fastest wave from point r to r. At the same time, M is not proportional to (r–r), as implied 
in eq. (26), and we cannot interpret this quantity as a “modulus” of the medium. Quantity 
M(r,r,) in eq. (28) is merely a point-source solution to the equations of motion for the deformed 
body. 

The key aspect of the viscoelastic approximation consists in presenting the 
thermodynamic properties of the medium as time variations of the moduli in the empirical 
integral (26). For example, for deformations conducted at constant temperatures, the medium 
responds with an isothermal modulus (kI), and for adiabatic processes, the corresponding modulus 
is kA ≥ kI (Figure 6) [Hayden et al. 1965]. The easiest way (but by no means the only one) to 
implement such regimes in the lab is by using very slow and fast deformations, respectively. In 
viscoelasticity, exactly such type of experiment is implied, and consequently the modulus kA is 
called “unrelaxed” (i.e. acting at time scales t → 0) and denoted kU, and modulus kI is called 
“relaxed,” kR, presumably acting in the limit t →  (Figure 5) [Nowick and Berry 1972, p. 8]. 
However, in reality, the difference between these two moduli is thermodynamic and has nothing 
to do with the time scales. For example, kA = kU would operate even in “slow” processes with 
thermal insulation (Figure 4a), and the isothermal behavior kI = kR can be achieved without any 
relaxation, by controlling the temperature of the body (Figure 4b). The pair (kU, kR) only applies 
to some specific thermal regime during deformation. Note that this thermal regime is usually not 
specified when moduli kU and kR are discussed [Nowick and Berry 1972]. 

The -to- relations in viscoelastic systems (26)–(27) are often explained by using 
arrangements of springs and dashpots, such as the one shown in Figure 5. Although it is generally 
understood that such models have generally only a pedagogical role for non-specialists [Lakes 
1999, p. 23], they still dominate the thinking of many materials experimentalists and theoreticians 
[Cooper 2002]. For our discussion, note that such systems are completely mechanical, and 
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contrary to what was stated in the Introduction, it may therefore appear that viscoelasticity does 
not contradict the mechanical framework. However, it is important to see how such mechanical 
behavior is achieved. 

All mechanical models which successfully predict creep and different relaxed and 
“unrelaxed” moduli of viscoelastic solids (i.e., the Maxwell, standard linear, or Burgers solids) 
always contain internal variables, such as the one indicated by  in Figure 5. Such variables are 
critical for these models, because they are directly responsible for creep. The Hookean stress-

strain relation   k    is modified by the internal variables; for example, for the standard 

linear solid (dashed box in Figure 5) it becomes: 

   1 1, Rk k k       .  (29) 

At the same time, the models contain no masses (i.e., zero kinetic energy) associated with such 
internal variables (dots in Figure 5). This massless character of internal variables is critical for 
making them behave kinetically: 

1 1k k  
 

   ,  (30) 

which allows solving for their time dependences (t) as Volterra integrals of (t) or  t  in eqs. 

(26)–(27). However, massless internal variables are quite artificial, and physical models [e.g., 
Biot 1956] usually show that internal variables do contribute to the kinetic energy. Ignoring the 
kinetic energy associated with  again shows that the deformation in Figure 5 should be slow, i.e., 
quasi-static. Also, in real continuous systems, perturbations of the internal variables should often 
spread spatially (for example, diffuse) and not just follow the kinetic equation (30) at the 
individual points. Therefore, mechanical models of viscoelastic bodies also assume quasi-uniform 
deformations. 

Thus, viscoelasticity represents a rather special limit of the solid-state mechanics for 
quasi-static, uniform-medium interactions, with mechanisms of anelasticity limited to kinetic 
phenomena, and thermodynamic relations replaced with time-scale phenomenologies. Arguably, 
this approximation may be suitable for experimental materials science and chemical kinetics, in 
which only responses of uniform media to near-constant stresses are usually discussed [Nowick 
and Berry 1972; Cooper 2002]. For such problems, equivalent mechanical models (e.g., Figure 5) 
provide convenient pictorial descriptions without involving the intricate formalism of theoretical 
physics. Practically the same quantity, namely Q-1, is attributed to both the in situ and 
observational levels, and thereby the theory becomes greatly simplified. The frequency (and 
temperature) dependence of the in situ Q provides a very flexible parameterization which allows 
fitting and modeling the observed creep or Q-1 data. Because of the spatial uniformity, this 
phenomenological Q can be qualitatively related to some kinetic processes within the material 
[Karato and Spetzler 1990; Cooper 2002]. 

However, in cases of spatial heterogeneity, such as considered in seismology and 
geodesy, the above approximation is inadequate. Treating the solution of the equations of motion 
(28) in some body as a time-delayed constitutive law (26) at each point r = rwithin the medium 
and replacing the thermodynamic effects by empirical time-relaxation laws may be grossly 
misleading. This makes the resulting M(r, andQ(r,) in (26) only a heuristic mathematical 
parameterization. 
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3.2. Material Q and the correspondence principle 

The correspondence principle is the theoretical foundation of viscoelasticity and of its 
concept of material Q [e.g., Bland 1960; Aki and Richards 2002]. This principle states that the 
elastic-energy dissipation within a material can be described by replacing the wave speed V with 
a complex-valued V (compare to eq. (5)): 

1
2

i
V V

Q

    
 

.  (31) 

This principle automatically attributes a Q to each macroscopic point within the medium. 
Furthermore, because the in situ Q-1 becomes interpreted as a part of velocity, forward modeling 
and inversion methods for V (for example, 3-D tomography) become readily applicable to 

1 2 ImVQ V    [e.g., Anderson et al., 1965; Romanowicz and Mitchell 2009]. 

Nevertheless, the above similarity of VQ-1 and ReV V   actually suggests a problem 
with interpreting relation (31). Anelasticity is vastly different from wave velocity, both by its 
effect on the wave and by the characters and by the variety of physical mechanisms involved. The 
(perhaps rarely noticed) subtlety consists in the fact that the velocity V in eq. (31) is the phase 
velocity, which is often dispersive and generally (in heterogeneous media) different from the 
wave speed. Therefore, Q-1 is contained in the imaginary part of the phase velocity, which can 
also be seen from eq. (25) above. This is the apparent Q-1 of the wave. The wave speed, which is 
a physical property of the medium, remains real-valued and frequency-independent. Therefore the 
correspondence principle does not help in elucidating the meaning of the material Q. For more 
discussions of the correspondence principle in heterogeneous media, see Morozov [2011a]. 

5. Discussion 

The following argument is often advanced1 against the above critique of the in situ Q: if 
the material Q cannot be considered a valid local property of the medium, then a similar argument 
can be made about the seismic velocity, V. However, V is a broadly accepted and important 
property of the wave-propagating medium, and therefore the critique of Q must somehow be 
flawed. 

Nevertheless, the above inference regarding V is actually correct, but we need to clearly 
understand what type of “seismic velocity” is being meant here. As explained in the preceding 
section, the velocity associated with a Q is the phase velocity, Vphase, which is attributed to the 
entire propagating wave and is not distributed in space. Together with Q, Vphase in fact only 
represents the complex wavenumber: 

phase

1
2

i
k

V Q

     
 

,  (32) 

which describes the spatial variation of wave amplitudes: 

     ˆ, exp Im exp Reu x t u k x i t i k x           . (33) 

This de facto variation of the wave vector can be caused by any physical reasons, and its complex 

                                                      
1 Unfortunately, by anonymous reviewers. 
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argument,  Arg k , hardly has any unique significance. The wave vector, k , is clearly non-

local, and so are Vphase and Q. By contrast, the wave speed of the medium is a combination of its 

mechanical parameters and a local property, such as 2SV    for S waves. In a 

heterogeneous medium (for example, for a surface wave), Vphase practically nowhere equals the 
wave speed. Thus, there is actually no reason to believe that VS and  attain imaginary parts and 
become frequency-dependent in anelastic media. 

If questioning the physical significance of the in situ Q and the usefulness of the 
viscoelastic theory in seismology, how can we describe the seismic or tidal attenuation? 
Unfortunately, no universal answer to this question seems to exist. Many factors influence 
mechanical-energy dissipation within the Earth, and they are poorly understood at present. For 
isotropic, porous, fluid-saturated sedimentary rock, Biot’s [1956] framework presented numerous 
insights, which were extended, for example, to Rayleigh waves by Deresiewicz [1960]. For recent 
reviews of poroelasticity, see Müller et al. [2010] and Singh [2011]. However, for deep crustal 
and mantle conditions, the physical mechanisms of energy dissipation seem unclear at present. 
Despite the predominance of the idea that Earth’s anelasticity is mostly due to kinetic 
(“microdynamic”) processes occurring at the scale of material grain sizes, such as the diffusion of 
dislocation and point defects [e.g., Nowick and Berry 1972; Karato and Spetzler 1990; Cooper 
2002; Romanowicz and Mitchell 2009], it appears that solid viscosity [Landau and Lifshitz 1986] 
and thermoelastic phenomena [Hayden et al. 1965] may produce comparable, if not much 
stronger, contributors to it. Such phenomena are sensitive to the structural heterogeneity at the 
scale lengths of 0.1–500 m [Morozov submitted]. This shows that the Earth’s structure itself 
represents a significant factor in explaining the anelastic effects. In other words, the “grain size” 
which is effective for energy dissipation may be much larger than the mineral-aggregate 
granularity commonly studied in the lab and inferred for the mantle. The importance of such 
factors may be most apparent from the seismic observations on the Moon. Nakamura and Kayama 
[1982] noted that the somewhat unusual properties of seismic attenuation on the Moon may be 
due to the thermoelastic effects within its crust. Qualitatively, this agrees with the observations of 
very strong scattering and interpretations of pervasive heterogeneity of the lunar crust [Toksöz et 
al. 1974]. However, this subject requires an extensive further research. 

6. Conclusions 

The current viscoelastic model represents a phenomenological, quasi-static 
approximation to the full physical description of anelasticity in Earth materials. This 
approximation can arguably be used for describing the behavior of rock samples in lab 
experiments; however, it should generally be inadequate for seismology or whole-Earth 
deformations. 

The viscoelastic concepts of “material memory” and “material Q” in fact only describe 
the history of deformation for a given body. Both of these properties are controlled by the 
experimental environments and should not be viewed as constitutive attributes of the material. In 
particular, the process of relaxation is determined not by the time extent of stress application (as 
often thought) but by the thermodynamic conditions of deformation.  Several important types of 
mechanical-energy dissipation cannot be accounted for by the material memory at all; for 
example: 1) wet rock can dissipate energy without macroscopic deformation, 2) fluid zones 
dissipate shear energy despite their shear modulus being equal zero, and 3) a perfectly elastic rock 
also dissipates mechanical energy in spatially-heterogeneous environments. 

The Q is hardly valid physically when viewed as a local property of the medium and 
related to the viscoelastic moduli. By using several “reasonable” analogies with mechanics, 
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multiple definitions of seismic Q can be obtained, all with different frequency dependences. This 
shows that the material quality factor is largely controlled by the assumptions implied in its 
definition. 

In contrast to the limitations of the viscoelastic model, rigorous physical approaches to 
macroscopic solid and fluid continua are well known and successfully account for all aspects of 
anelasticity. These approaches neither require nor lead to the material memory or Q and reveal 
the true mechanisms of seismic and tidal attenuation. Broadly, such mechanisms include: 1) solid 
and pore-fluid viscosity (rheology), 2) thermoelasticity, 3) various kinds of kinetic processes, and 
4) effects of the Earth’s structure. These mechanisms operate at all time scales and conditions, 
and their better understanding would lead to a unified picture of seismic and geodetic anelasticity. 
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Figures 

 
Figure 1. Mechanical-energy dissipation: a) damped linear oscillator, b) its response to harmonic 

force, b) time-domain free oscillation. In a steady-state oscillation (b), the attenuation 

coefficient measures the absolute width of the resonance peak at the level of 1 2  of the 

maximum amplitude, and Q measures its relative width: 1/2 = 2 = 0/Q. Example with 
Q = 10 shown. 

 
 
 
 
 

 

Figure 2. Frequency dependences of several types of Q definitions (16)–(19) for a linear driven 
oscillator. At the resonant frequency  = 0, all of these values equal the true quality 
factor of the oscillator (12) denoted Qtrue here. 
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Figure 3. Thought experiment illustrating a problem with seismological Q definition (23). A rock 

specimen is welded into an infinitely rigid casing and subjected to an oscillatory motion 
without deformation.  

 
 
 
 
 
 
 

 
Figure 4. Thought experiment with cyclic deformation of a perfectly elastic material specimen 

(gray): a) adiabatic compression (AC) and decompression (BD) with thermal relaxation at 
constant stresses (CB and DA), b) isothermal compression/decompression in thermostat. 
Note that in case a), mechanical energy is dissipated (gray area of the hysteresis curve in 
the bottom plot). 
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Figure 5. Mechanical model of a generalized viscoelastic solid [Liu et al. 1976]. Dashed boxes 

contain the standard linear solids (SLS) with different parameters, which are connected in 
parallel to implement the constitutive relation (26). In each SLS, kR indicates the 
“relaxed” elastic modulus and  denotes the damping elements. Note the internal 
variables marked by dots and denoted . The “unrelaxed” moduli are given by 

 1 0U Rk k k     ,where  is taken at time t → 0. 

 
 
 

 
Figure 6. Differences between the adiabatic (kA) and isothermal elastic moduli (kI). The hysteresis 

loop from Figure (4a) is also shown for comparison (arrows). 
 


