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Abstract 

Multi-phase long-period t* measurements are among the key evidences for the frequency- dependent 

mantle attenuation factor, Q. However, similarly to Q, poorly-constrained variations of Earth’s structure 

may cause spurious frequency-dependent effects in the observed t*. By using an attenuation-coefficient 

approach which incorporates measurements of geometric spreading (GS), such effects can be isolated and 

removed. The results show that the well-known increase of body P-wave t* from ~0.2s at short periods to 

~1–2 s at long periods may be caused by a small and positive bias in the underlying GS, which is measured 

by a dimensionless parameter *  0.06. Similarly to the nearly-constant t* at teleseismic distances, this GS 

bias is practically range-independent and interpreted as caused by velocity heterogeneity within the crust 

and uppermost mantle. This bias is accumulated within a relatively thin upper part of the lithosphere and 

may be closely related to the crustal body-wave GS parameter  ~ 4–60 mHz reported earlier. After a 

correction for , P-wave tP
* becomes equal ~0.18 s at all frequencies. By using conventional dispersion 

relations, this value also accounts for ~40% of the dispersion-related delay in long-period travel times. For 

inner-core attenuation, the attenuation coefficient shows a distinctly different increase with frequency, 

which is remarkably similar to that of fluid-saturated porous rock. As a general conclusion, after the GS is 

accounted for, no absorption-band type or frequency-dependent upper-mantle Q is required for explaining 

the available t* and velocity dispersion observations. The meaning of this Q is also clarified as the 

frequency-dependent part of the attenuation coefficient. At the same time, physically-justified theories of 

elastic-wave attenuation within the Earth are still needed. These conclusions agree with recent re-

interpretations of several surface, body, and coda-wave attenuation datasets within a broad range of 

frequencies.  
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1 Introduction 

Attenuation of seismic waves within the Earth is among the most intriguing physical phenomena 

studied in seismology, and many attenuation models were developed in the past fifty years. With 

a number of uncertainties and differences between these models, a consensus about one 

fundamental point appears to be established by now, namely the frequency-dependence of the 

quality factor, Q. Across a broad range of frequencies from ~0.01 to 100 Hz (for summaries of 

several key datasets, see Jackson and Anderson, 1970; Anderson and Given, 1982; Doornbos, 

1983; Lees et al., 1986; Abercrombie, 1998; Romanowicz and Mitchell, 2007), attenuation of 

surface and body waves consistently decreases, suggesting an increase in Q. This increase is often 

interpreted as an effect of the upper flank of the mantle absorption band, characterized by a 

relaxation constant 1  0.1–1 s (Anderson et al., 1977; Doornbos, 1983). In lab measurements of 

seismic-wave attenuation, such an increase is also observed and often referred to as the high-

frequency background (Cooper, 2002). The lower flank of the band is difficult to constrain and 

placed far below seismological frequencies (Anderson and Given, 1982).  

Despite the growing number of models supporting the frequency-dependent Q within the crust 

and mantle, we noted recently (Morozov, 2008, 2009a, b, 2010a-c) that this question still remains 

open. Attenuation data are still limited, and interpretations can easily be biased, even involuntary, 

in favour of certain models. Most field observations of frequency-dependent Q share several 

fundamental weaknesses, which are:  

1) Reliance on the viscoelastic theory rather than the traditional wave mechanics for 

describing seismic attenuation properties of the Earth; 

2) Assumption that attenuation properties (for example, Q) depend specifically on the 

frequency rather than on the whole process of wave propagation; 

3) Reliance on intricate models for Q (for example, frequency-dependent intrinsic and 

scattering Q’s inferred from energy-flux equations) which are nevertheless built on 

overly simplified propagation models (such as Amplitude  1/Distance). This produces 

a “model footprint” on the frequency dependence of Q, caused by the uncertainties and 

spatial variations of the Earth’s structure. Models of microscopic dissipation 

mechanisms (such as movement of dislocations, diffusion, and kinetic equations) also 

leave a similar “footprint”. 



   3 

The first two points above are general, theoretical, and may be quite intricate. Starting from the 

early studies of energy dissipation in solids (Biot, 1956; Knopoff and MacDonald, 1958), it has 

been known that Q is difficult to rigorously express as a combination of physical properties of the 

material, and until now, the “medium Q” remains a heuristic attribute requiring scrutiny and 

explanation. These points were argued in Morozov (2009c, 2010c, d, 2011a, b, and in review) 

and will not be repeated here. The third point was also discussed on a number of data examples 

(Morozov, 2008, 2009a, b, 2010a, b; Xie and Fehler, 2009) and even led to a forum in Pure and 

Applied Geophysics (Mitchell, 2010; Xie, 2010). Our principal message there was that 

unfortunately, model assumptions leave a substantial “model footprint” even on the measurement 

of raw Q values, particularly when targeting a frequency-dependent Q or separating the intrinsic 

and scattering Q’s. This model footprint needs to be examined specifically for each dataset, 

taking into account the nature of the waves involved and the uncertainties of the specific 

procedures of data measurement. In the present paper, we perform such analysis for long-period 

body waves. 

Structural variability causes numerous complexities in the wave propagation process (such as 

bending rays, reflections or scattering for body waves), which in a first-order approximation can 

be described by the geometric spreading (GS). Although the sensitivity of Q measurements to GS 

is well known (e.g., Kinoshita, 1994), its implications and extent are rarely appreciated in full. 

Major simplifications of the background Earth model are commonly made in order to infer a 

frequency-dependent Q. Only recently, by measuring the empirical GS, Morozov (2008, 2010a,b) 

showed that its variations can absorb the entire frequency dependences of Q reported in many 

cases of body, surface, and coda waves.  

One key data type still not examined in the light of the variable GS is the multi-phase, and 

particularly long-period body-wave t* and dispersion-related delay times. Such observations are 

considered in the present paper, in which we revisit several results by Der et al. (1982, 1986a,b) 

and Lees et al. (1986). In extensive studies, these authors, and also Der and McElfresh (1976, 

1980), Der et al. (1985), Der and Lees (1985), and Sharrock et al. (1995) examined the 

dependencies of teleseismic tP
* and tS

* on the frequency and tectonic types of the lithosphere in 

several areas of the world. Broadly, these observations showed that: 1) for body waves beyond 

~25 distance ranges, t* values are nearly independent of the travel times (Der and Lees, 1985), 2) 

t* values increase in tectonically-active areas, where a zone of increased Q-1 is present 

(Niazi, 1971; Sharrock et al., 1995), and 3) tP
* decreases with frequency from ~1 s within the 

long-period band to ~0.2 s at short periods (Der and McElfresh, 1980; Der et al., 1982).  
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Until now, the above variations of teleseismic t* were explained by the in situ Q-1 increasing 

within tectonic areas and decreasing with frequency, respectively. Nevertheless, similarly to Q, 

* 1t Q dt   is an “apparent” quantity, and inferences about its relation to the in situ Q of the 

mantle (if such a quantity exists) should be done with caution. For body waves, the above model 

footprint is the effect of variable GS or scattering within lithospheric structures, which lead to 

spurious frequency-dependent t* and Q. For example, by numeric coda modeling in realistic 

structures, Morozov et al. (2008) showed that increased GS rates (i.e., structurally more complex 

lithosphere) causes the apparent coda Q to increase with frequency. 

As shown below, t* measurements bear many features common with Q, including a strong trade-

off with the GS. In frequency-dependent Q measurements, the discussions of uncertainties usually 

focus on the trade-off of Q with the assumed GS, which is usually taken in standardized forms, 

such as t- with sometimes frequency-dependent exponents  (e.g., Frankel et al., 1990; Zhu et 

al., 1991; Kinoshita, 1994; Yang et al., 2007). However, the true difficulty of interpreting Q(f) for 

the physical properties of the subsurface is not in selecting an appropriate form for the GS law but 

in accounting for the unknown variations of GS within the Earth and for its dependence on wave 

types. With any reference GS model selected, variable GS would cause frequency-dependent 

artefacts in the resulting Q or t*. 

For reliable interpretation of the in situ attenuation, it should be described in a manner invariant 

in respect to both the unknown GS variations and mathematical models. Such a description can be 

achieved by using the temporal attenuation coefficient (denoted here) in both measurements 

and modeling. Below, we apply this method to t* and Q-1 data. These two cases are discussed in 

parallel, with emphasis on the effects of GS variability. 

In addition to teleseismic P waves, t* and the associated velocity dispersion provides important 

information about the attenuation within the inner core (Doornbos, 1983; Bhattacharyya et al. 

1993; Cormier and Li, 2002; Li and Cormier, 2002). This case is also briefly considered here by 

using the key observations by Doornbos (1983). Compared to the upper-mantle body waves, a 

distinctly different frequency-dependent t* is observed for the inner core, in which we note a 

remarkable similarity of t*(f) dependences to those predicted in saturated porous rock (Biot, 

1956). For the inner core, we similarly argue that the absorption band may be unnecessary.  

Before starting the analysis, a disclaimer regarding the meaning of Q and its frequency 

dependence seems appropriate.  Generally, we argue that Q is not a physically justified property 

of the medium, and that viscoelastic models formulated in terms of “Q(f) spectra” do not meet the 
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standard of a physical theory (Morozov, 2009c and in review).  Thus, this paper only deals with 

Q as an empirical quantity. Similarly to Morozov (2008 and 2010a-b), we can only ascertain a 

frequency-independent body-wave Q of the Earth, albeit with a different meaning of Q denoted 

by Qe below. This frequency independence was even presented as our principal goal in a critique 

by Xie (2010). However, a constant-Qe model is by no means intended by the present analysis. In 

fact, theoretical studies (e.g., Biot, 1956; Kbopoff and MacDonald, 1958; Morozov, 2010d, and 

in review) show that a constant Qe is difficult to achieve from physical principles, and a perfectly 

frequency-independent Q is also ruled out by causality (Futterman, 1962). Nevertheless, an 

arbitrary frequency-dependent Q is similarly difficult to achieve, because physical models predict 

only definite dependences (Morozov, 2011b and in review). Our model therefore expects a 

generally frequency-dependent Qe, but within the available data bandwidths and quality, a 

constant Qe still appears to be all that can be reliably measured. Hence, we retain such a Qe as an 

empirical attribute. When multiple wave types with different Qe are combined across a very broad 

frequency band, an apparent “absorption band” re-appears as a scaling phenomenon (Morozov, 

2010b).  

2 Attenuation coefficient, t*, and Q 

Let us consider the general amplitude-decay problem for a propagating or standing wave without 

relying on any knowledge about the details of propagation. In seismic attenuation observations, 

some type of a amplitude is usually measured as a function of frequency and time, A(f,t). The 

meanings of A and t here may be different for different observations. For example, for coda 

waves, they correspond to continuous measurement of time-averaged amplitude at a single 

receiver, but for body waves – to following a selected wave onset propagating in space. When 

corrected for all known (or inferred) effects of the sources, receivers, and background 

propagation (such as GS and maybe scattering and attenuation expected in a known structure), 

this amplitude becomes the “path effect”, ( , )P f t . Once again, this “path” may actually 

involve propagation of different waves along multiple paths, such as, for example, in a seismic 

coda. In a perfectly known Earth’s structure, P would remain constant for all t > 0: 

( , ) ( , 0)P f t P f  , but with a small inaccuracy in the model, it will gradually deviate from 

this level with increasing time: 

                             *( , ) ( , 0) exp ( , )P f t P f f t      , (1) 
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where *(f, t=0) = 0. The absolute value of * increases with time, and for relatively short times, it 

can be further approximated as proportional to t:  

                                           tftf )(),(*   .  (2) 

This is the usual perturbation- (or scattering-) theory approximation. We will refer to both * and 
 in eqs. (1) and (2) as the generalized attenuation coefficients, which include the effects of GS, 
elastic/inelastic losses, and inaccuracies of the background model. 

Further, let us consider the frequency dependences of each of these . Denoting the zero-

frequency limits in these quantities by  = |f0, we obtain: 

                          * *
*

( , )
e

f t f
Q

   , and ( )
e

f f
Q

   ,  (3) 

where Qe is the “effective attenuation” quality factor, and quantities with asterisks refer to the 

corresponding time-average properties. For body waves, the time averages usually become path 

averages. Note that the above expressions are merely mathematical identities isolating the zero-

frequency limits in  and *, and both Qe and Qe
* are generally frequency-dependent. Also note 

that  and Qe
* are measured in frequency units. 

In conventional measurements of seismic attenuation, attenuation coefficients (1) and (2) are not 

considered directly but replaced with parameters t* and Q defined as (e.g., Der and Lees, 1985; 

Aki and Chouet, 1975, respectively): 

                              
*

* ( , )
,

f t
t f t

f




 , and  1 ( )f
Q f

f




  .  (4) 

Expressions (4) implicitly assume that both 's must tend to zero at f  0. Also, frequency 

dependences of these quantities are often sought in the power-law form of * 1t Q f    , 

where  is between  0.15–0.4 (Anderson and Minster, 1979). Thus, from the outset of the 

conventional model, it is postulated that:   

                                   * = 0,  = 0, and *
e eQ Q f   . (5) 

The first two constraints in (5) are very strong assumptions, which facilitate the inversion for 

Q(f = 1 Hz) and  from many amplitude-attenuation datasets. However, considering the raw 

frequency dependences of  and *, one can see that these constraints are usually violated, and 

the data only suggest non-zero  and * and constant Qe and Qe
* within the available frequency 

bands (Morozov, 2008, 2010a,b, and 2011b).  
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In contrast to (4) and (5), our approach (3) simply consists of: i) allowing non-zero limits of  and 

* at f  0, and ii) considering the simplest functional dependence of (f) and (f) from this 

limit, i.e., taking a Taylor series near f = 0. Eqs. (3) then suggest a straightforward approach to 

analyzing the observed (f) and (f) dependencies. The key to interpreting attenuation 

coefficients is in examining them for: 1) non-zero intercepts (even if extrapolated to f  0 based 

on the available trends), and 2) linearity in respect to f within the available frequency bands. If 

such linear intervals are found, they suggest a stable wave-mode content and frequency-

independence of attenuation within these bands. From linear approximations (3), the intercept 

values ( or *) can be interpreted as parameters of the residual GS (including scattering; 

Morozov, 2011a), and Qe
-1 or Qe

*-1 – related to the attenuation properties of the medium. Note 

that although an assumption about the residual GS being frequency-independent still has to be 

made, it only affects the separation of the generalized GS and Qe
-1 effects. Such separation is 

indeed ambiguous and conceptually uncertain (Morozov, 2010a).  

The approximation (1)– (3) represents  only a perturbation model of seismic amplitude 

measurements and is model-independent in respect to the GS or other models of elastic-wave 

propagation. This approximation makes no assumptions about the background seismic amplitude 

spreading, is exact in f, and is only limited in time by the requirements 1t   and * 1t   

(Morozov, 2010a). Quantities  and * only measure the deviations of the observed amplitudes 

from those predicted by the background model, and Qe and *
eQ denote the frequency-dependent 

parts of these deviations. Requirement 1t   represents the only limitation of this 

approximation, which can sometimes be violated (such as in Appendix 1 by Xie’s (2010), who 

used too long observation times) but can always be corrected by using a more accurate 

background model. Thus, for body waves, Qe simply measures the frequency-dependent 

amplitude decay which cannot be attributed to the best-known effects of the structure. This 

appears to be a reasonable approximation for the attenuative property of the Earth’s material. 

Returning to the conventional parameters (4), we obtain from eqs. (3): 

                            
f

Qtft e 
 *

1** , 


, and  
f

QfQ e 


  11 .  (6) 

With Qe = const, the second of these formulas was used by Dainty (1981) to describe the S-wave 

Q-1(f) at 1–30 Hz. Dainty (1981) interpreted the term /f as “scattering Q-1” and noted its 

characteristic f-1 dependence. However, as shown in Morozov (2008, 2010a, d), scattering can 
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hardly be unambiguously isolated in seismic-amplitude data. We therefore interpret  as an 

empirical “residual GS,” which also incorporates the effects of small-scale scattering as those of 

the “stochastic” GS. Taking the limit of f  0 in eq. (1), we see that the residual-GS correction 

has the form of  exp t .  

In media with non-trivial structures causing ≠(such as containing short-scale heterogeneity or 

additional ray bending; cf. Morozov, 2011a), both t* and Q in eqs. (4) exhibit spurious variations 

with frequency. For example, when  > 0, the apparent t* decreases, and Q increases with 

frequency. Such faster-than-t-1 GS was noted long ago and explained by the presence of the 

downward-reflective upper crust (Frankel et al., 1990; Morozov, 2010a). Positive values of   4–

60 mHz appear to be typical for crustal body, coda, and surface waves (Morozov, 2008, 2010b), 

and similar cases are discussed below. 

In addition to t*, which is measured from GS-corrected amplitudes, Der and Lees (1985) defined 

the “apparent t*”, here denoted by *t : 

 
*

*
*

ln1 1
ln 1

ln
e

e

Q
t P

f Q f



 

      
.                                         (7) 

This quantity is determined from spectral ratios and is independent of . Comparing eqs. (6) with 

(7), note that the relative difference between t* and *t is also caused by the GS factor () and is 

inherently frequency-dependent: 

f

Q

f

Q
f

Q

f

Q

t

tt e

e

ee





**

*

***

*

**

ln

ln
1

ln

ln















.                                               (8) 

This ratio is related to the t*-bias function by Der and Lees (1985). 

Another useful way to understand the effects of the residual GS on t* measurements is in relating 

*t to t* (Der and Lees, 1985): 

*
*

* t
df

dt
ft  .                                                                 (9) 

If the apparent *t  is known, this differential equation can be integrated to obtain the “true” t*(f), 

as done by Der and Lees (1985). However, this integration is non-unique, and its uncertainty is 
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given by the solution to the homogeneous counterpart of equation (9). This solution reads t* = af-

1, where a is an arbitrary constant. By taking a = /, we see from eq. (4) that this homogenous 

solution again corresponds to the residual GS. 

3 Frequency dependence of mantle body-wave t*  

As shown above, both the t*(f) and Q(f) descriptions represent special cases of the general 

attenuation coefficients (2) and (3). By their definitions (4), these cases require a perfect model 

for background wave propagation. In the presence of variable and poorly known GS (i.e., 

common observational case), the general (f) form appears to be most suitable and least prone to 

uncertainties.  

Below, we show how the (f) approach changes some of the existing t*-based interpretations. 

Although the attenuation coefficients (f) and/or (f) should ideally be measured directly from 

the raw wave-amplitude data, they can also be estimated from the reported t* and Q values by 

inverting eqs. (1) and (4): 

** ft  , and 
Q

f  .                                                     (10) 

Fig. 1a shows the )(* ft  and t*(f) data summary from Der et al. (1986b), derived from a series of 

studies analyzing multiple P- and S- body-wave phases at 25–90 source-receiver ranges, with 

paths lying within the shield areas of Eurasia. In addition, the *t  and t* dependencies predicted 

by ray tracing in a layered, frequency-dependent Q model EURS are shown by dashed lines (Fig. 

1a). An earlier shield-path model (Der et al., 1982; grey dotted line in Fig. 1a) is also overlain on 

this plot. This model is also close to the mantle absorption band model by Minster (1978a, b). 

Taking an *(f) point of view, we see that the same *t  and t* data can also be explained by a 

linear dependence (3) with *  0.06 and Qe
*  5.5 Hz (thick solid line in Fig. 1a). Note that this 

line fits the GS-independent data (P-wave spectral measurement within 1–10 Hz range) even 

better than the existing model, and it may also be better following the trend of t* rising at the 

lower frequencies. A marginal fit of the multi-phase S and poor fit of the rise-time data (Fig. 1a) 

could be due to poorer reliability of these techniques, and it was similarly problematic in the 

original interpretation by Der et al. (1986a). Difficulties in fitting multiple data types and 

impracticality of formal inversion were noted in several t* studies (e.g., Der et al., 1986a,b; 

Sharrock et al., 1995). 
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Fig. 1b illustrates a simple interpretation technique that was used to analyse the t* data above. By 

using eq. (10), t* values were first transformed into */, and then trial “reductions” (subtractions 

of terms af with variable a) were applied until the resulting data distribution appeared near 

horizontal (Fig. 1b). This procedure gave the optimal intercept () and slope (/Qe
*) of the *(f) 

line. Note that a curve with a slight “absorption band” (increased * from ~0.1 to ~ 5 Hz, 

similarly to the dashed black curve in Fig. 1b) might fit the data a little better; however, this detail 

still does not seem to be warranted by the scatter in the data (Der et al., 1986b).  

With some concerns about the data fit and possible mild frequency dependence of Qe in the 

middle of the long-period band, the principal result remains clear: a positive shift of *  0.06 in 

GS can explain the observed increase of t* from ~0.2 s at 1–10 Hz to ~1–2 s at 0.01–0.02 Hz (Fig. 

1a). The effective attenuation is practically frequency-independent and equals Qe
*  5.5 Hz, 

which corresponds to te
*= 1/Qe

*  0.18 s. Note that the level of *  0.06 corresponds to only a 

~6% shift in GS compensation relative to the assumed level of P(t,f) = 1 (eq. (1); Fig. 1a). Such 

bias in the forward model should be expected from the crustal or uppermost-mantle structural 

effects (section 5), and it should definitely not be presented as a frequency dependence of 

mantle Q. 

The above analysis shows that similarly to Q(f), the traditional t* is an “apparent” quantity which 

trades off with the GS correction, i.e. with the measurement procedure. Values of t* change 

wherever the real GS differs from the postulated theoretical level. By contrast, the *t termed 

“apparent” by Der and Lees (1985) is measured from the spectral ratios and is therefore closer to 

the “true” Qe
*property of the Earth (eq. 7). For this reason, spectral-ratio measurements should be 

significantly more reliable in constraining the in situ attenuation. 

Based on the above property of *t , a simple technique for GS-assumption independent 

interpretation of attenuation is shown in Fig. 2. Instead of deriving t*from *t by an ambiguous 

integration of eq. (9), we can determine the *t from reported t* data by using the same equation. 

The empirical dt*/df trend for use in eq. (9) can be estimated from the same t* data plot (Fig. 2a). 

Once again, similarly to Fig. 1a, rise-time data are poorly consistent with the other datasets. The 

resulting *t values simulate spectral measurements within the long-period band, and they are 

independent of the uncertainty in the GS. Therefore, *t values can be reliably interpreted and 

modeled. For the present data, they can be satisfied with a near-constant s 18.0* t value 

mentioned above (Fig. 2b). 
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Our derivation of * from published t* data still inherits all limitations and approximations of 

these data, such as: 1) the P- and S-wave data are tied together by simple scaling tS
* = 4tP

*, 2) t* 

are considered to be independent of t, 3) the same GS rate * is assumed for P- and S-waves, their 

reflections and multiples, and 4) the free-surface refection coefficient for ScSn multiples is 

assumed to equal 1 (Der et al., 1986a,b; Lees et al., 1986). None of these limitations are 

necessary in the attenuation-coefficient approach, and the corresponding parameters can be 

included in the model. Inverting the raw data spectra, amplitudes, and pulse shapes directly 

within the * model would reduce the errors and improve the data fit (Fig. 1) and quality of our 

interpretation. However, this would require revisiting large, old and complex datasets, which are 

(unfortunately) not available to the present analysis. 

4 Velocity dispersion 

Important constraints on long-period P-wave attenuation within the mantle and inner core were 

derived from time-domain velocity dispersion measurements (Cormier, 1982; Doornbos, 1983; Li 

and Cormier, 2002; Savage et al., 2010). However, two significant problems with relating this 

dispersion to attenuation have received little attention so far: 1) the velocity dispersion is always 

viewed as only caused by Q, and 2) this dispersion relation is always inferred from the Kramers-

Krönig identities. Nevertheless, these identities contain no specific information about the physics 

of attenuation, but only express the requirement of causality that should be satisfied by all 

traveling waves. For example, the dispersion can be caused by diffractions on the Earth’s inner 

structure and unrelated to Q. Another important caveat of the Kramers-Krönig relations, also 

often unnoticed (e.g., Dahlen and Tromp; also see eq. (A7) in Appendix A), is that they only 

apply to the wave solutions and not to the elastic moduli of the medium. Velocities V() and 

apparent quality factors Q() in the next paragraph are properties of the seismic phase and not the 

wave speed (i.e., a combination of elastic moduli with density) of the medium and its attenuation 

properties.  

Despite the above critique, let us nevertheless try using the traditional relation of attenuation to 

velocity dispersion to estimate the amount of time delay experienced by long-period body waves 

relative to short periods. This delay is known to be near constant at teleseismic ranges and equals 

~1 s (Fig. 3; Doornbos, 1983).  

For waves in a homogenous medium, arrival-time delays can be related to phase-velocity 

variations with frequency, and for a frequency-independent Q, and Kramers-Krönig relations 
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show that the plane-wave phase (V) and group velocities (U) should increase with frequency as 

(eq. (A8) in Appendix A):  

                                         1
ln ln lnU V

Q
   


  .   (11) 

Again, eq. (11) should not be read it as “velocity depending on the frequency.” Neither V, 

dispersion rate lnV)/(ln, nor Q physically depend on frequency, but all three of these 

quantities are determined by the elasticity and internal friction within the seismic wave. A trivial 

one-to-one relation of V to Q, as in eq. (11), only arises in the case of a uniform medium, in 

which the attenuation reduces to a multiplication of the amplitudes by  exp 2 VQ   . 

Taking expression (11) as an ad hoc estimate of dispersion in the absence of an accurate solution, 

we can estimate the associated travel-time delay at long periods:  lnDt t U   , where t is the 

travel time. Integration of eq. (11) over travel time shows that this delay is proportional to t*:  

 
*

lnD

t
t  


  .                                                      (12) 

An important question arises whether the Q and t* in eqs. (11) and (12) should be the total 

frequency-dependent viscoelastic Q and t* or the effective Qe and *t defined above. As shown in 

Appendix A, the Q in eq. (11) represents the slope of d/d near  = 0, and therefore it 

should correspond to Qe. Accordingly, t* in eq. (12) should be the GS-corrected *t , as also 

shown there. With the value of * 0.18 sPt   measured above, eq. (12) gives tD  0.4 s for the 

frequency range in Fig. 2.  

Thus, the attenuation within the low-Qe uppermost mantle could account for about a half of the 

dispersion-related long-period travel-time delay discussed by Doornbos (1983). Regarding the 

remaining 0.6 s of delay (Fig. 3), we can only make several general comments. First, for 

heterogeneous Earth, expressions (11) and (12) represent only heuristic estimates of dispersion, 

and they should be updated in a more rigorous solution. Second, for long waves at 20–40-s 

periods, the geometric spreading (propagation in the absence of energy absorption or small-scale 

scattering) within the upper mantle should be frequency-dependent (e.g., Young et al., 2007), 

which would cause a dispersion effect as well. Some frequency-dependent delay can be caused by 

P/S mode conversions on the base of the crust and lithospheric layering. Finally, the earthquake 

source function may also need to be examined for possible delays with respect to the modelled 
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signatures.  An “absorption band” in the mantle Q-1 is of course also possible, but compared to 

the above or other potential explanations, it appears phenomenological and relatively schematic. 

5 In situ attenuation within the upper mantle 

Der and McElfresh (1980) noted that body-wave values of tP
* ~ 1 s and tS

* ~ 4 s could not be 

constant for all frequencies and paths, and also pointed out the regional variability of the short-

period t*. They concluded that tP
* and tS

* should be much lower within the short-period band, 

because otherwise the energy at 4–5 Hz would not be observed in P waves. Such frequency 

dependence of t* is therefore well established. Nevertheless, this t* is still an apparent quantity, 

and its (usually assumed) relation to the Earth’s in situ Q: 

                                          * 1

Ray path

t f Q f dt  ,  (13) 

is incorrect. This expression automatically projects the frequency dependence of t* into the in situ 

Q, whereas, as shown above, t* contains contributions from the residual GS, which increases at 

long and intermediate periods. 

To characterize the range of frequencies at which the residual GS effects in eq. (13) are 

significant, it is convenient to use the “cross-over” frequency fc
* = *Qe

*/ (Morozov, 2008). 

Below this frequency, the effects of GS dominate those of 
1

eQ
. For the data in Fig. 1b, fc ≈ 0.1 

Hz. This shows why t* values are stable for the short-period data (f >> fc) but quickly increase at 

frequencies near or below this level. 

A replacement for the path integral (13), which is stable with respect to the GS uncertainty, arises 

from expressions (1) and (2): 

                                          
*

Wave path

idt   ,  (14) 

where iis the “intrinsic”, or “local” attenuation coefficient. The meaning of the “wave-path” 

integration may be variable for different types of waves, which can likely be informally described 

by Feynman path integrals (Morozov, 2010b). By isolating its zero-frequency limit, i can also be 

decomposed similarly to eq. (3): 

                                        ( )i i
i

f f
Q

   .  (15) 
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The effect of i should be the logarithm of the residual GS in the actual velocity/density structure. 

For several theoretical models of this property, see Morozov (2011b). Because i physically 

describes the additional ray curvature or small-scale scattering in access of that produced by the 

background model, this parameter should be related to the local velocity gradients and reflectivity 

within the Earth’s structure. Note that similarly to the velocity gradients and mean reflection 

coefficient, i is measured in frequency units.  

For shorter-period body waves, we can take the wave-path integration in eq. (14) as occurring 

along approximately frequency-independent rays, and consequently the “geometric” term also 

obeys a similar equation: 

                                              
*

Ray path

idt   . (16) 

 Taking into account eq. (7), the apparent *t  (but not t*!) can also be expressed by a similar path 

integral: 

                                     1* * 1

Ray path

e iQ t Q dt
    . (17) 

Thus, i behaves similarly to i and Qi
-1; in particular, path integrals of both of i and Qi

-1 are 

nearly constant at teleseismic distances. As noted by Der and Lees (1986), high attenuation (Qi
-1) 

is concentrated within the uppermost mantle, leading to * 0.2 sPt   for all source-receiver ranges 

beyond ~25. Similarly, the zone of high velocity gradients (and therefore i) is also localized in 

the uppermost lithosphere and explains the finite and range-independent value of * ≈ 0.06 (Fig. 

1b). Interestingly, this value of * appears to be accumulated within a fairly thin layer, likely the 

crust or crust-mantle transition. This conclusion follows from the values of the differential body-

wave  in the range of 4– 20 mHz (with a maximum of 8 mHz in stable areas; Morozov, 2008), 

with which it only takes 3–15 s of propagation time to produce the teleseismic *. As expression 

(14) also suggests, values of * should increase within tectonically-active areas, which are 

characterized by higher i (Morozov, 2008, 2010a, b). This prediction agrees with larger t* 

observed in tectonically-active areas (Sharrock et al., 1995). 
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6 Newer arguments for mantle t*  f- 

In this study, we attempted a new look into some aspects of several older datasets (Der et al., 

1982, 1986a,b; Lees et al., 1986; Doornbos 1983).  Using such “classic” data offers several 

advantages. First, these data are broadly known and represent key arguments in the discussion of 

mantle properties. They were also produced at the time when the concept of frequency-dependent 

Q was only being established, and data presentations were argumentative and close to the first 

principles of seismic observations. These data were also interpreted and reported in relatively 

straightforward ways, with clear connections between the underlying models and conclusions. 

Because of this, these datasets can still be reviewed and understood now, and new and instructive 

interpretations produced. Acquisition of new data should not affect the conclusions made from 

these datasets. 

Modern datasets are much larger, digital, better quality, and their processing and presentation 

emphasizes more sophisticated numerical techniques. However, largely because of the same 

improvements, “model footprints” in them can be much more difficult to identify and isolate. 

Many inversions are now conducted in corroboration of the idea of the mantle Q varying 

(typically increasing) with frequency. The power-law exponent  in Q-1  f- law is sometimes 

derived even without constructing spatial models for Q. For example, Lekić et al. (2009) inferred 

the values of  for the Earth’s mantle by manipulating Fréchet kernels of the forward problem 

and projecting the long-period apparent-Q data with these kernels. Even though not looking for a 

model which would fit the data and despite the existence of “older”, detailed models showing 

 = 0 (such as model QL6; Durek and Ekström, 1996), these authors nevertheless argued that 

 ≠ 0 was reliably constrained. This is an example of the “model footprint” discussed above.  

Another important recent study suggesting  > 0 for body waves within the mantle was reported 

by Shito et al. (2004). These authors used shorter-range (~3–15) P-wave recordings at 0.08–8-

Hz from  intraslab earthquakes in Japan. They also derived no spatial attenuation model but 

inferred the values of  and differential t* (denoted *
0t ) from stacked spectral ratios for different 

pairs of stations. For three levels of t*, these frequency-dependent trends at ~3-Hz frequencies are 

shown by white arrows in Fig. 1a.  Several assumptions were made in this derivation (ibid): 1) 

frequency-independence of geometric spreading, 2) absence of attenuation (Q-1 = 0) within the 

lithospheric slab, 3) negligible receiver effects on spectral ratios, and 4) insignificance of noise. 

All of these assumptions are questionable, and it is also impossible to evaluate this interpretation 
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without completely redoing the data analysis. However, the observed correlation between the 

values of *
0t  and  still looks suggestive of a trade-off (Fig. 4a). Constructing the attenuation 

coefficients (4) from Shito’s et al. (2004) frequency-dependent  * *
0 0t t f f

   , we obtain: 

   1* *
0 0 0f f t f f

     (with f0 = 1 Hz). The recorded spectra are stationary near ~5 Hz (see 

Fig. 2 in that paper), and so by levelling the average values of  * f  at this frequency, we can 

superimpose all of the spectral ratios predicted by this model (Fig. 4b). This plot shows that 

almost all  * f  values fall within a single standard deviation (error bar and dashed lines in 

Fig. 4b) from a common linear trend. Note that the values of  and *
0t  correlate with the depths 

of the sources and also trade off positively (ibid). This means that if attenuation ( *
0t ) increases 

with depth (which appears likely), it could also cause a correlated positive bias in  and  *
0t  

(dashed line in Fig. 4a). Additionally, the concave shapes of  * f  at low frequencies (arrow in 

Fig. 4b) could be partly caused by the low-frequency noise, likely coming from oceanic waves 

(see Fig. 2 in Shito et al., 2004). Thus, the resulting inference of a power-law dependence for 

mantle Q may again be influenced by the selected model itself.   

Along with contrasting t* values arising from long- and short-period body-wave measurements, a 

completely different argument is sometimes advanced in favour of the mantle Q increasing with 

frequency, namely the observations of a high-frequency “teleseismic Pn” in Peaceful Nuclear 

Explosion (PNE) profiles in Russia. Ryberg and Wenzel (1999) found that PNE waves at 

frequencies above 5 Hz traveled at Pn velocities to over 3000-km distances within the uppermost 

mantle of the East European Platform. They further proposed a multiply-scattering, anisotropic 

waveguide favouring preferential propagation of high-frequency waves within the upper 80 km of 

the mantle. It is still unclear whether such strong scattering would actually increase or decrease 

the uppermost-mantle Q at these frequencies. 

However, the scattering-waveguide interpretation of the high-frequency teleseismic Pn is yet 

another notable example of mistaking structural effects for a frequency dependence of mantle 

attenuation. A detailed analysis shows that the teleseismic Pn from the PNEs consists of a series 

of surface P-wave multiples traveling above the depth of ~100 km, below which a strong increase 

in attenuation is present (Morozov et al., 1998a,b). Consequently, the high-frequency (up to ~10–

15 Hz) amplitudes of these waves appear anomalously strong only when compared to the 

teleseismic P waves penetrating the attenuative layers below ~150–220-km depths (Morozov, 
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2001). The high-frequency P waves and their multiples travel relatively efficiently in this area 

merely because of the low attenuation within the mantle lid (Q  1400–2000; Morozov et al., 

1998b). Pronounced codas of the teleseismic Pn arrivals were explained by crustal scattering (e.g., 

Nielsen et al., 2003). 

7 The inner core 

Seismic attenuation within the inner core is a very extensive subject, and we only offer two 

remarks inline with the preceding discussions. First, the measured dispersion (lnV)/(ln)  is 

about (0.2–0.6)10-4 (Li and Cormier, 2002), which is significantly lower than ~310-3 predicted 

by eq. (12). Such weak dispersion was interpreted as an indication of an absorption band 

(Doornbos, 1983; Li and Cormier, 2002). However, such low velocity variation means that the 

relative time delay from 1-s to 25-s periods is only tD/t  (0.6–2.0)10-4. This effect is much 

smaller than the uncertainties of any of the models involved in its estimation, and it could be 

caused, for example, by frequency-dependent geometric spreading. Therefore, additional research 

is required for corroborating the association of this delay with an absorption band within the inner 

core. 

Second, the available PKIKP t* values derived from spectral-ratio measurements (Fig. 5a; data 

and interpretation from Doornbos, 1983) show a variation with frequency opposite to that of the 

upper-mantle body waves (Fig. 1a). Doornbos (1983) suggested that such behaviour was due to 

the seismic band being located within the lower flank of the absorption band, so that Q-1 and t* 

increase with frequency. Generally, this observation appears to be correct, although this 

“absorption band” may be not of the relaxation-based type assumed in the viscoelastic model. 

As Fig. 5b shows, an increase in t* arises from * increasing non-linearly with frequency. 

Interestingly, the trend of these *(f) resembles that of normal modes (Morozov, 2010b), 

suggesting that it may potentially be affected by the sphericity of the Earth and its 

velocity/density distribution. A linear *(f) model with * < 0 (similarly to surface waves, 

Morozov, 2010b), is also possible, in which case the attenuation would be twice stronger: 

   1* *2 1 HzeQ t

 (dashed and dotted lines in Fig. 5b, and eq. (6)). Modeling these observed t* 

values would require accurate corrections for elastic and velocity-model related effects 

(Doornbos, 1983), which are not clear at present.  
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Leaving the background model aside, also note the remarkable similarity of the inner-core *(f) to 

the frequency dependence of the attenuation coefficient in Biot’s (1956) model of fluid-saturated 

porous rock (Fig. 5c). An accelerating increase in  rather than a constant Q should be the norm 

to which other cases should be compared. Attenuation (either anelastic or scattering Q-1, or t*) 

increasing with frequency “naturally” arises in realistic mechanical systems, in which the 

heterogeneity and “internal mobility” of various kinds usually increases at smaller scales. Once 

again, a specific mechanical model of rhelogy within and near the inner core is required. A simple 

Lagrangian model of this rheology descending from the early studies by Knopoff and MacDonald 

(1958) was recently given by Morozov (in review). The absorption band concept gives only a 

phenomenological replacement for such a model, and it may be not particularly helpful in 

discovering the physical mechanisms of attenuation. 

8 Discussion 

As shown above, Qe is practically frequency-independent from the present mantle body-wave 

data (Fig. 1), and after a ~6% GS correction, long-period t * values become close to those 

observed at short periods (t *  0.18 s for P waves at ~25 ranges). From eq. (17), this means that 

all the data in Fig. 1 can be explained by a frequency-independent Q of the mantle. Inversion for 

the depth and regional Qi variations is a complex problem impregnated with further difficulties, 

and it will be addressed elsewhere. However, from the values of *and Qe
*, and eqs. (14) and (17), 

it is clear that the in situ Q model can be frequency-independent unless additional data provide 

evidence to the contrary. 

Interestingly,  it appears that Q increasing with frequency tends to frequently arise from various 

uncertainties and limitations of seismic data analysis. From sections 2 and 6, as well as from 

Morozov (2008, 2010a, b, 2011b, and in review) and Morozov et al. (2008), very different factors 

lead to the apparent Q(f) increase: 1) faster-than modelled geometrical spreading (caused, e.g., by 

diving and bending rays), 2) scattering and reflectivity in layered structures, 3) background noise 

during measurements, 4) differences in the scale-lengths of observations, with shorter-scale 

oscillations (e.g., concentrated at shallower depths) often exhibiting higher Q’s, and 5) non-linear 

rheology and thermoelasticity. Such preference for an  > 0 when looking for a universal Q  f 

law can be explained by looking at the attenuation coefficient:   f1-. Each of the above factors 

cause to increase with frequency somewhat slower than f, generally because the oscillation 

frequency f is not the only factor affecting energy dissipation.  
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Recognition of only a frequency-independent Q within the mantle may appear too simple and 

discordant with numerous arguments in favour of the frequency-dependent Q. However, it is 

important to clearly realise the limits of the observational evidence and differentiate between the 

truly constrained quantities and artefacts resulting from simplifying assumptions and 

mathematical models. In particular, the physical meaning of the in situ seismological Q still needs 

to be clarified. As demonstrated in this paper and in Morozov (2008, 2009a,b, 2010a–d), a 

background-model independent analysis shows a spatially-variable GS and Q but no indications 

of their frequency dependences. Note that a frequency-independent Qe represents a significantly 

stronger constraint than permissive frequency-dependent models. With many assumptions and 

internal parameters, depth- and frequency-dependent Q models become capable of explaining 

nearly any data and may be virtually unverifiable. 

In numerous recent publications on seismic attenuation, the following general type of conclusion 

can be found: “…assuming a uniform and isotropic background, no free surface, geometric 

spreading of 1/r, and using some standard mathematical methods (single-scattering, energy flux, 

etc.), it is found that thus-defined Q increases with frequency as (for example) f1.07…” While 

being accurate and recognising all the necessary assumptions, such results can only be understood 

as parametric descriptions of the data, i.e. frequency-dependent wave amplitudes in the study 

area.  However, as we know that most of these assumptions are inaccurate within the error limits 

required to measure the Q(f), it is hard to say how such Q is related to the properties of the Earth. 

The in situ character of Q remains the principal but untested assumption. By contrast, our 

description above focuses strictly on quantitative estimates made from the data and on measuring 

the effects of model inaccuracies. 

In studies pursuing purely phenomenological models, such as earthquake engineering and 

nuclear-test monitoring, the physical character of attenuation may be insignificant, and only 

accurate predictions of seismic amplitudes are sought. These predictions can be achieved by 

applying various conventions and empirical rules, for which the above discussions of the 

frequency-dependent Q is both insufficient (in terms of accuracy) and redundant (in content). 

However, even in such applications, it appears that compared with expression (3), the 

conventional parameterization (4) is insufficient (lacking the f  0 limit) and consequently prone 

of instabilities. Compared with (3), this parameterization is also too elaborate mathematically, 

which seems to be unnecessary in empirical studies. 



   20 

Conclusions 

Similar to Q measured from surface-, body-, and coda waves, frequency-dependent t* values 

observed in long- and short-period P- and S-wave studies represent apparent quantities. As in the 

Q case, inaccurate assumptions about the geometric spreading (GS) may be responsible for the 

observed increase of tP
* from ~0.2 s at short periods to ~1–2 s at long periods. Using a 

perturbation-theory, attenuation-coefficient formulation, this residual GS is estimated as positive 

and equal ~6% of the theoretical background level. The frequency- and range-independent bias in 

the GS is caused by a cumulative effect of the lithospheric velocity heterogeneity, similarly to the 

accumulation of a nearly-constant t* within the same ranges. This bias appears to be accumulated 

within a relatively thin part of the lithosphere, likely within the crust or even the upper crust in 

active tectonic zones. Correction for this residual GS removes the frequency dependence of body 

P-wave t* and makes all teleseismic tP
*  0.18 s at all frequencies. Therefore, the in situ upper-

mantle Q may be frequency-independent within the available data constraints and slightly greater 

than its current short-period levels. Velocity dispersion corresponding to this level of attenuation 

explains about 40% of the observed delay of long-period body waves. To explain the remaining 

long-period delay, a better model for dispersion is required, including mantle heterogeneity and 

the physics of energy dissipation.  For the inner core, the Q-1 (more precisely, the slope of the 

attenuation coefficient, d/df ) increases with frequency, which is similar to the one predicted by 

poroelasticity.  Further explanation of this increase also requires a detailed physical theory. 
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Figures 

 

 Fig. 1. Interpretation of t* data in Eurasia (Der et al., 1982, 1986a,b; Lees et al., 1986) by using the 

attenuation coefficient *:  

a) Data summary from Der et al. 1986) with *t and t* curves modeled by ray tracing at 60 ranges in 

their EURS Q model (grey dashed lines). Different data sources, measurement methods, and 

frequency-t* value ranges are indicated. The t*(f) curve for shield areas from Der et al. (1982) is 

shown by grey dotted line. Thick black line corresponds to the attenuation coefficient linear in 

frequency, with *  0.06 and Qe
*  5.5 (eq. 3). White arrows illustrate the t*  f- dependences for 

three levels of t* at f = 3 Hz and  = 0.3.  

b) The same data in the form of “reduced” attenuation coefficient. Dashed black line shows an 

alternate interpretation with slightly frequency-dependent Qe
* or . 
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 Fig. 2. GS-independent t* interpretation technique: a) the same data as in Fig. 1a with tP
*(f) trend estimated 

from the data by eye (dashed line); b) the trend removed by using eq. (9) and producing a GS-independent 

*t . Note that after this correction, the attenuation can be considered as frequency-independent, with 

s 18.0* t (dotted line in plot b)). 
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 Fig. 3. Long-period body-wave dispersion measurements from Doornbos (1983). Range-independent 

tD = 1 s is indicated by a dashed line. 

 
 
 

 

 Fig. 4. Summary of frequency-dependent upper-mantle Q observations at 0.08–8 Hz by Shito et al. 

(2004): a)  and *
0t  results for three groups of earthquakes. Note the trend of  and *

0t increasing with 

source depths (dashed line). b) Attenuation-coefficient variations for spectral ratios, reconstructed for the 

same groups from (, *
0t ) pairs in plot (a). Arrow indicates the effect of noise increasing the spectral 

ratios at low frequencies. Dashed grey lines schematically indicate one-standard deviation error bounds 

from a linear trend on the spectral-ratio stacks.  
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 Fig. 5. Inner-core attenuation data between 147 and 151 ranges derived from PKIKP to PKPBC spectral 

ratios by Doornbos (1983): a) the original t* data plotted in linear frequency scale. Line indicates the 

interpreted t* trend; b) the same data in * form; c) comparison to S-wave attenuation model in saturated 

porous sandstone for two porosities, as labelled. (Bourbié et al., 1987; Morozov, 2010d).  Attenuation 

coefficients S are normalized by aS = 2fB/VS
0, where VS

0 is the S-wave velocity at frequency f  0, and fB 

is Biot’s (1956) characteristic frequency. In plot b), the slope of the dotted line indicates the traditional 

value of t*  0.3 s at 1 Hz, and dashed line shows a linear-*(f) interpretation. 
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Appendix A. Phase-velocity dispersion  

Body-wave dispersion relations are often derived from Kramers-Krönig integrals and relate the 

frequency-dependence of phase velocity to Q. In this Appendix, we show that the meaning of this 

Q corresponds to the “effective” Qe given in eq. (3). 

Following Aki and Richards (2002, p.167–169). consider a harmonic wave of frequency , 

traveling in a uniform medium with phase velocity V() = /k, with spectral amplitude 

u() = exp(–ix/V + ikx – x), where k() is the wavenumber, () is the attenuation 

coefficient, and V = V()|. This expression describes a harmonic wave with an infinite-

frequency onset at point x occurring at time t = 0. To ensure that also   0u t   for all t < 0 

(causality), the Kramers-Krönig identities require that the imaginary part of the wavenumber () 

is uniquely related to its real part (k), and vice versa. If we consider limits of 0 = (0) and  V to 

be finite, then k() turns out to be insensitive to 0, and () is insensitive to V, and, the 

Kramers-Krönig integrals relate the deviations of k = k – /V and   =  – 0 from these 

reference levels (ibid): 
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Parameters V and 0 can also be viewed as regularization constants for the integrals in eqs. (A1), 

which are otherwise divergent (Nussenzveig, 1972). 

Causality relations show that if some wave experiences attenuation ( > 0), it must also exhibit 

phase-velocity dispersion, and vice versa. In principle, these equations allow expressing the 

phase-velocity spectrum if attenuation is known at all frequencies. However, these integrals 

converge very slowly near ′   and ′  , and therefore much of the information required 

for using these expressions to predict either k() or () lies in the regions of unphysically high 

or low frequencies. 

The case of  proportional to  is of particular interest, because there exists good evidence for it 

in both observations (Morozov, 2008, 2010a,b) and theory (Morozov, 2010d). However, in this 

case, the integral in the first equation in (A1) is divergent and needs to be regularized. Such 
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regularization can be done, for example, by assuming that  ≈ 0 + 1 within the seismic 

frequency band but flattens out at some high frequencies || >> 0 (modified after Azimi et al., 

1968), 

                                              1
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From (A1), the corresponding phase slowness is only sensitive to 1 and : 
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,  (A3)                    

where C is yet another regularization constant which is formally equal infinity in order to satisfy 

a finite value of  limV V


 
 . We can remove this constant by switching the reference 

velocity from V to V0 = V(0): 
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Denoting, in accordance with our definition of Qe, 21 = Qe
-1/ V0, the velocity dispersion law 

becomes: 
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Equation (A5) shows the general logarithmic phase-velocity increase with frequency in the 

presence of attenuation, which is supported by many attenuation models (e.g., Carcione, 2007). 

Parameters 0 and V0 in (A5) represent arbitrary constants on which the resulting values of phase 

velocities may depend very strongly. However, for Q and 0 satisfying  0lneQ    and 

consequently V  V0 within the observation frequency band, the ratios of V() taken at 

frequencies 1 and 2 no longer depend on these regularization parameters (Aki and Richards, 

2002, p. 170): 
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This ratio is often transformed into the “physical dispersion” relation and attributed to the 

viscoelastic moduli (Dahlen and Tromp, 1998; p. 218), for example: 
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The above equations can also be expressed as variations of V and  with frequency:  
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In order to understand the meaning of Q in dispersion laws (A8), it is useful to try adding another 

“relaxation  mechanism” with a different 0 to eq. (A2): 
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By combining such terms, practically any monotonic () functions increasing not faster than  

can be constructed. It is easy to verify that subject to the same approximation V  V0, expression 

(A6) becomes: 
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where 1/Qe,1,2 = 2V1,2. This shows that velocity dispersion is sensitive to the derivative 

d/d = 1 + 2 near  = 0 rather than to the cut-off frequency 0.  Therefore, the Q-factor in 

expression (A5) and (A6) should correspond to the derivative d/d evaluated after the zero-

frequency limit of  is removed, which corresponds to our Qe value (eq. (3)). This is reflected in 

our notation in (A5) and (A6). 

In summary, causality constraints require velocity dispersion in the presence of attenuation, and 

yet the exact form of this dispersion should be determined from the specific wave models. 

Normally, any mechanical system possessing a time-domain (Lagrangian) description should 

behave causally. Similarly, Kramers-Krőnig integrals require a frequency-dependent attenuation 

() at least at the very high and very low frequencies. However, for practical purposes, this 

requirement is not very useful, because the low-frequency cut-off below which Q-1 must decrease 

is about 10-99 Hz for Q  30 (Futterman, 1962). Thus, the causality principle only weakly 
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constrains the properties of the medium and does not constrain any definite frequency 

dependence of V or Q within the seismological frequency band. 


