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ABSTRACT 

The seismic quality factors (Q) used in many applications of exploration seismology are 
not automatically equivalent. We identify three groups of usage of the concept of a Q: 1) a 
measure of internal mechanical friction within rocks, as implied in petrophysical interpretations; 
2) several types of apparent Q arising from attenuation measurements, and 3) axiomatic Q 
defined in the viscoelastic theory. These groups differ by their roles in the interpretation, 
sensitivity to model assumptions, frequency dependences, and particularly by the temporal and 
spatial resolution. Among all types of the Q, those which are most robust and useful for 
characterizing the material are also strongly limited in the resolution and accuracy. For example, 
White (1992) showed that to measure a Q of approximately 100 with modest accuracy of 30%, 
measurement time intervals of about 500 ms are required. Although several inversion techniques 
offer models of Q at much higher resolution, such detailed Q models are usually dominated by 
the effects of localized structures, such as ‘colored’ transmission across boundaries, reflectivity, 
or scattering. Such types of Q can be called ‘structural’, and they differ from the Q-factor of the 
medium. Detailed Q images are also sensitive to theoretical models such as background 
geometric spreading and assumptions about the frequency dependence of the Q. Direct 
association of such Qs with material properties may be inaccurate and unreliable. Measurement 
of geometric spreading and averaging of the ‘structural Q’ produce estimates of ‘geometric’ and 
scattering attenuation; however, these estimates are also strongly limited in accuracy and 
resolution. The viscoelastic Q (group 3 above) heavily relies on a specific mathematical model. 
Despite producing detailed images, the spatial resolution of viscoelastic Q is inherently limited 
by the nature of its relation to the frequency-dependent velocity. This resolution limit is difficult 
to assess quantitatively. 
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INTRODUCTION 

Characterization of the ability of materials to absorb and dissipate seismic waves is 
important for petrophysical descriptions of reservoir rocks. Compared with seismic velocities 
and densities, absorption and scattering are often more sensitive to clay content, pore fluids, gas, 
or fracturing (e.g., Klimentos, 1995). Conventionally, energy dissipation properties are described 
by Q-factors attributed to the materials. However, despite their common name and intuitively 
expected similarity, the Q values encountered in different contexts are not automatically the 
same. In particular, we need to differentiate between three fundamentally different usages of the 
Q-factor: 1) the Q-1 as a measure of ‘internal friction’ implied in petrophysical interpretation, 
2) many measured (‘apparent’) Qs arising from observations, and 3) the ’axiomatic’, 
mathematical Q used in the viscoelastic theory and numerical modeling. A classification of these 
Q-factors can be constructed, based on the key properties of seismic attenuation (Figure 1). 

In practical seismic data processing and inversion, the exact semantics of the Q is 
sometimes unimportant. The goal of attenuation modeling may be limited to correcting the data 
for its effects, and even a detailed Q model that is overparameterized, ‘overfit’ or not justified 
physically may work well by enhancing the data or aiding the interpretation. By contrast, when 
numerically modeling seismic wavefields, it is important to ensure that the algorithms adequately 
represent the physical mechanisms of wave attenuation. When a Q-type parameter represents the 
primary product of the analysis and is related to petrophysical properties, it is also important to 
ensure that it belongs to the ‘internal friction’ group in Figure 1.  

 

The phenomenological aspect is critical for all three types of Q (Figure 1). The first of 
these types is the ‘true’, or ‘material’ Q, which represents the goal of attenuation analysis. In 
seismology and materials science, this Q is a property of the phenomenological ‘imperfect 
modulus’ (first column in Figure 1; Anderson and Archambeau 1964; Lakes, 2009), which is 
expected to comprise certain (petro)physical properties of the wave-propagating medium. These 
underlying properties may be broadly variable (for example, granularity, dislocations, fluid 
content, electrical, magnetic or thermal properties). The second, apparent Q (second column in 
Figure 1) is the common tool of attenuation analysis, empirical parameter reported from most 
observations. Apparent Qs may differ for different types of observations (for example, lab or 
field, refraction, reflection, or surface-wave), and their relation to the internal friction may be 
intricate and variable. The ‘scattering Q’ is an example of such a quantity that is particularly 
important in seismology and yet difficult to formalize and measure.  

In contrast to the first two quality factors, the ‘axiomatic’ Q is attributed to the material 
mathematically, through the popular viscoelastic model (e.g., section 5.4 in Lakes, 2009). The 
purpose of this quantity is to represent the internal friction (material Q), but the approach 
consists in attributing phenomenological features, such as the relaxation times and strain-stress 
phase lags, to the viscoelastic moduli (Figure 1). As a mathematical model that is only an 
approximation for real internal friction, it occupies a separate place in our taxonomy (third 
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column in Figure 1). With models of the viscoelastic Q becoming progressively more detailed, 
their relation to the observations and physical properties of materials becomes intricate.  

A classification of the concept of Q is a complex task because this concept represents a 
mixture of measurement techniques, empirical definitions, physical theories, mathematical 
transformations, simplifying assumptions, and analogies with mechanical and electrical 
resonators. In this paper, we discuss only several key aspects of this classification shown by 
ellipses in Figure 1. Our principal point is that the temporal and spatial resolution gives 
important important keys to such classification. By the nature of wave-attenuation phenomena 
and measurements, the kinds of Q useful for petrophysical correlations are always averaged and 
statistical, and therefore their accuracy and resolution in time and frequency are strongly limited 
(item ‘c’ in Figure 1). In a peculiar way, these restrictions apply even to the 
axiomatic, viscoelastic Q (item ‘e’). White (1992) studied the statistical properties of spectral 
ratios and pointed out strong limitations on the Qs observed in common types of seismic 
measurements. The key lesson from White’s paper was that in order to measure the values of 
Q  100 with accuracy of about 30%, time intervals of at least ~500 ms need to be used for 
measuring the spectral ratios (White, 1992). However, many recent studies report Q images with 
much greater detail (for example, Frazer et al., 1997; chapters 11 and 12 in Wang, 2008; 
Blias, 2012; Suzuki and Matsushima, 2013). As some of these results appear to contradict 
White’s (1992) statistical limits, an analysis of these contradictions seems appropriate. Fine-
scale Q images are typically obtained at the cost of increased frequency dependence, sensitivity 
to mathematical assumptions, and even limited or difficult to assess physical meaning.  

TAXONOMY OF Q 

The apparent Q (second column in Figure 1) is the most important for the attenuation 
problem. This Q arises by considering a traveling wave whose spectral amplitude exponentially 
reduces with travel time, t, as (e.g., Aki and Richards, 2002):  

                                                 0 0
, , exp

t
A f t A f t f dt Q    , (1) 

where A0(f,t) is the signal spectrum including all geometric-spreading, source, and receiver 
effects. Note that under the term ‘geometric spreading’, we understand all propagation effects in 
the absence of attenuation, and not merely the ray-theoretical limit. Furthermore, the term 
‘attenuation’ is understood as all physical mechanisms causing wave amplitude reduction within 
the material, in contrast to wavefront spreading for an idealized, ‘geometrical’ wave modeled by 

A0(f,t). The path attenuation factor  *

0

t
t dt Q   in the exponent of expression 1 is often used in 

body-wave analysis (Der and Lees, 1985). The justification for the existence of t* or Q as 
attenuation properties is based on common observations that the negative exponent in the 
amplitude-decay expression 1 increases with f and accumulates with t. 

In relation 1, the notions of Q and t* are relative and vary with the detail of the 
background model A0(f,t) (item ‘a’ in Figure 1; Morozov, 2010a, hereafter M10a and similarly 
other papers by Morozov). For example, with typical simple models for geometric spreading, the 
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exponential factor in equation 1 approximates the effects of additional curvatures of the 
wavefronts and wavelet dispersion associated with scattering on small heterogeneities (M10a, 
M11). Although these effects can always be included in a more detailed background model 
A0(f,t), they are variable spatially and can rarely be modeled with accuracy (of about Q-1) 
required for attenuation measurements. Also, the notion of a waveform traveling along a certain 
“ray path” in relation 1 becomes invalid for multiple scattering and dispersive wavelets. Hence, 
the uncertainty and variability of the geometric spreading is contained in Q and t*, and it needs to 
be measured as discussed below. 

Because there is no attenuation at zero propagation time, the limit    0,0 ,0A f A f in 

relation 1 is always correct. Nevertheless, the low-frequency limit    00, 0,A t A t  that is also 

implied by this relation is not guaranteed. For example, for scattering or small deviation of the 
geometric spreading from the background model, there exists a frequency-independent deviation 

of A from A0 increasing with travel time (M11). To allow    00, 0,A t A t  without a singularity 

in Q(f) at low frequencies, we extended the model 1 by adding a frequency-independent 
attenuation coefficient  (M08): 

                                             0 0
, , exp

t
A f t A f t f dt       .  (2)  

Here,  measures the frequency-dependent part of attenuation that can be transformed into the 
‘effective’ Q-factor: eQ   (M08, M10a). In the following, we will not differentiate between 

the Qe and Q. Parameter  can be interpreted as ‘geometric’ attenuation including small 
wavefront distortions (focusing for  < 0 or defocusing for  > 0) and/or random scattering (for 
which  = g0V/2, where g0 is the turbidity (measure of random heterogeneity of the medium, 
and V is the wave velocity; Dainty, 1981; M08). Parameter  is phenomenological and can 
generally be frequency-dependent. However, in practice, a constant  typically appears sufficient 
(M08, M10a, M10b; Baharvand Ahmadi and Morozov, 2013, hereafter BAM13). Thus, instead 
of the (generally) frequency-dependent Q in relation 1, we have a two-parameter model 2. 

In the following section, we focus on several aspects of this classifications indicated by 
the ellipses in Figure 1 and make four general observations about the different types of Q. First, 
the apparent attenuation ( and combined) is always an averaged, statistical effect accumulated 
over time (exponent in equation 2; item ’c’ in Figure 1). Because of such averaged character, 
measurements of attenuation always require a sufficient volume of time-spectral data, which 
restricts the temporal resolution of attenuation properties. Phenomenological parameters such 
as , , and Q are statistical attributes which simply do not exist on short temporal and spatial 
scales. Following White (1992), we show that there exists a significant trade-off between the 
accuracy of the measured values of  and  (aka Q) and their temporal resolution. White’s (1992) 
and our estimates of the attainable resolution (further in this paper) are summarized in Table 1.  

Second, we note that whenever the parameterization of models 1 or 2 is insufficient for 
matching the real amplitude decay A(f,t), a ‘frequency dependence of Q’ appears (item ’a’ in 
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Figure 1). A frequency-dependent Q may thus be often caused by an inadequacy of the 
parameterization and not by a physical reality. The frequency dependences of Q measured in an 
experiment depend on whether the models 1 or 2 are used (M10a). In many studies, it is 
customary to assume that  = 0 and consequently use equation 1. This assumption is usually 
offered as a simplification and implies that the geometric spreading in A0(f,t) is accurate enough 
to allow the measurement of . However, examples from many seismic datasets (M08, M10a, 
M10b; BAM13) and numerical modeling (Morozov et al., 2008) show that this assumption is 
often inaccurate or impractical. Once invoked, this assumption can cause spurious frequency 
dependences in Q(f) (M08, M10a). Therefore, for practical measurements of seismic Q, it is 
important to see that the assumption of Q(f) = const is inconsistent with also assuming   0. 

Our third observation relates to the character of detailed Q models that appear to 
sometimes overcome the statistical limitations (for example, wavelet-based Q models in 
chapter 11 by Wang, 2008; interval Q model in Blias, 2012; sonic-log Q in Suzuki and 
Matshushima, 2013). These models also relate to special kinds of the apparent Q (item ’b’ in 
Figure 1). We argue that physically, such models represent short-scale variations not of a quality 
factor but of ‘colored’ transmitted and/or reflected seismic amplitudes. This apparent Q can 
therefore be called ‘structural Q’ (Figure 1). To associate this Q with a robust property of the 
material, we again need to perform averaging and accumulate sufficient statistics. This averaging 
produces the well-known ‘scattering Q’ (Dainty, 1981), which also exhibits resolution/accuracy 
limitations similar to those from spectral-ratio measurements (Table 1). In addition, both the 
structural Q and scattering Q may be frequency dependent if the assumption  = 0 is made. 

Fourth, very detailed Q models arise from full waveform inversion (Virieux and 
Operto, 2009). This type of Q is the ‘axiomatic’ Q inferred from the viscoelastic model of 
attenuation (item ’e’ in Figure 1). However, the viscoelastic Q is not the only, and arguably not 
the most rigorous and accurate model of internal mechanical friction within solids (Landau and 
Lifshitz, 1986). Although reproducing the general effect of attenuation (relations 1 and 2), 
such Q may be difficult to interpret (petro)physically. Despite the detailed spatial sampling of 
this Q, we show that a peculiar ‘averaging’ is also implied in its definition (item ’d’ in Figure 1). 
In addition, waveform Q tomography also often uses the assumptions of  = 0 and Q = const 
simultaneously. Similarly to the above, such combined assumptions may bias the resulting Q 
values. 

With regard to the Q as a true material property, its universal existence for rocks and 
frequency dependence are open to debate and not discussed here (symbols ‘?’ in Figure 1). 
Rigorous models of internal friction in materials, such as poroelasticity, thermoelasticity, or 
viscosity, contain no material Q but explain the wave attenuation directly (Landau and 
Lifshitz, 1986). Theoretical models of laboratory measurements of seismic attenuation (Coulman 
et al., 2013) also show that the apparent Q is not always a true property of the material and may 
depend, for example, on the shapes and dimensions of the specimens. 

Finally, no classification of Q is complete without considering the intrinsic and 
scattering Qs. These quantities are defined by partitioning the observed (apparent) Q (e.g., 
Wu, 1985): 
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                                                        1 1 1
observed intrinsic scatteringQ Q Q    . (3)  

The intrinsic-energy dissipation rate 1
intrinsicQ describes the dissipation of the elastic-wave energy 

into heat, whereas the elastic dissipation rate 1
scatteringQ  corresponds to the fraction of energy 

remaining in the total field but diverted from the recorded wavelet by scattering. By an analogy 
with optics, quantity 1

scatteringQ  is sometimes called “extrinsic attenuation” (e.g., Virieux and 

Operto, 2009). A similar additive rule for Q-1 was used for combining the effects of an anelastic 
dry rock matrix and mesoscopic fluid flow in a fluid-saturated rock (Tisato et al., 2014). Many 
methods were developed to separate the two terms in equation 3 (e.g., Aki, 1969; Wu, 1985).  

In our taxonomy, both 1
intrinsicQ  and 1

scatteringQ  are placed under the apparent-Q category, 

similarly to 1
observedQ  (ellipse ‘b’ in Figure 1). This may appear surprising, as the intuitive meaning 

of 1
intrinsicQ  is that of an intrinsic energy loss, i.e. internal friction. However, the separation of 

these two quantities uses no specific physical model for 1
intrinsicQ  which could indeed relate this 

quantity to the generation of heat. The separation of these Qs is entirely based on the model for 
scattering, which depends the assumed single or multiple scattering, geometric spreading, and 
distribution of scatterers (Wu, 1985; M11). The values of 1

scatteringQ  can therefore be treated as 

apparent. Neither 1
intrinsicQ  nor 1

scatteringQ  exist at the microscopic scale, which also suggests that 

they are not 100% material properties. Thus, the quantitative definition and separation of these 
quantities represents a complicated problem, and it is not considered further in this paper. This 
problem does not affect the discussion of the resolution and accuracy of Q in this paper. 

PROPERTIES AND TYPES OF Q 

Accuracy and temporal resolution 

In this section, we consider the characteristic temporal resolution common to most types 
of the apparent attenuation (item ’c’ in Figure 1). Consider the task of estimating  and  in 
process 2 from discrete seismic-amplitude data samples. For a specific case, consider a borehole 
measurement, such as seismic VSP or acoustic well log recorded with a constant source 
spectrum A0(f). This type of measurement provides the highest statistical accuracy (White, 1992). 
To assess parameters  and  in equation 2, we need to measure the amplitude spectra within two 
time windows of length T and separated by time t. Let us sample the spectra at N equidistant 

frequencies fi taken within a frequency band of width B. The estimates for  and , denoted ̂  

and ̂ , can be obtained by fitting a linear regression to the logarithms of the amplitude spectral 
ratio for the two time windows, A2(f)/ A1(f): 

                                                       2

1

ˆ1
ˆ ˆln ˆ

i
i

i

A
f

t A
 

 
   

 
, (4) 
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The estimates ̂  and ̂  derived from this regression are random quantities dependent on the 
sampling of the spectra and possess statistical errors. Considering high-quality records with 
signal to noise ratio much higher than one and measurements within independent time windows, 
the relative variance of the spectral ratio equals (White, 1992): 

                                   

    
   

    2 1

2 12

2 1

ˆ ˆvar 1ˆ ˆvar ln
2ˆ ˆ

A f A f
A f A f

bTA f A f
  , (5) 

where b is the bandwidth of each frequency reading. Approximating this variance as constant 
within the measurement bandwidth and assuming that the full frequency band is utilized 

(B = Nb), the variances of the estimates ̂  and ̂ determined from regression 4 equal:  

                                      
 
2 2 2

ˆvar 1

2t BT


 

 , and  
   2

2 2 2 3

6 1ˆvar

t B T


 


 , (6) 

where  is the spectral coherence of the records. The second of these expressions is equation 22 
in White (1992).  

The relative standard error of ̂  and ̂  (here denoted e and e respectively) equal square 
roots of the ratios 6. These relations show that e and e trade off with t. If we wish to achieve 
certain levels of these errors, then the spectral measurement windows should be separated by at 
least the time interval 

                                               
 26 11 1

max ,
2

t
e BBT e  

    
  

. (7) 

This constraint restricts the time resolution attainable in attenuation measurements and shows 
that it inversely correlates with ||, , e and e 

For a representative example, consider a 3-C VSP in the area of Weyburn reservoir in 
Saskatchewan, Canada (BAM13). This study resulted in high-quality first arrivals (Figure 2), 
from which a six-layer, anisotropic model was derived for  and ( BAM13). The first-arrival 
measurement intervals were T = 60 ms (Figure 2a). Let us take the bandwidth of the data as 
ranging from 10 to 90 Hz, and therefore B = 80 Hz. The spectral coherence of the first arrivals 
within this frequency band exceeds 99% and generally decreases with time separation between 

the first-arrival VSP waveforms, which is shown by the increasing ‘incoherence’ factor 21   
in Figure 3. Note that this quantity increases near the bottom of the borehole, where the 
reflectivity is much stronger (increased velocity and density variation within layer 6 in Figure 2b 

and c and gray dots in Figure 3). For a simple estimate, let us approximate as 21 a bt     
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(dashed line in Figure 3) and denote  6c e B BT . The second constraint 7 then 

becomes: 

                                                             1t ca cb  . (8) 

For near-vertical wave propagation, the levels of || in BAM13 ranged from ~0.3 s-1 to 
~3 s-1, and  ranged from 0.02 (corresponding to Qe  160) to 0.13 (Qe  24). Taking 
conservative target errors of e = e = 0.3, the shortest intervals t required for measuring the 
above two levels of   equal 3.6 s and 360 ms, respectively (Table 1). For the two levels of  
above, relations 8 give t  170 ms and t  12 ms, respectively. For Q = 50 (  0.063), this limit 
would be t  27 ms (Table 1).  

Thus, measurements of attenuation (,  and accordingly Q) cannot be both very detailed 
and accurate even with high-quality first-arrival VSP records. Measuring  appears to be 
practical only with little spatial detail and statistical accuracy. This is probably why this quantity 
is rarely measured. In BAM13, the relative errors in  were close to or exceeded one, and its 
determination suffered from strong tradeoffs with errors in . Note that by using a broader 
bandwidth and higher coherence, the above estimates are significantly more ‘optimistic’ than 
White’s (1992), but they are still quite restrictive (Table 1). The relative errors in ,  and Q 
decrease with time intervals as 1/t and 1 T  and with the frequency bandwidth as 1 2B  for  
and 3 2B  for . 

Interval and structural Q 

Many measurement methods are technically capable of producing estimates of Q-1 that 
are much more detailed than the statistical limits in Table 1. For example, Q modeling and 
compensation based on wavelet transforms can produce detailed layering of Q (e.g., chapter 11 
in Wang, 2008). The common-spectrum method (Halderman and Davis, 1991), rise-time and 
instantaneous-frequency methods (Matheney and Nowack, 1995) can in principle yield trace-by-
trace Q estimates. The mean-median procedure (Frazer et al., 1997; Sun and Frazer, 2000; 
Suzuki and Matsushima, 2013) also derives very detailed layering of Q-1 from sonic waveform 
logs. Optimization approaches using relations 1 or 2 also produce interval-Q models (e.g., 
Blias, 2012) that may be much more detailed than allowed by the statistical limits (Table 1). 
However, such detailed Qs are somewhat different phenomenological measures of wave 
attenuation that need to be understood carefully. These Qs represent examples of model-
dependent apparent attenuation indicated in the ellipse ‘b’ in Figure 1. 

In the preceding section, we only discussed the limits imposed on the accuracy of 
attenuation measurements by fluctuations in spectral sampling. However, there also exist 
fluctuations due to limited spatial sampling of the target zone. For interval Q measurements such 
as VSP and sonic logging, these fluctuations affect the attenuation-free amplitude A0(f,t) in 
equation 1. This A0(f,t) becomes complex, ‘colored’ (frequency-dependent), and variable when 
selecting different depth intervals or spatial areas for the measurements. The A0(f,t) is mostly 
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caused by reflectors and velocity variations within and near the measurement range. In sonic-log 
measurements, the receivers may also be close to the near-field zone, in which the amplitude 
spreading changes from 1/r2 to 1/r and is frequency-dependent. With the conventional 1/t, 1/V2t, 
t-, or in fact any other modelled corrections for the geometric spreading, the residual ‘colored’ 
response in A0(f) contributes to the  (i.e., Q) results (M10a). Suzuki and Matsushima (2013) 
note that Q-1 measured in these cases mostly represents the scattering on the layered structure of 
the reservoir. However, for each position of the sonic tool, this structure is unique and typically 
dominated by 1–2 strong reflectors. Such situations can be described as fluctuations of scattering 
and the resulting Q-factor called the ‘structural Q’. However, the use of the Q-factor for 
characterizing the structure is still hardly appropriate and can be tricky. It is very difficult to 
pinpoint a combination of physical properties (especially material properties) that may be related 
to this Q.  

Frequency dependence of Q 

Figure 5b illustrates the dependence of the apparent Q on the assumed background model 
in our VSP example (observation ‘a’ in Figure 1). If scattering Qs is defined without a , by 

assuming  exp sA ft Q   in the empirical law 1 (Aki, 1969), then it quickly increases with 

frequency. In our example, Qs increases from ~850 at 10 Hz to ~1700 at 100 Hz (dotted lines in 
Figure 5a). If using the model 2, then the scattering Q would be approximately Qs = /s  2400. 
Thus, for methods relying on explicit corrections for theoretical models of the attenuation-free 

response A0(f,t) in expression 1, we should always expect the resulting ̂ and Q to be frequency-
dependent (M08). Unfortunately, this frequency dependence is often attributed to the 
‘material Q’ (symbols ‘?’ in Figure 5b), but in fact it may be caused by the selected 
parameterization 1 and inaccurate models for geometric spreading.  

The frequency dependence for the phenomenological Q produced by an error in   can be 
obtained from expression 2: 

                                                       1 11 cfQ f Q
f

 


 
  
 

, (9) 

where the ray-theoretical limit (at f  ) is denoted 1Q  
  , and cf   is the ‘crossover 

frequency’ (M08). This expression shows that weak frequency-independent scattering or 
wavefront defocusing ( > 0) cause a Q nearly proportional to f when measured at frequencies 

cf f . Such strong positive Q(f) dependences are often reported in earthquake studies (e.g., 

Aki, 1969). Nevertheless, such frequency dependences only apply to the apparent Q (Figure 1) 
and arise when the restrictive assumption  = 0 is made. When this assumption is relaxed, 
the Q(f) often becomes near-constant, and its values at f = 1 Hz increase 20–30 times (M08, 
M10a). 
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Scattering Q 

‘Scattering Q’ is another kind of apparent Q measured in random wavefields, such as the 
seismic coda (item ‘b’ in Figure 1; Aki, 1969). In this section, we try estimating the time 
intervals needed for measuring this Q in exploration-type data.  The scattering Q can be viewed 
as averaging of the ‘structural Q’. To illustrate this averaging on the above VSP example, we 
modeled harmonic P-wave responses in a layered structure simulated by using the complete well 
logs recorded in the same area (Figure 2; BAM13). The downgoing wave was normalized to a 
flat spectrum at depth 431 m, and its attenuation to the level of 690 m was measured (Figure 4). 
Note that this model is purely elastic, and therefore the results relate to the pure ‘structural Q’. In 
relation to the statistical discussion in the preceding section, note the significant thickness of the 
depth interval (259 m, corresponding to about 118 ms of one-way travel time). 

From a single observation (the only one we ever have with real data!), the near-linear 
spectral slope is apparent, but significant fluctuations are present in it as well (thick black line in 
Figure 4a). The transmitted response and attenuation parameters change when the layers are 
randomly permuted within this depth interval (gray lines in Figure 4a). Thus, the layering causes 
significant fluctuations with respect to random sampling of the same (even elastic) strata. By 
using a representative set of permutations, the fluctuations are averaged out, and the 

‘scattering Q’ and the covariance of ̂  and ̂  values can be measured (large dot in Figure 4b). If 

desired, the pair of parameters s and s can be replaced with a ‘frequency-dependent 

scattering Q’ as     0s sQ f f f Q f      ,with another pair of parameters Q0 and  (M08). 

The errors of the scattering parameters are correlated and equal approximately 0.04 s-1 (for s) 
and 10-3 (for s) (ellipse in Figure 4b). For simplicity, the uncertainty is estimated here by 
‘eyeballing’ the distribution of (, ) points, so that the error ellipse contains approximately 80% 
of this distribution. 

The ‘scattering Q’ (the large dot in Figure 4b) only becomes available after about 5–10 
randomizations of the layer. This suggests that in a real dataset, a 600–1200-ms one-way time 
interval would be needed for assessing these values (Table 1). For comparison, in earthquake 
seismology, the scattering Q is commonly derived by using coda lengths of twice the total direct 
S-wave travel times, which amounts in 30–60 wavelengths (Aki, 1969; Dainty, 1981). At 
exploration frequencies (~40 Hz), such averaging would correspond to 700–1400-ms time 
intervals, similar to the preceding estimates for  and  (Table 1). Unfortunately, such 
thicknesses appear hardly practical in most cases. 

Note that the spectral slope measured before layer permutations (raw  610-3; Figure 4a) 
is much greater than that in randomized logs (s  1.310-3) and lies outside of the 80% 
confidence ellipse (Figure 4b). This difference occurs because the original layering is non-
random, as also indicated by the spectral density of reflectivity increasing with frequency 
(Figure 5a). The difference between raw and s corresponds to the difference between the 
‘structural’ and scattering Q-factors. Also note that in principle, Qs can be redefined to 
incorporate the finite correlation lengths and other spectral properties of the logs.   
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The random permutations also reveal another observation showing that scattering may 
not fit into any simple Q-type models. The frequency dependence of the averaged energy flux 
suggests a quadratic dependence of the amplitude on the frequency as 

 2expA f f t         rather than linear  expA f t       in relations 1 and 2 

(Figure 5b). This trend correlates with the near-quadratic spectral power of reflectivity 
(Figure 5a; O’Doherty and Anstey, 1971). Thus, linear Q models of types 1 and 2 may be 
insufficient for scattering in finely layered sedimentary sequences. 

Viscoelastic (‘axiomatic’) Q 

In this section, we discuss the ‘axiomatic’ Q (items ‘d’ and ‘e’ in Figure 1). Several 
theoretical models explain dissipation of elastic waves in solids, such as poroelasticity 
(Biot, 1956), squirt pore-fluid flows, thermoelasticity, and solid viscosity (Landau and 
Lifshitz, 1986). These physics-based models belong to the ‘internal friction’ category in 
Figure 1. Another theoretical approach to anelastic attenuation is represented by the 
viscoelasticity (Aki and Richards, 2002; Lakes, 2009). Because of its simplicity and generality, 
this model is broadly used in exploration and observational seismology and lab studies.  

In the viscoelastic model, the observations of internal friction are explained by a 
specialized parameter (viscoelastic Q) associated with the elastic modulus. This parameter 
combines the properties of the apparent Q with the localization and ‘reality’ of the physical 
internal friction (first two columns in Figure 1). Similarly to the modulus, the viscoelastic Q is 
free from the statistical constraints discussed above, and its images can be arbitrarily detailed. 
For example, to explain wave attenuation in porous rock containing heavy oil or melts, 
viscoelastic moduli and Qs are attributed to pore fluids or solids, i.e. to the microscopic level 
(Mavko, 2013). Nevertheless, the viscoelastic model still does not automatically correspond to 
reality (see below), and its Q should be differentiated from the internal friction and the various 
apparent Qs (Figure 1). 

In the attenuation waveform tomography, the viscoelastic Q is derived from the complex-
valued wave velocity, c* (Aki and Richards, 2002): 

                                                         
*

1
*

2 Im

Re

c
Q

c
   . (10) 

Because typically 1 1Q   , the inversion for Q-1 is an ill-posed problem and needs to follow 
careful strategies, such as first solving for Rec* and then fitting the data residual by adjusting 
only Imc* (Virieux and Operto, 2009, and references therein). Because the resulting Q-1 
represents a transformation of complex-valued velocities, it has the resolution of a velocity 
image.  

Nevertheless, even though computed at every model point, the viscoelastic Q-1 in 
equation 10 is still inherently ‘averaged’ in a peculiar sense that is rather difficult to understand 
physically. To recognize this averaging, note that relation 10 implies the Kolsky-Futterman 
model for the frequency dependence of c* (Virieux and Operto, 2009):   
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                                           *

1 sgn
1 ln

2r

c
c

i
Q Q


 

 


 
  

 

, (11) 

where r is some reference frequency, and  is the observation frequency. In this model, the 
velocity c is the phase velocity of a harmonic wave in a uniform medium, and the Q-1 is the 
apparent attenuation factor for this wave (Aki and Richards, 2002). Extrapolating this 
expression to a local wave speed and local internal friction within a heterogeneous body is an 
extremely far-reaching mathematical postulate known as the correspondence principle 
(Lakes, 2009). Without discussing the relation of this principle to physics, we only note that 
the Q-1 in equation 10 actually refers to plane waves in some ‘equivalent’, infinite and uniform 
medium whose parameters equal those at a single point selected in the model (Figure 6). This 
means that equation 10 is only guaranteed and accurate for an unbounded uniform medium. 

However, the 1Q of a wave in this medium is not automatically the same as the path-average Q-1 
in the real world or in the ray-based equation 1.  

In addition, as in the preceding sections, when using the usual imaging condition 
1Q const   (Wang, 2008), we should not assume  = 0. When taking  = 0 (as commonly done), 

the right-hand side of expression 10 should become frequency-dependent, which should bias the 
resulting values of Q-1. An apparently better alternative to expression 10 for waveform 
attenuation tomography could be: 

                                                       
 
 

*

*

2 Im2

Re

c

c

 
 

   , (12) 

which would be consistent with equation 2. An inversion for both  and  would produce an 
interesting pair of attributes of the phase-shifted complex velocity field which could potentially 
be of some petrophysical value. However, it still remains to be studied whether and how these 
attributes are related to the phenomenological attenuation properties  and  (and Q) in Figure 1. 
In any case, quantities  and  (Q) in equations 12 and 2 should not be automatically equated, 
despite the similarity of notation and equations.  

DISCUSSION AND CONCLUSIONS 

The measures of seismic attenuation used in different models and obtained from different 
measurements and inversion approaches are not automatically equivalent. We identify three 
groups of such measures differing by physical meanings, underlying theories, methods of 
measurement, attainable resolution and accuracy, and most importantly, by their roles in data 
analysis and interpretation (Figure 1) .  

From the above descriptions of the different aspects of the Q, it follows that most of the 
existing estimates of Q belong to the ‘apparent’ Q category and not to the internal friction (i.e. 
representing a material property) as it may be implied (Figure 1). Moreover, these values are 
only robust (as ‘interval’ or ‘scattering’ Q in contrast to the ‘structural Q’) when averaged over 



Taxonomy of Q 

13 

 

substantial time and/or spatial intervals. We suggest that such statistical, averaged character is an 
important characteristic of any self-consistent type of a Q. 

Because of its averaged character, the resolution and accuracy of the 
phenomenological Q is limited. We confirm and reiterate the conclusion by White (1992) that to 
measure a Q  100 in VSP first arrivals with reasonable accuracy, we need to use time intervals 
of about 500 ms (Table 1). In addition, the measured Q values may be non-unique and depend on 
the adopted geometric-spreading and/or frequency-dependence models. In particular, errors in 
geometric spreading cause Q values to quickly decrease at low frequencies. This model 
dependence can be relieved by measuring the geometric spreading and scattering; however, such 
measurements are even more challenging, with likely uncertainties reaching 100%. 

Many fine-scale Q models exceed the above statistical resolution limits, which suggests 
that these Qs are likely influenced by deterministic local structures. An example of such a 
‘structural’ Q from borehole log studies suggests that such phenomena should better not be 
treated as a Q. The apparent structural Q contains effects of ‘colored’ transmission and 
reflections on layered structures, as well of the underlying theoretical models. Detailed models 
should always be based on first-principle analysis and utilize specific, spatially localized and 
unambiguous physical properties rather than a Q. 

  The traditional viscoelastic Q occupies a separate category in our taxonomy (Figure 1). 
By construction, this Q combines the time- and frequency-dependence properties of the 
apparent Q with the constitutive character of an ‘internal-friction’ model. We point out that 
although this model is convenient mathematically, broadly used and seems intuitively appealing, 
its rigorous meaning and relation to petrophysical properties is poorly understood. The 
viscoelastic model also contains a specific, inherent spatial averaging that is difficult to assess 
in Q images. 

Finally, the true internal-friction mechanisms (first column in Figure 1) are usually 
explained by first-principle physics and generally do not require the notion of a Q. Their 
relations to Q models can be complicated and require further studies.  
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TABLES 

Table 1. Characteristic time intervals required for spectral Q measurements 
Measurement Measurement time base (t), ms 

VSP, Q  50 with 30% error 27 
VSP, Q  100 with 30% error (White, 1992) 500 

VSP, Q  160 with 30% error 170 
VSP, geometric attenuation   0.3 s-1, with 30% error 3600 

Scattering Q 600-1200 
Coda Q 700-1400 
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