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The relation between bulk and shear seismic quality factors 

Igor B. Morozov 

Abstract 

Most seismic attenuation models show bulk dissipation in solids as significantly lower 
than dissipation in shear: 1/QK << 1/Q. Here, we point out a remarkable consequence of such 
shear-dominated dissipation, which implies that materials behave “auxetically” with respect to 
mechanical-energy dissipation, i.e. analogously to elastic materials with negative Poisson’s ratios. 
Although theoretically possible and existing in nature, auxetic materials are extremely rare among 
rocks. Thus, we seem to have an intriguing paradox of most of the Earth being such “exotic” in 
dissipation. To avoid such behavior, a lower bound of approximately 1/QK ≥ 0.28/Q must be 
placed on bulk attenuation. However, this condition contradicts the approximation 1/QK  0 often 
used in seismic models. Three solutions to this problem are considered: 1) unlike elasticity, 
dissipation in Earth materials is indeed strongly shear-dominated, 2) the contradiction is due to an 
uncertainty of 1/QK in attenuation models, which could be adjusted, or 3) the fundamental 
complex-modulus model of dissipation needs to be reconsidered. Because the paradox principally 
arises from relying on the correspondence principle, solution (3) appears to be the most correct. 
Rigorous physical theories of dissipation in solids are formulated without the use of QK and Q 
and consequently contain no such paradox. With either approach to this problem, symmetries and 
heterogeneity of stress fields need to be taken into account when constructing seismic-attenuation 
models. 
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1. Introduction 

In most attenuation models of the Earth, the bulk dissipation factor, denoted 1
KQ , is very 

low compared to the one for shear, 1Q
 (e.g., PREM, Dziewonski and Anderson, 1981; Widmer 

et al., 1991; Romanowicz and Mitchell, 2007). For example, in PREM, the ratio 1 1
KQ Q
   equals 

approximately 0.06 for the inner core and below 0.01 within the mantle. In consequence, most 
observations of seismic attenuation are predominantly explained by 1Q

  alone, which greatly 

simplifies the construction of attenuation models. The same assumption 1 1
KQ Q
   is also made 

in geodetic models (e.g., Benjamin et al., 2006), which generally rely on seismological 
methodology for Earth’s anelasticity (Efroimsky and Williams, 2009). 

Taking the relation 1 1
KQ Q
   as either an observational or theoretical fact, the present 

note draws attention to a peculiar consequence of this relation. Materials with 1
KQ  below 

~ 10.28Q
  behave “auxetically” in respect to dissipation, which means that dissipation-related 

stresses within them are distributed similarly to elastic stresses in solids with negative Poisson’s 
ratios. Elastic materials of such kind exist among minerals (Alderson and Evans, 2009) and likely 
their composites (Wei and Edwards, 1998); however, they are still extremely rare  among rocks. 
Thus, we seem to have an interesting paradox of nearly the entire Earth showing an “exotic” 
behavior during internal friction. The paradox is amplified by the fact that the concepts of 
“specific dissipation parameters”  1

KQ  and 1Q
  are very general but nevertheless not well 

understood from the physical standpoint. These parameters are usually treated as fundamental 
constitutive properties of materials, and yet they arise not from considering the physics of 
inelastic deformation but from a mathematical extrapolation of the elastic case, known as the 
correspondence principle (Bland, 1960). 

The correspondence principle and frequency-dependent 1
KQ  and 1Q

  comprise the well-

known complex-modulus model of seismic anelasticity (Anderson and Archambeau, 1964; 
Cormier, 2011). Apart from relations 1 0KQ   and 1 0Q

  , this model offers no rigorous 

constraints on the possible or likely values of these Q’s. Anderson et al. (1965) suggested that “in 
general, losses in pure compression are smaller than losses in shear.” This judgment likely  
referred to the perceived predominance of shear in frictional processes or to the estimates of QK > 
5000 from observations of the free-oscillation mode 0S0 (Knopoff, 1964; for more on this, see 
Discussion). However, compressibility is important for seismic phenomena, and therefore 
significant bulk friction can be expected. Thermoelastic effects are specifically sensitive to bulk 
deformation, and they are significant in rock deformation (Hayden et al., 1965). From similar 
arguments, it appears that 1

KQ and 1Q
 could be comparable, and the relation between them 

should be structure-, mechanism-, and wave-dependent. 

In keeping with the paradigm established in seismology, the argument of this paper is 
carried out on the basis of the complex-modulus model (Cormier, 2011). However, the conclusion 
(“auxetic” character of dissipation for 1 1

KQ Q
  ) casts serious doubts in this model itself. The 

reason for such anomalous behavior is much deeper than the uncertainty of the values of Q and 
relates to the fact that the mechanisms of mechanical-energy dissipation cannot be reduced to 
only two “quality factors” treated by the correspondence principle. Empirical quasi-static creep or 
phase-lag models used in materials science (e.g., Nowick and Berry, 1972; Karato, 2008) should 
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not be directly extrapolated to seismic waves. The dynamics of solids and fluids are similar and 
best described by the language of analytical continuum mechanics and thermodynamics (Landau 
and Lifshitz, 1986; Müller et al., 2010; Morozov, 2010). These approaches recognize numerous 
physical factors of energy dissipation but neither the correspondence principle nor “material Q.” 
These approaches are also free from the surprising “paradox” discussed here. 

The concept of material Q was proposed by generalizing the apparent Q values measured 
in various experiments. Body and surface waves, creep experiments (Lomnitz, 1957), free 
oscillations of the Earth or forced oscillations of specimens in the lab (e.g., Jackson and 
Paterson, 1993) lead to different apparent Q’s, from which the respective in situ Q’s are inferred. 
In particular, the bulk 1

KQ  is derived from body-wave QP and QS factors by using the relation 

between the bulk, shear, and P-wave elastic moduli (K, , and M, respectively): 4 3K M   . 

It is assumed that the same relation holds for the imaginary parts of these moduli, yielding 
(Anderson and Archambeau, 1964; Knopoff, 1964): 

                                       1 1
SQ Q

  , and 1 1 14

3K P SKQ MQ Q    ,  (1) 

where 1Im KK KQ   and similarly for other moduli. Note that these relations utilize no analysis 

of energy dissipation but arise purely from the correspondence principle, i.e. assumption that K, 
, and M represent valid complex quantities. It is therefore important to see what (potentially 
unexpected) physical consequences this assumption may entail. The most direct of such 
consequences is on the symmetry of the frictional stress field. 

As shown in sections 2 and 3, despite the perceived analogy with the elastic case, this 
analogy breaks down on the observed values of Q-factors. Seismic models often suggest low 

1
KQ , which means that the Q-counterpart of the first Lamé modulus, , is negative: 1 0Q

  . 

This leads to the character of the resulting viscous-stress field which is very different from that of 
the elastic stress and can be called “auxetic”. To restore the qualitative analogy, 1

KQ  must satisfy 

a lower bound (section 4):  

                                                           1 12

3KQ Q
K 
  .  (2) 

This relation is merely an analog to the well-known relations   0 and 2 3K  for elastic 

constants. Further (section 5), if looking for a simple assumption about bulk attenuation which 
could be made in the absence of relevant data, a physically plausible choice suggests 

1 12 3KQ Q K  , instead of the traditional 1 0KQ  . With such relation between the two Q’s, 

the internal friction behaves in a simple way, with frictional stress tensor being proportional to 
the strain-rate tensor. Unfortunately, this choice appears to conflict with many of the existing 
attenuation models, and so we have to either: 1) revisit and adjust some of these models, 2) look 
for reasons for the general shear-dominated character of internal friction, or 3) reconsider the 
underlying model (1) and the correspondence principle. Our argument is strongly in favor of the 
last of these propositions.  

2. Analogies between viscous and viscoelastic stresses  

The following explanation of the constraint (2) on bulk attenuation was suggested by one 
of the anonymous reviewers of this manuscript. Consider the general goal of constructing a 
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theory of mechanical-energy dissipation in a solid (Ben Menahem and Singh, 1981; p. 848). In 
the viscoelastic approach, the solution is based on two ideas: 1) borrowing viscosity (strain-rate to 
stress) relations from fluid mechanics, and 2) including this viscosity into strain-stress relations 
for harmonic oscillations by using the correspondence principle. Viscosity is therefore 
represented by the imaginary part of the corresponding elastic modulus (e.g., Young’s, P-wave, 
shear, or bulk), as appropriate for the oscillation considered. The key question is what types of 
viscosities to expect in a solid. The analogy with fluid mechanics suggests Stokes’ viscosity 
(ibid); however, the classical Stokes’ fluid is usually viewed as incompressible and offers no 
guidance for bulk dissipation. By extending this model to general  linear bulk dissipation, we 
obtain the Newtonian fluid, in which the stress tensor is:  

                                       jk i
ij ij

k j i

uu u
p

x x x
   

                 
,  (3) 

where p is the pressure, u is the velocity, and  and  and are “dynamic” and “second” 
viscosities, respectively. The imaginary parts of the viscoelastic moduli in (1) are related to these 
parameters as Im    and Im    , where  is the frequency of oscillation. 

 Similarly to elasticity, in order to guarantee non-negative energy dissipation, both   
and the bulk viscosity 2 3K       must be non-negative. Consequently, similarly to , 

can in principle be negative. However, is non-negative for a vast majority of natural 
materials, and therefore we can expect that  should commonly be non-negative as well. This 
gives the constraint (2). Moreover, the elastic  is usually close to  within the deep Earth, and 
we can conjecture that the imaginary parts of these moduli might also be comparable. This 
suggests a range of “likely” K   values from ~ 2 3  to ~ 5 3  for the Earth. A detailed 

mechanical explanation of these constraints is given in the following section.  

3. Symmetries of the elastic and frictional stress fields 

In a propagating wave, the deformation is constrained, and “auxetic” effects are 
manifested by the properties of the resulting stress fields. To understand the stress fields, it is 
again useful to look at the elastic case first. All properties of the elastic stress in a deformed solid 
arise from the expression for its elastic-energy density, Eel. For an isotropic medium, Eel can be 
written as a function of either the total strain tensor, ij, or of its dilatational and deviatoric (“pure 
shear”) parts, kk   and 3ij ij ij     , respectively (Landau and Lifshitz, 1986):  

                                          2 2

2 2el ij ij ij ij

K
E

            .  (4) 

Note that  and K are the isothermal moduli. For adiabatic deformations, these moduli are higher 
and Eel becomes the free energy (ibid). 

From thermodynamics, the key requirement is the stability of equilibrium, which 
requires 0elE   for any deformation. Deformations with zero shear ( 0ij  ) and pure shear 

( = 0) can be implemented independently, and therefore we have   0 and K  0 in (4), and 
consequently 2 3   . These are the only absolute constraints on the values of elastic 

moduli.  
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Depending on the sign of , materials behave differently upon compression or extension 
(Figure 1). In almost all natural materials,   0, so that when stretched along one dimension, 
bodies contract laterally (Figure 1a). The (Poisson’s) ratio of the relative transverse shrinkage to 

the extension is non-negative:  2 0        . In a P wave, the deformation is strictly 

uniaxial, and the Poisson’s ratio becomes the ratio of the principal stresses present within the 
wave. For a strain in the direction of axis X, the axial strain equals 11 =  all other ij = 0, and 
therefore: 

          
 

4
0 0

3
2 0 0

2
0 0 0 0

3
0 0

2
0 0

3

K

K

K



 





         
                      

  

σ .  (5) 

Thus, for  > 0 (i.e., K > 2/3), all stresses are of the same sign as , and the ratio of lateral to 
longitudinal stresses equals  (Figure 1b. For  < 0 (K < 2/3), this ratio is negative, which 
means that when stretched, such material tends to expand transversely (Figure 1c). For the 
intermediate case of  = 0, the material stretches as a group of independent ribbons, with zero 
stresses in the transverse direction (Figure 1d). 

For stresses caused by internal friction within an anelastic material, similar relations take 
place. In the linear viscoelastic model, dissipation is included in the imaginary parts of the elastic 
moduli; for example (see also eq. (1)): 

                           1
KK K K iKQ   .  (6) 

Note that eq. (3) then gives 1
KQ K K  , which is the only frequency dependence allowed by 

the Newtonian-fluid analogy. This frequency dependence is found inadequate (Knopoff, 1964) 
and replaced with arbitrary  1

KQ  . Phenomenologically, energy dissipation can also be 

characterized by strain-stress phase lags, for example: 1tan Im Re Q        . Such phase 

lags are often treated as material properties and used for lab measurements of Q-1 at seismic 
frequencies (e.g., Jackson and Paterson, 1993; Lakes, 2009). In the time domain, complex K and 
  lead to time-dependent strain-stress relations, such as the creep function, “material memory,” 

or “compliance.” 

Mechanical-energy dissipation is always produced by internal forces directed against the 
velocities of the medium. Therefore, in a harmonic P wave, frictional stress equals 

exp( )D Di i t σ σ , where: 
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 

 

 

,  (7) 

because both Im K  and Im   are non-positive. As in auxetic elastic materials, when 

Im 2 Im 3K   , the forces of friction are strongly anisotropic: positive along axis X and 

negative along Y and Z (Figure 1c). If we consider a specimen of such material with free 
boundaries on the sides and apply a uniform axial extension to it, 0xx   (Figure 1a), then 

viscous forces will also tend to stretch it transversely (i.e., reduce the Poisson’s shrinkage). For 
0xx  , the specimen will shrink additionally in the transverse direction. Such behavior can be 

described as “auxetic” in dissipation. 

The above anisotropic pattern of frictional forces arises from the predominance of shear 

over bulk dissipation. To prevent such effects, we need to require a lower bound on Im K  in 

“ordinary” materials: 

                                                      
2

Im Im
3

K   .  (8) 

This constraint simply means that Im 0  , which is analogous to   0 and non-negative 
Poisson’s ratios in natural materials. 

4. Implications for seismic Q 

The above constraint (8) shows that to avoid “auxetic” (anisotropic) frictional stresses 
within a material, its bulk dissipation should be comparable to the shear one. This observation has 
important implications for the existing models of seismic Q. By inferring values of QK and Q 
from the correspondence principle (1), constraint (8) leads to (2). For typical P- and S-wave 

velocity ratios of 3P SV V   (Poisson’s solid with  = 0.25), this gives approximately 
1 10.28KQ Q

  .  

Constraint (2) is contradicted by many current interpretations of nearly “pure shear” 
dissipation, 1 0KQ  . The meaning of this approximation can again be illustrated by an inverse 

analogy with elasticity. Assume that similarly to “shear-dominated” dissipation, we wish to 
construct a medium with “shear-dominated” elasticity. At the first glance, taking K = 0 (“pure 
shear”) might appear to be the easiest approach. However, such a medium would also have 

2 3    and a negative Poisson’s ratio (Figure 1c). Taking  = 0 (or even 0   < ) instead 

makes a more reasonable alternative. The dominance of shear is still achieved (K < ), and both 
of these media behave identically in S waves (in which  = 0), but the one with K = 0 develops 
auxetic stresses in P waves. Thus, because elastic “pure shear” is extremely rare in natural 
materials, we suggest that “dissipation pure share” might be rare too. 
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5. A simplifying assumption for mechanical-energy dissipation 

Relation 1 0KQ   is often used as a simplifying assumption about bulk attenuation in the 

absence of data for its measurement (e.g., Dziewonski and Anderson, 1981). However, as shown 
above, this approximation implies properties of frictional stresses which are contrary to those 
which might be expected from the correspondence-principle analogy. To overcome this difficulty, 
an alternate simplification can be made by replacing the inequalities (8) and (2) with equalities. 

This approximation has a simple physical meaning. With Im 2 Im 3K   , Im 0  , and the 

force of friction applied to an elementary surface dS oriented with a normal vector n is 
proportional to the strain rate tensor, ij : 

                                                     2 Imi ij jf n dS   .   (9) 

By selecting, for example, vector n in the direction of axis Z, we can see that such a force is 
always directed against the corresponding strain rate, and the medium experiences no “sideways” 
friction (Figure 2). Such behavior might be the easiest to expect without knowledge of the 
specific mechanism of friction.  

If Im 2 Im 3K   , then the corresponding relation for the Q-factors is 

 1 12 3KQ K Q   (see relation (2)). For plane P- and S waves in a Poisson’s solid, this gives 

QP  1.5QS (eq. (1)). This relation is close to seismological observations, although with notable 
exceptions (Knopoff, 1964). However, importantly, this is an upper bound on QP. This bound is 

not satisfied in global attenuation models, in which QP  1.8QS (
1 0KQ   in eq. (1)). 

6. Discussion and conclusions 

The point of the present paper is very simple: because the complex-modulus model is 
derived from an analogy with elasticity, it seems “unnatural” or “undesirable” that the 
predominance of bulk elasticity ( > 0, and commonly even  ~ ) is replaced with a sharply 
opposite relation   –2/3 for practically all Earth materials. In terms of the resulting stress 
fields, this means that frictional stresses are always strongly anisotropic (shear-dominated). In the 
elastic domain, such behavior is only found in materials with negative Poisson’s ratios, which are 
extremely rare in nature. 

Although uncomfortable from the analogy with elasticity, pervasive  < 0 is nevertheless 
present in many attenuation models of the Earth (e.g., Dziewonski and Anderson, 1981). This is 
the paradox of “auxetic” character of seismic attenuation mentioned in the Introduction. Some 
authors (e.g., Widmer et al., 1991) indicate significant trade-offs between 1

KQ and 1Q
 , which 

could possibly be used for honoring the constraint (2) and avoiding this problem. However, the 
simplicity and generality of this contradiction suggests that its cause is likely beyond the 
numerical uncertainties in Q models.  

Our explanation of the above paradox is that it rests principally with the complex-modulus 
model of seismic attenuation. Despite what is often thought, parameters 1

KQ and 1Q
  are not real 

physical properties but only attributes defined so that through expressions (1), they reproduce the 
quality factors for body P and S waves in uniform media. These attributes are not guaranteed to 
predict dissipation in other cases such as, for example, for surface waves in layered media 
(Morozov, 2012). The correspondence principle relates dissipation specifically to the elastic 
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energy, for example 1
K K KE E Q   (where KE is the bulk energy given by the first term in the 

right-hand side of (4)), and assumes 1
KQ to be independent of the wave type. However, in reality, 

dissipation is not directly related to the elastic energy (see section 2). In other types of waves, 

such as Love and Rayleigh surface waves, the values of 1
K K KQ E E     and similarly 1Q

  

may be different. Therefore, there should hardly exist any definite relation between these 
quantities. In particular, we can hardly expect 1 1

KQ Q
   or vice versa, because this limit would 

eliminate one of the already scarce degrees of freedom in the model of energy dissipation.  

Knopoff (1964) made several insightful remarks on the above subject. He noted that low 
bulk dissipation was principally suggested by the very high Q  5700 of the radial free-oscillation 
mode 0S0 (1/Q  0.17510-3; REM, 2010), which suggests roughly QK  600. At the same time, 
such high Q implies QP > QS, which often disagrees with observations. For example, from 
surface-wave Q’s at periods T < 300 s, Knopoff (1964) estimated QP  25 and QS  110, which 
was far in the opposite relation. He concluded that QP < QS was consistent with observations, and 
the high Q of 0S0 may be a fortuitous consequence of the viscoelastic model (1). If partial melting 
is present in the upper mantle, relations (1) may be inappropriate (ibid). We also note that as 
mentioned in the preceding paragraph, the value of QK inferred from mode 0S0 should likely be 
different from QK inferred from body waves by using eq. (1).  

The correspondence principle (CP) (eqs. (1) and (6)) deserves a separate comment, 
because it is critical for modeling, inversion, and even measurement of Q (Jackson and Paterson, 
1993; Romanowicz and Mitchell, 2007). There are several specific indications that this principle 
does not work in heterogeneous media, and so its utility may be very limited. For example, Lines 
et al. (2008) modeled seismic reflections from contrasts in Q, and D. Aldridge (personal 
communication) pointed out that polarities of these reflections were opposite to those predicted 
from the CP. Morozov (2011) considered this example in detail and showed that the problem 
arose from mixing the notions of phase velocity and wave speed within the medium. The CP only 
rigorously applies to the phase velocity, phaseV k  (where k is the wavenumber), whereas the 

wave speed is a combination of the elastic moduli and density. In a heterogeneous medium, these 
quantities are different, and attributing imaginary parts to the wave speeds contradicts boundary 
conditions in wave mechanics. Likely because of this general reason, the CP-based approach 
encounters significant internal difficulties even in basic plane-wave reflection problems (Krebes 
and Daley, 2007). 

Thus, it appears that the approach explaining mechanical-energy dissipation within the 
Earth by a “material Q” may need to be critically reviewed. Only two Q-type parameters should 
generally be insufficient for describing the broad variety of dissipation processes, and their 
association with elastic moduli is not warranted by mechanics. Energy dissipation cannot be so 
similar to elasticity as presented by eqs. (1). Because of this conceptual frugality, frequency 
dependence of Q is commonly used as a proxy for physical mechanisms of dissipation. However, 
once allowing arbitrary Q(), the complex-modulus models becomes uninformative, over-
parameterized and affected by variations of geometric spreading and other model assumptions 
(Morozov, 2008, 2010). Pairing attenuation properties with elastic moduli also makes these 
models inapplicable to fluids, in which  = 0. This makes the descriptions of solid-fluid systems, 
such as terrestrial planets, overly complex.  

With typical Q  100–1000, the effects of seismic-wave attenuation are weak compared to 
those of elastic stresses, geometric spreading, ambient pressure, heterogeneity and temperature. 
Consequently, no spectacular anomalies such as “auxetic” lateral deformations of the medium in 
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a seismic wave can likely be expected from the various assumptions about the Q’s. Nevertheless, 
subtlety of the effects does not mean that their theory can be constructed arbitrarily. Quite 
oppositely, the principles of physics, such as locality of interactions, causality, symmetries and 
thermodynamics become all the more important in this case. Energy-dissipation effects are 
measurable, provide valuable links to the physical state of the Earth’s interior, and they need to 
be interpreted carefully.   

In conclusion, the described (potentially?) anomalous behavior of the Earth’s medium in 
internal friction could be only one indication of the difficulties of the correspondence-principle 
based approach to seismic attenuation. On the other hand, rigorous physical approaches to energy 
dissipation in fluids and solids have been known for some time (e.g., Biot, 1956; Landau and 
Lifshitz, 1986). Nevertheless, significant work is still needed in order to incorporate them in 
global models of seismic-wave attenuation. Such rigorous models should likely be formulated 
without the use of 1

KQ  and/or 1Q
 , which will remove the above anomaly. 
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Figures 

 

Figure 1. Behavior of materials under axial stretching: a) ordinary material with  > 0 with free 
boundaries in transverse directions (example of Poisson’s solid with  = 0.25 shown), b) 
the same body constrained to strictly axial deformation, as in a P wave, c) same 
deformation, auxetic material with  = –0.25, c) neutral ( = 0). Gray rectangles show the 
undeformed specimen (the same in all cases). Black arrows and dots indicate the stress 
responses within the material. 

 

 

Figure 2. Viscous forces in eq. (9) (black arrows) applied to a cross-section of the body along 
z = const: a) for extension along axis Z, b) for shearing. Note that the forces are always 
directed against deformation rates (gray arrows labeled with non-zero components of the 
strain-rate tensor, ij ). 


