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Summary 

The attenuation quality parameter (Q) is a phenomenological quantity depending 

on the observations and on the underlying theoretical models. Q is a valid attribute of 

attenuating wave processes; however, as a property of the propagating medium, it is non-

unique and can be completely fictitious. In many existing models, medium-Q factors are 

defined as properties of time-dependent viscoelastic moduli, and inversions are based on 

analytical extrapolations of the elastic parameters into the corresponding complex planes. 

Although these theories are mathematically self-contained, the resulting Q-1 values may 

lead to inaccurate or even unreasonable solutions when interpreted intuitively, as 

measures of energy dissipation. Overall, the attenuation coefficient  represents a 

significantly more robust representation of the in situ attenuation than Q. As an example, 

we show that the well-known viscoelastic solution for the long-period Love-wave QL 

within the Earth’s mantle violates the conservation of energy and overestimates the 

attenuation levels. A new derivation is given, based on an explicit interpretation of the 

attenuation coefficient. The new QL in the Gutenberg’s continental structure is 10-20% 

higher than before but shows a similar frequency dependence. Mantle attenuation 



2 

sensitivity kernels are different from the velocity sensitivity kernels. Attenuation kernels 

are sensitive to the largest particle velocities whereas phase velocity kernels – to the 

zones of highest strain within the subsurface. These differences should have significant 

implications for 1D and 3D modeling and inversions for the attenuation structure of the 

Earth.  

1 Introduction 

Seismic attenuation is typically observed by indirect methods, such as by using 

temporal amplitude decays of standing waves, widths of spectral peaks, or spatial decays 

of amplitudes in propagating waves at different frequencies. Once the frequency 

dependence of the quality factor, Q(f), and the differences between elastic and anelastic 

attenuation have become recognized, many inversion methods were proposed to address 

these properties. Unfortunately, with typical data paucity and scatter, differences between 

wave types and datasets, and the increasing complexity of inversion techniques, 

attenuation models have become prone of significant uncertainties. It also appears that 

the basis of the Q concept and its influence on the character of seismological 

measurements have received insufficient attention (Morozov, 2009a, b). 

Although this may seem surprising with the routine use of Q in today’s 

seismological studies, the very existence of a quality factor describing the energy 

dissipation within the Earth is neither unequivocally obvious nor follows from solid-state 

or fluid mechanics. For propagating waves, the parameter that truly exists and is directly 

measurable is the spatial attenuation coefficient (e.g., Chernov, 1960) 
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In this expression, E is the wave energy density, r is the travel distance, f is the 

frequency, and G(r,f) is the purely geometrical amplitude spreading that is assumed to be 

removed from . In general, this attenuation coefficient is frequency-dependent, and by 

denoting its limit at f = 0 by , one can write (Morozov, 2008, hereafter M08): 

      f
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Thus-defined “effective” Qe
* is analogous to the quality factor of a mechanical or 

electrical oscillator, in the sense of its being a dimensionless parameter representing the 

part of energy dissipation that increases with increasing frequency. Note that for a 

traveling wave (Figure 1), Qe still measures the local dissipated energy density. However, 

the conventional Q is defined differently, and is based on the amplitude drop cumulative 

in one wavelength  (Aki and Richards, 2002, p. 162): 
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where V is the incident wave velocity. The important difference of eq. (3) from (1) is that 

a characteristic of the incident wave (wavelength ) is embedded in it. This makes Q not 

entirely medium-controlled, and automatically leads to its proportionality to -1 or f for 

longer waves (Figure 1). 

It is important to clearly differentiate between the properties of the elastic media 

and those of waves propagating it them, yet such differentiation is often obscure when 
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using Q. Attenuation factors Q-1 are usually intuitively attributed to the media but 

justified only by considering plane- or spherical-wave solutions (e.g., Aki and Richards, 

2002). Such solutions only exist in uniform media, in which assigning the resulting Q-1 to 

the medium is trivial. In such cases, (f) is nearly proportional to f, which compensates 

the artificial factor  in eq. (3). However, this proportionality only holds for such 

simple cases of perfectly-known geometrical spreading and disappears, for example, for 

surface waves. Quantities (3) and (1) would also have been equally applicable to the 

medium if there were reasons to assume that   V-1; however, no such reasons exist. 

Thus, unlike (f), the quality factor (3) is a phenomenological attribute of the specific 

wave rather than an in situ medium property. 

Although the transformation of (f) into Q(f) (eq. 3) may seem natural for wave-

like processes, its underlying assumptions are neither trivial nor entirely innocent. The 

very use of Q instead of the more general eliminates the possibility of the zero-

frequency attenuation coefficient * ≠ 0 in eq. (2). As shown in detail in Part II, non-zero 

* results from variations of geometrical spreading, and values * > 0 are commonly 

observed in short-period seismological data (M08). In the Q(f) picture, such * values 

lead to spurious frequency-dependent Q. 

The above observation is just one illustration of the uncertainty of the notion of 

the “medium Q.” In interpreting the Q values arising from various forward and inverse 

Earth models, it is important to keep in mind what type of quantity is being measured. In 

their Chapter 3, Bourbié et al. (1987) summarized a number of such measurements and 

noted that although most of them can be successfully described by the corresponding 
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viscoelastic models, there is little agreement between the resulting values of Q. Q is 

simply unlikely to represent a common medium property. 

As most researchers would agree, the general purpose of using a “medium Q” is 

for describing the ability of a unit volume of the medium to dissipate seismic energy. 

This is how the interpreters usually understand Q-1 within the Earth, associating its 

increased values with elevated temperatures, presence of fluids, or scattering. However, 

for theorists, the in situ Q-1 is often a different quantity. Because no single parameter 

describing the ability of the medium to dissipate the elastic energy exists, various 

phenomenological proxies were proposed (Bourbié et al., 1987). In particular, in formal 

visco-elastodynamics, a Q-1 is indeed defined as a local property of the medium, equal to 

the argument of the complex elastic modulus in the frequency domain (Anderson and 

Archambeau, 1964). Such Q-1 leads to detailed mathematical models of wave propagation 

and energy dissipation (e.g., Borcherdt, 2009). However, this still does not mean that 

complex elastic moduli are indeed present within the Earth, and that such Q-1 is related to 

any geologically-meaningful properties. 

As shown in Sections 2 and 3, the concept of seismological Q is based on four 

mathematical conjectures, analogies, and assumptions. However, despite their elegance, 

long history, and tremendous impact on attenuation studies, all of these assumptions 

appear to fail. The existing Q is only a phenomenological quantity derived by 

extrapolating the attributes of simple wave solutions instead of analyzing the mechanical 

properties of the propagating medium itself.  

In Section 4, in order to understand the process of attenuation from first 

principles, we outline an approach based on the Lagrangian wave mechanics. This 
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description is well-known and commonly used in theoretical physics, and it was used in 

exploration geophysics (e.g., Biot, 1956; Bourbié et al., 1987). Nevertheless, this 

approach appears to be under-utilized in global seismology. This illustration shows that: 

1) attenuation should not be physically connected to the complex-valued moduli, and 2) 

unfortunately, attenuation represents a significantly more complex phenomenon that 

cannot be treated by heuristic conjectures and assumptions. The general conclusion from 

this section is that again, attenuation parameters should be studied specifically and not 

mixed into the elastic properties. 

Further in Section 4, we take an “interpretive” view on attenuation above and 

propose a model of seismic attenuation based on the notion of the attenuation coefficient 

distributed within the Earth. The “quality factor” Q and its associated viscoelastic 

mechanics is not included in this model, and its use should generally be discouraged. 

However, because of its overwhelming use in seismological literature, we still render the 

attenuation-coefficient expressions in terms of Q where it is possible without confusion. 

Further theoretical analysis of the attenuation coefficient and its relation to bending rays 

and reflectivity is presented in Part II of this study. 

To illustrate the attenuation-coefficient approach, in Sections 5– 7, we revisit the 

study by Anderson et al. (1965) and perform modeling of the frequency-dependent 

(apparent) surface-wave Q. These classic results are selected for their simplicity and also 

because they laid the methodological basis for today’s interpretations of Q and for 

numerous modern inversions. These analytical and numerical predictions of the Rayleigh 

and Love-wave Q have hitherto been unquestioned (Aki and Richards, 2002, p 290-291); 

nevertheless, our example shows that the viscoelastic approach violates the conservation 
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of energy and results in ~10–20% over-estimated levels of attenuation. To derive a 

correct solution, we use the wavenumber-eigenvalue approach (Aki and Richards, 2002) 

which can also be related to the frequency- eigenvalue, spherical harmonic summation 

used in whole-Earth studies (Dahlen and Tromp, 1998; Gung and Romanovicz, 2004). 

The clarity of the 1D problem allows us to focus on the underlying paradigms, 

conjectures, and theoretical assumptions which are imbued in numerous recent 

investigations of the Earth’s 3D attenuation structure (e.g., Gung and Romanovicz, 2004, 

and many other studies). However, in 3D tomographic inversion, understanding of the 

fundamental principles of attenuation modeling is complicated by many analytical and 

computational details. For example, Lekić et al. (2009) recently made a spectacular 

conclusion that merely by manipulating the sensitivity kernels, the “physical” frequency 

dependence of mantle Q-1 can be established beyond any doubt and without constructing 

a correct attenuation model. Nevertheless, the analysis presented below questions the 

physical significance, accuracy, and potentially even the existence of such kernels for Q-

1. Because of the forward modeling failing in the 1D case, it is obvious that any inversion 

and subtle interpretations, and particularly in 3D, should also become problematic. 

2 Basis of the “medium-Q” concept 

The key theoretical observation facilitating both the early 1D (Anderson et al., 

1965) and modern 3D attenuation inversions (Gung and Romanovicz, 2004) is that the 

Fréchet sensitivity kernels Kq relating the in situ surface-wave properties q of to the 

observed ones, qobs: 

    rrrr 3dq,Kq obsqobs ,                                                   (4) 
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are the same for q taken equal to VQ-1 or to the wave velocity V within the medium. This 

statement is closely related to the interpretation of Q-1 as a negative complex argument of 

the medium velocity (eq. 5.93 in Aki and Richards, 2002). Physically, this equivalence is 

most amazing and worrisome, considering that many factors control the energy 

dissipation within the Earth, such as fracturing, fluid content and saturation, viscosity, 

porosity, permeability, tortuosity, properties of “dry” friction on grain boundaries and 

faults, and distributions of scatterers (Bourbié et al., 1987). Most of these factors are only 

remotely (at best) related to the velocity. The ability to lump them all together in a 

cumulative medium Q-1 suggests that only some specific wave mode is in fact considered, 

and its properties are substituted for the properties of the medium.  

Indeed, Q-1 in eq. (3) is not the type of quantity that can be uniquely attributed to 

any point in the medium, as parameter q(r) in eq. (4). Values of Q-1 are different for 

different waves (for example, P, S, and various inhomogeneous waves – see Borcherdt, 

2009). This difference is attributed to the two elastic parameters of the medium, such as 

the bulk and shear moduli (Anderson and Archambeau, 1964). However, let us ask 

ourselves, what properties of the elastic moduli  and  led to their association with 

attenuation? In answering this question, four fundamental hypotheses can be recognized 

in the pioneering studies of the Earth’s attenuation in the 60‘s and 70’s: 

H1) In the frequency domain, complex-valued elastic moduli can be used to write the 

anelastic equations of motion. Conceptually, complex moduli arise from the 

popular interpretation of attenuation as “imperfect elasticity” (Anderson and 

Archambeau, 1964) presenting the stress () as a convolutional response to the 

strain-rate history, (t) (Dahlen and Tromp, 1998): 
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where M(t) is the generalized time-dependent viscoelastic modulus. This 

interpretation is closely related to the relaxation-spectra (e.g., Liu et al., 1976) and 

equivalent mechanical models, and also to the correspondence principle (e.g., 

Bland, 1960). It was supported by extrapolating the results of creep measurements 

(Lomnitz, 1956) to the seismic frequencies; however, this was also done 

indirectly, with the use of the relaxation law (5) and equivalent models.  

H2) Phase-velocity dependencies on the medium parameters can be analytically 

extrapolated into the complex plane in order to derive the attenuation properties 

(e.g., Anderson and Archambeau, 1964). This conjecture directly led to the 

similarity of the forward velocity and Q-1 kernels in eq. (4). 

H3) The Q parameter is expected to vary with frequency, and the power-law 

frequency dependence Q(f) = Q0f
 is often suitable for describing the observed 

(apparent) and also material attenuation (e.g., Aki and Chouet, 1975; Anderson 

and Given, 1982). 

H4) Geometrical spreading can be “reasonably” accurately modeled, which allows 

correcting the observed amplitudes for it and measuring the frequency-dependent 

Q.  

These hypotheses form the basis of both frequency-dependent attenuation modeling and 

measurements and are rarely questioned today. Viscoelastic theories based on these 

assumptions are elegant, mathematically rich, and self-consistent (Carcione, 2007; 

Borcherdt, 2009).  



10 

Unfortunately, all four assumptions (H1-H4) above appear to be inadequate. They 

only describe the reality in a very limited number of cases, and the case of a surface wave 

in a layered Earth is not among them. Assumption (H4) may be the most harmful, 

because it affects the very procedure of data measurement and presentation (Morozov, 

2009a). As recently demonstrated by revisiting several key studies (M08, Morozov, 

2010a,b) geometrical-spreading models are insufficiently accurate in most observational 

cases, and their corrections often eliminate the need for a frequency-dependent in situ Q. 

Assumption (H3) can be viewed as only a convenient parameterization for Q; however, 

in conjunction with (H4), it leads to incorrect values and spurious frequency dependences 

of Q in cases of imperfectly-corrected geometrical spreading (Morozov, 2009a,b). 

In this paper, we focus on the role of the fundamental assumption (H1), i.e. of the 

constitutive law for attenuation. The correspondence principle unquestionably describes 

real wave propagation only in a homogenous medium, because only in such medium 

there exists an elastic parameter directly corresponding to the phase velocity (such as 

2SV  for S waves, where  is the rigidity modulus and  is the density). This 

allows attributing the imaginary shift in the phase velocity to , thereby justifying the 

relaxation model (H1) above. However, in a heterogeneous, attenuative medium, the 

phase velocity does not equal the material velocity at any point, and therefore the reasons 

for introducing a complex-valued material  remain unclear. As shown below, even 

assuming that all attenuation factors can be summarized in a single material Q-1, they 

should still not be attributed to the elastic moduli. 
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3 Types of Q models 

The Q factor is a phenomenological quantity dependent on the type of observation 

conducted with the deformation-stress field. Quasi-static experiments, such as creep and 

relaxation (e.g., Lomnitz, 1956) first lead to the convolutional laws as in eq. (5), and in 

some cases, such laws could be implemented in rheological models (e.g., Carcione, 2007, 

sections 2.4–5). However, within the seismic frequency bands, creep and relaxation are 

still inferred only implicitly through the interpreted quality factor Q. In different 

experimental environments (wave propagation, forced harmonic oscillations, or free 

vibrations), different values of Q arise from the relaxation models, and they cannot be 

reduced to each other (for an overview, see Chapter 3 in Bourbié et al., 1987). For 

example, the Biot theory for porous saturated rock, or scattering theory (e.g., Chernov, 

1960) clearly lead to the spatial attenuation factors  (eq. 1). These factors can be 

converted into Q by using eq. (3); however, such Q’s are different from those determined 

in the experiments with resonant bars (White, 1983). Thus, the generalized viscoelastic 

model (5) can satisfactorily represent and compare the various field problems, yet its 

significance in relation to the fundamental medium properties should not be overstated. 

These models can be viewed as working mathematical tools rather than an end in 

themselves (Bourbié et al., 1987). 

Formulations of the dynamics of deformation in the literature can generally be 

subdivided into two groups. First, in the “axiomatic” approach usually referred to as the 

linear viscoelasticity (Bland, 1960), a rigorous mathematical theory is constructed by 

starting from the constitutive law (5). This approach is broadly used in theoretical global 

seismology (Dahlen and Tromp, 1998). Unlike rigorous theoretical mechanics, this 
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theory does not use the Hamilton variational principle but starts from differential 

equations of motion and relies on dashpot-spring analogies for their support (e.g., 

Carcione, 2007). Further description is entirely self-consistent and close to that of an 

elastic problem, from which it differs by using complex-valued elastic constants in the 

frequency domain. Nevertheless, this difference also leads to new types of solutions 

(such as inhomogeneous and multiple S waves), which sometimes possess peculiar 

properties (Richards, 1984).  

In the frequency-domain form of the linear viscoelastic model (eq. 5), the 

attenuation is described by negative phase shifts of the medium velocities VP and VS, 

(e.g., Aki and Richards, 2002), and Q-1 is defined as a phase shift between the complex-

valued particle velocity and stress. This phase shift is further attributed to the arguments 

of the complex elastic moduli, whereas the possibility of an imaginary component of 

density is not considered (Anderson and Archambeau, 1964; Borcherdt, 2009). However, 

such extrapolation of Boltzmann’s (1874) after-effect theory (which describes relaxation 

phenomena such as creep) to seismic frequencies is still phenomenological and appears 

to disregard several key mechanical principles. Firstly, if the attenuation is caused by 

friction on grain boundaries and faults, or by viscosity in pore fluids, it should affect the 

kinetic, and not the elastic-deformation energy. Strain energy dissipates into heat not by 

means of some “imperfect elasticity” but by causing relative movements within the 

medium. The Lamé parameters  and  describe the elastic energy stored in the field, and 

they should not be responsible for attenuation. Secondly, attenuation is a property of a 

particular wave and corresponds to an imaginary part of its wavenumber or frequency. 

The key idea of visco-elastodynamics can be summarized as attributing an attenuation 
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property (namely, Q-1) of a plane S-wave in a uniform medium to the local shear 

modulus, and that of the P-wave – to the local modulus M. This mathematical conjecture 

provides a great short-cut in the theory; however, it is not necessitated by the physics. Its 

predictions start deviating from reality when considering inhomogeneous media and 

boundary conditions, which also become “anelastic” in this approach (Borcherdt, 2009). 

For example, when compared to the derivation based on the traditional wave equations, 

visco-elastodynamics gives opposite signs of the phase shifts for reflections from 

attenuation contrasts (Lines et al., 2008), which was explained by incorrect expressions 

for the anelastic acoustic impedance (Morozov, 2010c). 

By contrast, the approach that can be called “physical” attempts building a wave-

propagation model by using the traditional mechanics, which describes the energy 

dissipation by viscous flows or dry friction. Apparently because of its attention to fluids, 

this approach is more developed in exploration seismology (e.g., Bourbié et al., 1987). 

The medium is described by using the Lagrangian formulation, in which the dissipation is 

considered separately from elasticity, and all medium parameters remain real. Notably, 

when certain solutions to the wave equations are considered (for example, harmonic 

plane waves in homogeneous media), phenomeonological complex moduli may also arise 

(Bourbié et al., 1987; Carcione, 2007). 

The second of these approaches is far more preferable for unraveling the true 

physics of wave propagation, and Lagrange formulation is well-known for its depth, 

power, and generality. To illustrate this model of elastic energy dissipation, we only 

summarize its principles below; however, their relation to the full wave problem (and 

also its complexity in real-world applications) are quite apparent. For more complete 
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treatments of viscoelasticity in realistic porous media, see Bourbié et al. (1987) and 

Carcione (2007). 

4 Attenuation in Lagrangian elastic-medium mechanics 

In Lagrangian form, the dynamics of any mechanical system (such as the elastic 

field) is described by a function of some generalized coordinates q and their time 

derivatives q   

  elkin EEL qq , ,                                                      (6) 

where Ekin and Eel are the kinetic and elastic energies. Vector q consists of any 

parameters describing the field (e.g., local displacements, their Fourier amplitudes, or 

Rayleigh-Ritz coefficients below), and q and q are treated as independent variables. The 

corresponding Euler-Lagrange equations of motion are given by 
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In the presence of energy dissipation, these equations are modified by adding the 

generalized dissipative force D
iQ  (do not confuse with the quality parameter Q):  
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which is a derivative of some “dissipation function” (“pseudo-potential”) D in respect 

to q :  
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For a simple mechanical analogy, consider a linear oscillator of mass m. Its Lagrangian is 

 
2

2 20,
2 2

mm
L


 r r r r  .                                                  (10) 

where r is the vector of its Cartesian coordinates, and 0 is its natural frequency. If the 

force of viscous friction is linear in velocity: 

0D m  f r ,                                                                (11) 

then the corresponding Rayleigh dissipation function is (e.g., Razavy, 2005) 

20

2
r m

D  .                                                                 (12) 

If the oscillator is driven by an external force with frequency , the energy E dissipated 

in one period T = 2/ is 

kin
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TEdtmE 0
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0    r .                                                    (13) 

where Ekin is the peak kinetic energy in that period.  

For a mechanical oscillator, the quality factor is simply a constant parameter of 

the system, denoted Q = -1. Consequently, there is no question of its frequency 

dependence. However, if the quality factor is defined “as in seismology” (Aki and 

Richards, 2002, p.162), then it becomes linearly increasing with frequency: 
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E

E
Q kin ,                                                             (14) 

because E increases with period (eq. 13). This expression explains one fundamental 

reason for observing the seismological Q often quickly increasing with frequency: such 
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frequency dependence is simply encoded in its definition. It is “natural” to expect Q   

in systems with frequency-independent energy dissipation.  

Further, taking into account eq. (12), the equation of motion (8) with viscous 

friction becomes  

rrr  0
2
0  mmm  ,                                                           (15) 

and its general solution is r(t) = Re[Aexp(-i't)], where 
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 i
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is the “complex frequency,” and A is an arbitrary complex-valued amplitude. A similar 

complex frequency arises when describing the attenuation of Earth’s normal modes 

(Dahlen and Tromp, 1998, Chapter 6). Following the “viscoelastic” practice, one can 

therefore define a complex-valued spring constant (an equivalent to the elastic modulus) 

  ikmk  1'20 ,                                                            (17) 

and eq. (15) then takes the form of the free-oscillator equation (12): 

rr 2
0 mm  .                                                                    (18) 

If an external force f(t) is considered in the right-hand side of eq. (15), then its frequency-

domain solution can also be expressed by using the complex frequency alone: 

   
 22

0 
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
m

f
A .                                                                (19) 

This formula resembles a single-mechanism “relaxation spectrum” (Liu et al., 1976). 

Thus, expressions (6–14) give a consistent analog to the elastic-wave attenuation 
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processes. Eqs. (16–19) show how the complex-valued elastic moduli and relaxation 

spectra arise, but only because of the existence of an oscillatory solution with  = 0. 

The fundamental difference of the propagating wavefield case is that it has no “natural” 

oscillation frequency arising from the wave equation. Without special relaxation 

mechanisms, the medium is non-resonant, and the oscillations are of a purely forced 

nature. The energy dissipation occurs per unit volume or travel path and can be measured 

by the attenuation coefficient,  (Chernov, 1960; Bourbié et al., 1987). In order to obtain 

a Q value,  has to be arbitrary converted to Q by using eq. (3) and introducing a 

frequency- or wavelength dependence similar to the one shown in eq. (14). 

Eq. (8) shows that the attenuation is caused by external friction forces which are 

not included in the Lagrangian (i.e., in  or ). The effect of friction can nevertheless be 

described by an energy-like function D (eq. 12), but the function is similar to the kinetic, 

and not to the elastic energy. For example, in a porous medium (Bourbié et al., 1987, p. 

69-72), the dissipation function is quadratic in filtration velocity wi (the velocity of the 

fluid relative to the rock matrix): 

ii wwD  *

2


 ,                                                               (20) 

where  is the fluid viscosity, and  is the absolute permeability, which depends on the 

geometry of the pores.  

The above shows that if taken literally, the association of friction with  (which is 

a measure of shear-strain energy) is problematic. Instead of , the attenuation could also 

be related to an imaginary part of , although this seems to be neither necessary nor 



18 

productive as well. Anderson and Archambeau (1964) also discarded such possibility of 

Im≠, but because of its perceived association with “imperfect gravity” (which was 

also somewhat imprecise). However, note that that in porous saturated media, the density 

factor nevertheless does change in the presence of energy dissipation. Relative movement 

of pore fluids causes an additional inertial coupling force (Bourbié et al., 1987): 

   ifinertial uaF  1 ,                                                           (21) 

where a  1 is the tortuosity parameter, and f is the pore fluid density. This force is 

proportional to the acceleration and effectively modifies the inertial property of the rock 

(i.e., its density ) to +f(1-a). 

In summary of this section, it appears that phenomenological analogies and 

analytic extrapolations should be carefully scrutinized when used to infer wave 

attenuation within the Earth. The fundamental equation (8) and realistic multi-phase 

models based on the specific physics of dissipative processes should be much more 

reliable than such analogies. 

5 Existing Love-wave Q(f) model in a layered Earth 

The derivation of the surface-wave Q(f) measured on the surface of a layered-

Earth model by Anderson et al. (1965) (also see Aki and Richards, 2002, p. 289–291) 

was based on two of the heuristic conjectures above: (H1) interpretation of the 

attenuation parameter Q-1 as a phase shift of the complex-valued phase velocity: 

 1 spatial
2

 ln  Q
i

 -cδ ,                                                       (22) 
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and (H2) assumed analytical dependence of the surface-wave phase velocities c on the 

velocities of the individual mantle layers (VP,i and VS,i): 

 iiSiP VVfc ,, ,, ,                                                           (23) 

where all properties also depended on frequency . It was also assumed that eq. (22) 

could be applied to both the apparent Q-1 observed on the surface and to the in situ Q (in 

combination with the medium velocity replacing c in eq. (22)). This allowed 

extrapolating the partial derivatives of phase velocities, such as iPVc , , into the 

corresponding complex planes, which further allowed calculating the surface-wave 

attenuation by using the phase-velocity derivatives. This approach yielded for Love 

waves (eq. 7.88 in Aki and Richards, 2002): 


  
0

11 spatial dzQKQ SVL
,                                                 (24) 

where z is the depth, KV is the S-wave velocity sensitivity kernel 
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,                                                     (25) 

k is the wave number,  is the Lamé rigidity modulus, QS is the shear-wave attenuation 

quality factor of the mantle, and l1 is the amplitude of the mode of interest. All values in 

eqs. (24) and (25) are depth-dependent, so that the SH-wave displacement is given by 

     txzltzxuy ,,, 1  ,                                                      (26) 

where (x,t) = exp(-it+ikx). 
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Despite its simplicity, approach (22–23) nevertheless leads to significant 

difficulties. Its key problems are: 1) treating QS
-1 as a fundamental medium property, 

which can also be considered local (such as ) and 2) mixing the notions of wave speeds 

as parameters of the propagating medium and phase velocities of the various wave modes 

in it. Note that by its definition, the spatial Q for any wave mode corresponds to the 

complex argument of its wavenumber (e.g., Aki and Richards, 2002, p. 167–169): 

1
2

i
k k i k

Q


 
    

 
,                                                  (27) 

where  is the spatial attenuation coefficient. Positive signs of Qensure the amplitudes 

decaying in the directions of propagation. Through its relation to the phase velocity 

c = /k, a positive Imk corresponds to negative Imc. However, in a surface wave, a single 

value of k is common to all depth levels, and velocities VP and VS in eq. (25) do not serve 

as phase velocities for any waves. Therefore, the inferred negative imaginary parts in VP 

and VS similar to that of the phase velocity (22) represent heuristic extrapolations of the 

dispersion property of the plane-wave solution (c = /k) far away from the region of its 

validity.  

Further, let us consider the hypothesis of analyticity (H2 above). Function (23) 

represents an integral transform of the layer parameters (see eq. 25), and its analyticity in 

respect to the functional integrands VP,S(z) (or equivalently, (z) and (z)) is unlikely in 

the general case. Thus, we need to avoid treating the phase velocity and attenuation as a 

single holomorphic function, and consider them independently. 

Regarding the properties of the resulting solution, formula (25) is also 
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problematic, because it violates the total energy balance by exaggerating the amount of 

energy dissipation. Values of QL
-1 are presented as weighted averages of QS

-1 within the 

layers; however, the weights in the numerator of this ratio are systematically greater than 

those in the denominator. This flaw of expression (25) can be easily seen on an example 

of a two-layer model with different velocities but constant in situ QS. In such a model, 

assuming that the energy in each layer l = 1,2 can be subdivided into non-dissipating 

(En,l) and dissipating (Ed,l) parts, Ed,l should decrease after time t by the same factor for 

both layers: Ed,l  (1-) = exp(-QS
-1t). Consequently, the total relative energy 

dissipation rate should not exceed : 

 









2,2,1,1,

2,1,
~

~

dndn

dd

EEEE

EE

E

E
.                                      (28) 

Therefore, the spatial attenuation factor of QL
-1 = QS

-1 can be expected if all mechanical 

energy dissipates in this process, and QL
-1 < QS

-1 if only a part of it dissipates (such as the 

kinetic energy above). However, the conventional formula (25) predicts QL
-1 > QS

-1 on 

the surface, showing dissipation of greater energy than present in the field, which is 

unrealizable. 

6 Love-wave Q(f) from energy-balance constraints 

An alternate expression for the effective spatial attenuation can be derived 

directly from the energy balance considerations. Consider an SH surface-wave field of 

form (26) in a layered, isotropic, and lossy medium, in which the horizontal wavenumber 

contains a positive imaginary term (eq. 27). Its time-averaged kinetic energy density is 

(Aki and Richards, 2002, section 7.3) 
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uuE iikin    ,                                       (29) 

where complex conjugation (denoted by the asterisk) accounts for the complex-valued 

wavefield amplitudes in eq. (26). The corresponding average elastic energy density is 
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and the total energy 

 32
*

1
2

0 2

1~
IIkkIdzEEE elkin  
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 ,                               (31) 

where the energy integrals are 
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The total elastic energy contained in a normal mode equals its kinetic energy (Aki 

and Richards, 2002, p. 284) 

32
*

1
2 IIkkI  .                                                   (33) 

As argued above, Ekin can be viewed as the source of energy dissipation. For weak 

attenuation, its loss is continuously replenished from the potential energy through eq. 

(33). For horizontal surface-wave propagation (i.e., because of the common factor uu* in 

eqs. (32)), both Ekin and Eel at any depth should thus decrease with travel distance x as 

exp(–2x). The total dissipation is a sum of energy losses at each depth: 

 
0 0

2kin
i kin

d EdE
dz z E dz

dx dx
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,                                 (34) 
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where we define i(z) as the “intrinsic” spatial S-wave attenuation coefficient at depth z. 

In the absence of information about the specific mechanisms of attenuation, the spatial 

attenuation coefficient i still can be viewed as a substantive property responsible for S-

wave energy dissipation. To see this point for longer waves, consider plane or surface 

waves with a fixed frequency  and wavenumber k. Although such waves would 

generally not satisfy the equation of motion (i.e., /k ≠ VS(z), and the waves may 

represent vibrations forced by the adjoining layers), energy dissipation from within 

different volumes should occur independently (Figure 1)  

   2 i

E L
z L

E


  .                                                    (35) 

Therefore, the local i(z) should depend on frequency but be nearly independent of k. In 

Part II, we give further theoretical examples of frequency- and wavenumber-

independent i. 

The following paragraphs in blue were added as a suggestion, in response to Jeroen’s 

question about D. In the paper, this should probably better go in a separate section. 

In terms of the Lagrangian model in Section 4, the dissipation function 

corresponding to expression (34) is 

i S kin i kinD V E E   .                                            (35.a) 

When viewed as a function of particle velocities (as in eq. 12), this function has the   

meaning of the energy density dissipated at a given point within the medium. Under the 

present approximation of locally-isotropic medium and long wavelengths, i can be 

viewed as an independent parameter describing the tendency of the medium to dissipate 
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the seismic-wave energy. Physically, this parameter measures the portion of the kinetic 

energy that activates certain types of internal movements within the rock matrix, which 

are further transformed into heat or scattered elastic-wave energy. The mechanisms of 

these movements should be numerous and sensitive to the structure of the rock, its 

composition, physical state, pressure, and temperature. Although these mechanisms are 

not well understood at present, relation (35.a) could likely be used as a viable heuristic 

approximation. In terms of quantity i both forward and inverse attenuation models can 

be formulated in ways similar to those of the existing Q-1 models. 

Because the dissipation function is given by a multiplication in the frequency-

domain (eq. 35.a), it would have a convolutional form in the time domain. In particular, 

the part of i linearly increasing with frequency, i/2, leads to the time-domain 

dissipation described by particle velocity convolved with the Hilbert transform of the 

acceleration: 

             * * *
HD d u u i d u u d u t u t          

  

  
           .         (35.b) 

Thus, similarly to the viscoelastic theory, the simplicity of the frequency-domain formula 

(35.a) is achieved by a time-retarded form of the mechanism of interaction. It still 

remains to be established how realistic such mechanisms may be; however, the 

observations of constant i values (M08, M10a, b) suggest that such mechanisms could 

be close to reality. Alternately, if we look for perfectly instantaneous but frequency-

dependent form of dissipation function, it would require interactions other than the 

second-order in u. Such interactions would intermix wave amplitudes at different 

frequencies. Under the same approximation, spatial gradients or wavenumbers do not 
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influence the dissipation process, and therefore it remains strictly localized in space. 

Published mantle attenuation models are usually presented in terms of frequency-

dependent plane S-wave quality factors of the medium QS
-1, which need to be 

transformed into i by using 
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 .                                                           (36) 

For the temporal attenuation coefficient, a similar transformation gives 
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= .                                                             (37) 

Similarly to (35.a), this form is independent of VS and often more convenient in 

describing the observed data (M08).  

From eqs. (34), the total attenuation coefficient observed on the surface becomes 

0
L i

dE
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Edx aa a
¥

=- = ò

 ,                                                 (38) 

where the resulting i-sensitivity kernel is 

kinE
K

Ea =  .                                                             (39) 

Unlike formula (25), expression (38) preserves the sum of the total propagating and 

dissipated energies. To compare this expression to the conventional formula (24), we can 

define the “QS-sensitivity” kernels 

L
Q

S

U
K K

V a= ,                                                           (40) 
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where VL is the Love-wave phase velocity. These kernels predict the observed QL
-1 from 

QS
-1 values assigned to the layers within the Earth: 

1 1

0
spatial 

L Q SQ K Q dz
   .                                                      (41) 

Note that KQ is functionally different from the velocity kernel KV in eq. (25). Finally, the 

temporal attenuation coefficient  can also be derived from L: L = LVL. 

Note that the introduction of attenuation (i > 0) also slightly shifts the phase and 

group velocity spectra. To see this, consider the variational principle for finding the 

dependence of l1(z) on the depth (Aki and Richards, 2002, p. 284) 
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IIkkIdzL  uu  ,                              (42) 

where  uu ,L is the Lagrangian density of the elastic field , and I1, I2, and I3 are the 

energy integrals defined in eqs. (32). For a fixed , the absolute value of the 

corresponding wavenumber |k| is obtained by solving the eigenvalue problem of eqs. (33) 

and (42). However, integrals (32) only depend on i via a common factor uu*, and 

therefore |k| is independent of attenuation. Consequently, with non-zero attenuation, the 

real part of the wavenumber decreases as 

2 2
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    
 

,                                               (43) 

which corresponds to a negligibly small phase-velocity (c = /k) dispersion due to 

attenuation (Anderson et al., 1965). From the variational principle (eqs. 33 and 42), 

group velocity remains real and changes accordingly (cf. eq. 7.70 in Aki and Richards, 
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2002): 
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 .                                                           (44) 

7 Numerical model of mantle Love-wave QL 

The Rayleigh-Ritz method provides efficient numerical solutions to the 

eigenvalue equations (33) and (42) (Wiggins, 1976). By approximating the functional 

form of l1(z) in terms of some appropriately selected basis functions i(z) 
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where coefficients mi comprise a discrete model vector m, integral equations (33) are 

transformed into a matrix eigenvalue problem: 
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In this expression, the discrete energy matrices are 
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Earth-flattening corrections (Aki and Richards, 2002) can be incorporated in integrals 

(47) in order to account for the Earth’s sphericity. By solving this eigenvalue problem, all 

possible values of |k| and the corresponding eigenfunctions (45) are obtained, from which 

the attenuation spectra (38) can be calculated.  

For example, in the Gutenberg continental Earth model (Table 1), 45 cubic 

polynomial basis functions by Wiggins (1976) give a convenient decomposition for l1(z) 
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(Figure 2). With the shear-wave Q values from the attenuation model MM8 (Anderson et 

al., 1965; Table 1), expression (38) yields the apparent frequency-dependent Love-wave 

L and L (Figure 3). 

Notably, the modelled attenuation coefficients show characteristic linear 

dependences on frequency, including one covering the entire long-period frequency band 

f < 0.02 Hz modelled in Anderson et al. (1965) (Figure 3a). Such linear (f) were 

observed in many datasets (M08; Morozov, 2009a, 2010a,b), and they can generally be 

explained by the corresponding linearity of the intrinsic i(f). The derivative dL/df is 

nearly constant within the Love-wave data band and corresponds to effective Qe ≈ 120 

(Figure 3b). As discussed in Part II, values Qe are dominated by the lowest level of 

intrinsic Q within the structure and are higher or equal to that level. Therefore, such low 

level of Qe should arise from the contribution of low-Q layers between 38–100 km in the 

model (Table 1). Thus, the relatively thin, low-Q sub-crustal mantle should dominate the 

observed Love-wave attenuation at long periods. 

Figure 4 compares the attenuation-coefficient results to those from Q-factor 

modeling by Anderson et al. (1965). Note that our QL values are consistently higher than 

those from the presently used formula (25) (grey dashed line in Figure 4). This difference 

is significant (10–20%) and sensitive to the underlying velocity and QS distributions 

within the upper mantle. Such a large discrepancy should affect the 1D inversion for 

mantle Q values, and 3D inversions based on the equivalence of the Q-1- and velocity-

sensitivity kernels could similarly be error-prone. 
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8 Discussion 

Although derived for an old and relatively simple 1D case, this study has 

significant implications for modern, 3D attenuation investigations. First, it shows that the 

classic 1D case is still far from being solved. The 10–20% overestimation of QL
-1 in the 

benchmark solution suggest that similar errors should be present in many sophisticated 

3D modeling schemes inheriting the same conceptual background. The noted violation of 

energy balance originates from the fundamental assumptions of the method that is also 

likely to affect the more recent studies. 

Second, if the attenuation is no longer viewed as a complex-plane rotation (as in 

eq. 22) of the medium velocity, it may require special analysis similar to the one 

presented here. The attenuation sensitivity kernel becomes different from velocity 

sensitivity (Figure 5), showing that inversions for attenuation structure should no longer 

be similar to velocity tomography. For example, note that the observed 60-sec Love-

wave QL
-1 is most sensitive to the near-surface, where particle velocities (and therefore 

friction and pore/fault fluid flows) are the fastest (solid black line in Figure 5). This is 

different from the phase and group velocities, which are most sensitive to the depth near 

the base of the crust, where the elastic strain is the strongest (dashed black line in Figure 

5). Although this difference appears natural, it contradicts the traditional assumption of 

attenuation responding to the same structures as the velocity (Aki and Richards, 2002; 

Gung and Romanovicz, 2004). 

Recognition of the difference between the L- and velocity-kernels removes the 

need of the assumption of analyticity (holomorphism; H2 above). Holomorphism is a 
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very strong constraint on a complex function, which requires that the partial derivatives 

of its imaginary part are related to those of the real part by the Cauchy-Riemann 

equations. Once such a property is assumed, the many degrees of freedom (VS plus 

numerous attenuation parameters, or at least ) collapse to a single one (VS), and the 

sensitivity kernels to QS
-1 and VS automatically attain the same shapes in both 1D 

(Anderson et al., 1965) and 3D (Gung and Romanovicz, 2004). Inversion for QS
-1 or Im 

thus becomes closely related to velocity tomography. However, the observed phase 

velocity and attenuation is related to the corresponding in situ properties by integral 

transforms (e.g., eq. 23) whose holomorphism is hardly likely, and it also can hardly be 

assumed for convenience. For example, because of the existence of shadow zones and 

triplications, the dependence of the apparent head-wave travel-times and velocities on the 

in situ velocities can be discontinuous and non-differentiable. However, an abandonment 

of this assumption would also mean that the attenuation kernels used in many 1D and 3D 

inversions may need to be revised.  

Third, if the attenuation is treated separately and medium parameters are real-

valued, the complex-moduli visco-elastodynamics becomes significantly limited in its 

scope. Surface-wave attenuation discussed here is just one example where the 

viscoelastic approximation leads to problematic results. Another such example where this 

approach appears to fail is the problem of the anelastic acoustic impedance. In the 

presence of attenuation, the complex phase of impedance is positive (Morozov, 2009c, 

2010c), which is opposite to the one predicted by the standard formula Z = V with a 

complex medium velocity (eq. 22). Thus, it appears that significant deviations from the 

axiomatic visco-elastodynamics are found in heterogeneous media.  
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Unfortunately, the distinction between the traditional models based on hypotheses 

(H1– H4) and the one presented here lies in the realm of physical methodology which 

rarely receive adequate attention. Their difference is in whether we explain the 

attenuation by time-retarded elasticity (5) in some type of an “equivalent model” or look 

for the actual mechanisms of energy dissipation. If only considering simple wave 

processes, equivalent models and relaxation spectra can always be derived from, for 

example, pore fluid properties (Bourbié et al., 1987; Carcione, 2007). However, the 

number of such tractable problems is very limited and basically reduces to homogenous-

media cases.  

Elasto-dynamics should not be formulated to only reproduce some particular form 

of wave solutions. The Lagrangian variational formulation is the most fundamental and 

well-established, not tailored to any types of equations, and allows solving a broad 

variety of physical problems. The solution for Love-wave attenuation in eq. (38) is also 

not a final and complete solution but more of an ad hoc approximation based on the 

requirement of energy balance, assumption of a local similarity to S-wave dissipation at 

any depth level, and independent attenuation mechanisms operating at different 

frequencies. A complete solution would require modeling of crust/mantle fluid/flow 

properties, porosity, permeability, fracturing, and other physical effects which are not 

well understood at present.  

Finally, it appears that the attenuation-coefficient approach provides a consistent 

basis for describing the theory, measurements, modeling, and inverting for attenuation 

properties within the Earth. Further theoretical development of this approach, including 

derivations attenuation coefficients caused by variable wavefront curvatures and 
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reflectivity, is performed in Part II of this study. 

9 Conclusions 

Interpretations of the Earth’s attenuation models may be ambiguous and 

inaccurate because of the use of the quality factor (Q) to describe the attenuation 

properties of the medium, and also because of its axiomatic interpretation in visco-

elastodynamics. Modeling of the Q structure within the Earth and its inversion are based 

on several strong theoretical assumptions such as analyticity and the similarities of the 

attenuation and velocity sensitivity kernels. These assumptions appear to be inaccurate or 

incorrect. As an example, the accepted expression for Love-wave QL observed on the 

surface of a layered mantle model (Anderson et al., 1965) is found to violate the 

conservation of total energy.  

The attenuation-coefficient formulation and Lagrangian wave mechanics provide 

reliable theoretical descriptions of attenuation processes. Using this approach, a new 

solution for mantle Love-wave attenuation is proposed, which provides an explicit energy 

balance. The resulting Love-wave QL in the combined Gutenberg and MM8 models is 

10–20% higher than in the conventional model and shows a similar apparent frequency 

dependence. Most importantly, the new attenuation sensitivity kernels differ from the 

corresponding velocity kernels. These results should have significant implications for 1D 

as well as for recent 3D inversions for the Earth’s attenuation structure. 
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Tables 

Table 1. Gutenberg’s layered continental structure model (Aki and Richards, 2002) with 

QS values from model MM8 (Anderson et al., 1965) 

Layer 
number 

Depth to 
bottom (km) 

(g/cm3) VP (km/s) VS (km/s) QS 

1 19 2.74 6.14 3.55 450 
2 38 3.00 6.58 3.80 450 
3 50 3.32 8.20 4.65 60 
4 60 3.34 8.17 4.62 60 
5 70 3.35 8.14 4.57 80 
6 80 3.36 8.10 4.51 100 
7 90 3.37 8.07 4.46 100 
8 100 3.38 8.02 4.41 100 
9 125 3.39 7.93 4.37 150 

10 150 3.41 7.85 4.35 150 
11 175 3.43 7.89 4.36 150 
12 200 3.46 7.98 4.38 150 
13 225 3.48 8.10 4.42 150 
14 250 3.50 8.21 4.46 150 
15 300 3.53 8.38 4.54 150 
16 350 3.58 8.62 4.68 150 
17 400 3.62 8.87 4.85 180 
18 450 3.69 9.15 5.04 180 
19 500 3.82 9.45 5.21 250 
20 600 4.01 9.88 5.45 450 
21 700 4.21 10.30 5.76 500 
22 800 4.40 10.71 6.03 600 
23 900 4.56 11.10 6.23 800 
24 1000 4.63 11.35 6.32 800 
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Figures 

 

Figure 1. Energy dissipation problem (intrinsic or scattering) in eqs. (1-3) and (35). For 

typical sizes of dissipating volumes L << , the attenuation coefficient  = E/E 

should depend on the frequency but be independent of .  
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Figure 2. Basis functions used for modeling Love waves in Gutenberg Earth model 

(Table 1): a) functions normalized by d/dz = 1 at layer boundaries; 2) functions 

normalized by  = 1 at the boundaries. 

 

 

 



40 

 

Figure 3. a) Attenuation coefficient 1000L in Gutenberg/MM8 model (Table 1) 

calculated by using expressions (38) (labelled “This study”) and (25) (“ABA,” 

after Anderson et al., 1965). Thin lines emphasize the linear trends. Grey box 

indicates the data frequency band inverted in Anderson et al. (1965). b) 

Derivative 1000/·dL/df emphasizing the two distinct levels of Qe. Note the level 

Qe ≈ 120 within the data band. 
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Figure 4. Apparent Love-wave QL predicted in the combined Gutenberg/MM8 model. 

Labels as in Figure 3. 
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Figure 5. Normalized distributions of the kinetic (Ekin, solid lines), elastic (Eel, dashed 

lines) and total (E, dotted lines) energy density for the fundamental Love-wave 

modes at 60-sec (black) and 30-sec (gray) periods. Note that the Eel curve also 

represents the velocity sensitivity kernel KV, and Ekin – QL
-1 sensitivity KQ in eq. 

(4). 

 


