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Abstract
Seismic coda envelopes are commonly characterized by the frequency-dependent Q-factor (Qc); however, the acute sensitivity to theoretical assumptions and processing parameters make this quantity uncertain and prone to artifacts. Such artifacts can be recognized in many cases where Qc is near proportional to frequency, which has been argued to mean the absence of Q-type attenuation within the subsurface. A recent single-station study (in this journal) of the eastern Indian Shield by Singh et al. illustrates such Qc artifacts most clearly. From that study, Qc steeply increases with frequency, coda lapse times, window lengths, and most importantly – with distances from the seismic station. These dependencies are spurious and show that Qc is largely controlled by subjective selections of mathematical models and inversion procedures. In many studies starting from the pioneering work by Aki, Qc is evaluated by assuming uniformly-distributed random scattering of radially-spreading body waves within a homogenous medium. However, these assumptions are unrealistic, and their deviation from reality leads to the spurious character of Qc above. Here, we propose an alternate model of coda envelopes and illustrate it by reinterpreting the results by Singh et al.. Instead of the frequency-dependent Qc, the coda is described by two properties of the Earth’s subsurface: geometrical attenuation denoted  and an alternate (frequency-independent, or effective) Qc. The estimated level of  is typical for areas of active tectonics, and its spatial pattern is free from distance and frequency dependences and correlates with tectonic features within the study area. The effective attenuation (1/Qc) is below the measurable level, showing that the decay of coda amplitudes is principally controlled by the subsurface structure. In addition, the data by Singh et al. suggest indications of spatially-variant near-surface resonances beneath the recording station. Effects of these resonances on coda envelopes also exceed those of Q-type attenuation.

1. Introduction
In a quickly and continuously growing number of studies of seismic codas from local and regional earthquakes, coda Q parameters (Qc) are derived and associated with the quality factor of the Earth (Q), which is further separated into S-waves and P-wave, intrinsic, scattering, and other Q-factors. However, the physical meanings of all of these quantities and particularly of their frequency dependences are poorly understood. Apart from the general trust in the symbol ‘Q’, the models are only supported by references to the scattering models by Aki (1969) and Sato (1977) (Fehler & Sato 2003). Although the “assumptions” of these models are emphasized in most Q studies, their validity for the specific observational environments are rarely assessed. Nevertheless, as noted by Morozov (2008, 2010a), in many cases, these assumptions are not accurate enough to allow measurement of the seismic Q, let alone its frequency dependence. The inaccuracy of the elastic model usually manifests itself by strong frequency dependences of the apparent Q. By removing these assumptions, Qc becomes explained primarily by the elastic Earth’s structure, and Q values are found to be much larger than those assuming Aki’s model of the crust (Morozov 2008).


Unraveling the physical meanings and frequency dependencies of various types of seismological Q-factors is a difficult task that is far from completion. Ten years ago, Pure and Applied Geophysics initiated a discussion of this problem (Mitchell 2010), and here, we again draw attention to it by using a recent paper in this journal (Singh et al. 2019). Being a careful and up to date implementation of the methodology adopted in numerous studies, the results by Singh et al. (2019) clearly elucidate the problems with this methodology. The paper by Singh et al. (2019) is exemplary by its detail of model presentations and by using tomographic inversion to constrain spatial variations of the frequency-dependent Qc and also of parameters Q0 and  of the empirical scaling relation  (where f is the observation frequency in Hertz and ).


The key problem of applying the uniform-scattering model to coda Q measurement (e.g., Aki & Chouet 1975; Singh et al. 2019) is in assuming that the Qc must be caused by a Q of the medium. In other words, within an elastic medium (), the coda is expected to be infinite (). However, this is clearly not the case. For example, a single-layer crust overlaying a uniform half-space mantle would produce a coda consisting of reverberations within the layer. The amplitude decay rate within this coda is determined by the two-way reflection time within the layer and unrelated to “attenuation”:
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where t is the time after the primary-wave onset at the station, L is the one-way distance between reflections within the layer, V is the wave velocity, and r < 1 is the reflection coefficient at the bottom of the layer. This coda is frequency-independent, but if interpreting it by the method of Aki & Chouet (1975),  would be approximated as , and the resulting Qc would be proportional to frequency ( = 1):
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Such frequency dependencies are commonly found, including by Singh et al. (2019). The increase of Qc with frequency is usually attributed to “scattering Q” and its increase with lapse time – to greater depths of sampling (Singh et al. 2019). However, clearly, both of these interpretations are invalid for this simple example (eq. 1). Representing the thickness of the crust by a scattering Q is a confusing and productive model parameterization.




The rationale behind this suggestion that  is caused by Q-1 (and predominantly by S-wave ) was also given by Aki (1980), based on earlier observations of site amplification for coda waves being correlated with amplifications factors for direct S waves but different from P-wave amplification (Tsujiura 1978). Nevertheless, this observation only means that S waves represent a significant portion of the coda wavefield (Fig. 1), but their effect is not necessarily due to . Body shear waves may likely dominate the “elastic” coda through large reflection and mode-conversion amplitudes r in eqs. (1) and (2), and also by producing surface waves. By taking values characteristic for near-vertical crustal S waves (L equals the crustal thickness H= 35 km, V = 3.5 km/s, r = 0.1, and f = 10 Hz) eq. (2) gives Qc  273, which is well within the range of observed coda Q values. For near-critical S waves comprising the Lg phase, L  1.1H and eq. (1) can be approximated by the power-law (Campillo 1987), from which the average reflection coefficient can be estimated as r  0.5 to 0.8. With such r, Qc in eq. (2) varies  from about 700 to 2000, which is again within the range of typical values.

The models by Aki (1969) and Sato (1977) refer to an idealized case of boundless homogenous half-space with uniformly-distributed small-scale heterogeneities. In this case, the geometrical spreading can be predicted theoretically, and in the limit , the coda would indeed be infinite. However, this case is far from reality, and the bias resulting from disregarding the crustal and mantle structure typically manifests itself as a strong frequency dependence of Q. Morozov (2008, 2010a) and Morozov et al. (2018) reviewed many observational studies based on the Aki & Chouet’s (1975) approach (see references in these papers) and showed that the frequency-dependent Q and particularly Qc and the “scattering Q” often represent artifacts of approximating the crust and upper mantle structures by a Q. As in eqs. (1) and (2) above, the inferred frequency-dependent Qc typically represents not “attenuation” but the deterministic structure of the Earth, such as crustal thickness, wave-velocity gradients, layering, major reflectors within the crust and mantle, and inhomogeneous distributions of scatterers (Morozov 2010a; Jhajhria et al 2017; Morozov et al. 2018). These observations are further illustrated in the present paper.
The model by Aki (1969) and Aki & Chouet (1975) predicts the recorded time- and frequency-dependent coda envelope A(f,t) as (notation as in Singh et al. (2019))
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where S(f) is the source amplitude spectrum, R(f) is the receiver response, the geometrical spreading G(t) is selected in the form , t is the coda lapse time, and  is the geometrical spreading parameter. Singh et al. (2019) specify the assumptions of this model, which are standard in local-coda studies: 1) spherical direct- and scattered-wave wavefronts, 2) single, weak, isotropic scattering on a homogenous distribution of small heterogeneities, and 3) both forward-traveling and scattered wave within the coda dominated by body S waves, and consequently  = 1. This selection of  = 1 and assumption of a constant scattering amplitude (absence of factors related to the scattering point in eq. (3)) are critical for this model, and they also apply to multiple-scattering and radiative transfer models (e.g., Zeng, et al. 1991). In addition to the selection of G(t), the inverted Qc(f) depends on data processing parameters such as lapse times, window lengths, inversion approaches, and regionalization models associating the obtained values of Qc with certain locations (x,y) within the study area. In order to make the shapes of Qc(f) dependencies comparable for different geographic areas, standardized selections of these parameters are required (Havskov et al. 2016). However, comparisons of standardized Qc(f) dependencies is hardly more informative than comparing the logarithmic decrements of amplitudes  themselves. Functions Qc(f) derived from eq. (3) merely represent mathematical transformations of A(t) in eq. (3), and a standardized calculation does not guarantee that Qc is a meaningful property of the subsurface. Moreover, transforming coda envelopes into a Qc(f) obscures the most valuable observations from them – namely that  is often near frequency-independent (such as in eq. (1)).
If we are interested not merely in deriving standard Qc(f) curves for a geographic region but also in revealing its physical properties, then eq. (3) with its assumptions 1)–3) is inadequate for coda Q measurements in real data. Specifically:
1) 
Equation (3) does not allow for the baseline, attenuation-free case in which the Q-1 of the medium equals zero and A(f,t) is frequency-independent, as in eq. (1). In this case, eq. (3) leads to a spurious dependence , which creates a substantial uncertainty in interpretation. 
2) The theoretical value  = 1 in a homogeneous body-wave model (Aki & Chouet 1975) represents a strong underestimation of the actual frequency-independent amplitude decays. When measured,  for coda is much larger and depends on other factors such as the source-receiver distances. For example, Jhajhria et al. (2017) found   2 at about 50-km source-receiver distances, and our re-interpretation of the data by Singh et al. (2019) suggests   5 at 350-km distance (this paper). 

As shown in the present paper, the observed near frequency-independent coda amplitude decays can be more reliably described not by the delicate concept of Qc(f) but by a more robust, frequency-independent property of the subsurface that we denote  and call effective geometrical attenuation (Morozov 2008). This property represents the limit  and is therefore unrelated to the Q-type wave-attenuation mechanism, i.e. energy dissipation proportional to the number of wave cycles. As illustrated by eq. (1), the effective geometrical attenuation is time-only dependent and principally controlled by the large-scale, deterministic crustal structure and not by random scattering postulated in current coda models (Aki 1969; Fehler and Sato, 2003; Singh et al. 2019, and numerous other references). At the same time, small-scale scattering may also contribute to the geometrical attenuation (Morozov 2010a).
In this paper, we show how the  and effective Q can be obtained from Qc(f) results without redoing the complete earthquake data analysis. In section 2, we review the data and Qc(f) model by Singh et al. (2019) and explain what features of this model highlight the problems of the underlying model by Aki & Chouet (1975). Although only a small example of their spectral amplitude data is given these authors, this example is valuable and instructive, and their regionalized Qc(f) model gives a unique opportunity to estimate the spatial patterns of . In section 3, we re-interpret the Qc(f) model by Singh et al. (2019) by using the attenuation-coefficient approach by Morozov (2008, 2010a, 2010b, 2013). One of the most interesting results of sections 2 and 3 is that the “true” Qc within the region turns out to be extremely high. In section 4, we discuss the resulting model, compare it to the tectonic features of the study area, and also discuss the limitations and further extensions of the approach.
2. Problems of the conventional approach to Qc 


The clearest indication of a problem with the model by Singh et al. (2019) is that their Qc is almost proportional to frequency (the power-law exponent  between 0.9 and 1.02; Fig. 2). Unfortunately, this behaviour is often found in the literature (sometimes reaching as high as ) and not viewed as problematic by many authors. Nevertheless, if understanding the Qc(f) according to Aki’s (1969) model, as a true “quality factor” of some homogenous medium, then the cases with  equal or exceeding one represents a major difficulty for its physical interpretation (Morozov et al. 2017). With  > 1, dependencies  cannot be implemented by reasonable equations of continuum mechanics. As in eqs. (1) and (2), the case  = 1 represents a pure frequency-independent amplitude decrease with time, i.e. it is not a Q-type attenuation at all. Thus, the part of the model shaded gray in Fig. 2 is nonphysical or at least of some non-Q type qattenuation. The rest of this model with  > 0.9 is also close to the case  = 1, which means that it can be explained by much weaker attenuation (Morozov 2008; also the present paper). 
The second striking observation from the results by Singh et al. (2019) is in the very strong anti-correlation between the values of Q0 and  within the study area (arrow in Fig. 2). This anti-correlation means that only one of these parameters is significant so that, for example, Q0 can be inferred from . More likely, both of these parameters represent a single physical factor within the Earth’s crust, and therefore, we need to investigate what this underlying factor is. As suggested by eq. (2) and by our results below, this controlling factor is the elastic structure of the crust. Thus, the variations of Q0 and  along the arrow in Fig. 2 do not represent what is traditionally understood as “attenuation,” i.e. mechanical-energy loss proportional to the number of oscillation cycles. To avoid such misleading associations, these properties should not be denoted ‘Q’.
The third key observation from the model by Singh et al. (2019) is that their Qc increases not only with frequency but also radially away from the seismic station (Fig. 3). This observation is very clear because of only one seismic station used in this study. Although Singh et al. (2019) suggest geological explanations for such a fortuitous pattern of Qc, this pattern suggests an “acquisition footprint” due to direct dependence of Qc on the source-receiver distance. Although weaker, similar increases of Qc with distances were reported by Blanke et al. (2019). Also similar to many other studies, Qc by Singh et al. (2019) increases near linearly with the length of coda windows (figure 9 in that paper). Lapse-time (tlapse) dependences of Qc are conventionally attributed to the depths of scattering, which are assumed to increase with tlapse. Nevertheless, our schematic example in Fig. 1 (eq. 1) shows that scattering times (even if Moho reflections are viewed as “scattering”) may be unrelated to the depth of scattering.
In the present paper, we argue that all four correlated increases in Qc values (with frequency, distance, lapse time, and coda window length) represent a common mathematical bias caused by a physically inaccurate model used for data analysis (eq. 3). This bias is again seen particularly clearly in the results by Singh et al. (2019) because of their use of long source-receiver distances (up to about 350 km).
3. Coda attenuation coefficient, geometrical spreading, and Q
In contrast to eq. (3), the key principle of our interpretation is that the time- and frequency-dependent coda envelopes should be measured without assuming that  is known and only the ‘Q’ of the subsurface needs to be measured. Compared to deterministic effects of the Earth’s structure (geometrical spreading, refractions, reflections), Q-type attenuation is only a secondary effect on wave amplitudes, and the same relation should be expected for coda. Therefore, eq. (3) needs to be amended by allowing for deterministic effects such as given by eq. (1). 


In order to unravel the meaning of the already inverted Qc in Fig. 3, we need to return to the directly observed quantities (logarithmic decrements of coda envelopes) and separate them from the effects of the assumed  form of geometrical spreading. This correction of the measured coda properties is described in section 3.1. In subsection 3.2, instead of the conventional characterization by Q0 and , we derive an alternate pair of frequency-independent in-situ physical properties of the Earth’s subsurface. The derivation procedure also yields an estimate of the regional geometrical spreading resulting, which should be more accurate than the postulated  law. This estimate is described in section 3.3, in which we also explain why the geometric spreading cannot be represented as a single function of t and give a more rigorous conceptual model for coda envelopes. Ultimately, this model should replace eq. (3) in coda studies.
3.1. Measured coda properties
As noted in section 1, within each of the eight frequency bands considered by Singh et al. (2019), spatial distributions of Qc are dominated by “conical” patterns centered on the seismic station (Fig. 3). These patterns are unlikely geological but could be caused by the form of the model (eq. 3) applied to a single station (Fig. 3). To reduce the sensitivity to the inversion procedure, it is better to return to the quantity actually measured from coda envelopes A(f,t) (eq. 3), which is its logarithmic decrement with respect to time:

[bookmark: EQ_lnAdt]                                          , 	(2)


where  denotes averaging over the coda time window and frequency band centered at the selected frequency fb, such as obtained by evaluating a linear regression of lnA(fb,t). This logarithmic decrement can be written as a combination of some reference (or “background”) model of geometrical spreading with a “temporal attenuation coefficient” (fb) (Morozov 2010a). The temporal attenuation coefficient for coda is analogous to the spatial attenuation coefficient  commonly used for traveling waves (Aki & Richards 2002; sometimes denoted , e.g. Zeng et al. 1991). By taking the reference geometrical spreading in the form , we have

                                         , 	(3)
 and  
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where the frequency-independent term is denoted 
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Morozov (2008) suggested measuring this quantity by direct generalization of eq. (3) and called it the “geometrical attenuation.” If  is measured as shown below, then the corresponding  can be estimated as
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For the conventional selection of 0 = 1 (Aki & Chouet 1975; Singh et al., 2019), the logarithms of amplitudes should decrease approximately linearly with time t, as . For a single seismic event, (fb) derived from figure 3 in Singh et al. (2019) is shown in Fig. 4. As Fig. 4 shows, the negative slopes () are near equal for all fb, which means that  is nearly frequency-independent (similar to Fig. 1). Although such plots are rarely presented in the literature, this appears to be a common observation with seismic coda (Parvez et al. 2008; Morozov 2010a; Langston, personal communication, 2012; Escudero et al. 2016; Jhajhria et al. 2017). Figure 5 shows that the principal contribution to  comes from the frequency-independent term   0.018 s-1, and therefore, taking t  230 s (Fig. 4), eq. (6) gives   5.1. The causes of such variations of  are discussed in subsection 3.3. 
The slope of the linear trend in (fb) (black dashed line in Fig. 5) corresponds to an extremely high Qc  30500. Without evaluating the uncertainty range for this value, it is clear from Fig. 5 that this Qc is indistinguishable from a complete absence of Q-type attenuation. The dominant contribution to (f) comes from , and the total effect of Qc at 14 Hz is only about 8% of . Much stronger variations of (fb) come from the attenuation peaks at about 2 Hz and 11 Hz and a trough near 5 Hz (gray dashed line in Fig. 5). These variations may be due to near-surface resonances beneath the seismic station. These resonances can be included in the receiver site response R(f) in eq. (3).



By contrast to the detailed interpretation above, in a conventional approach to the same data,  is assumed to equal 0 and therefore  is set to be zero, and the resonances are disregarded (Singh et al. 2019). The resulting Qc absorbs all of these arbitrary selections, and as a result, it is found to strongly increase with frequency. Graphically, these conventional  are shown by the slopes of dotted lines in Fig. 5. From these slopes, we can see that  actually represents  (divided by fb selected during data filtering): . Therefore, Qc is proportional to fb by virtue of this derivation (  1 in Fig. 2). Clearly, since all coda-envelope data are contained in the (fb) dependence (thick dashed line in Fig. 5, deriving the Qc for each of its points by connecting it to the coordinate origin (dotted lines) is only a formal mathematical transformation of (fb) with no particular physical meaning.
[bookmark: section_2_2_attenuation_coeffs]2.2. Earth’s attenuation coefficient and Qc


Despite using the same notation, the spatially distributed Qc in Fig. 3 represents a physical property different from the measured Qc discussed in the preceding subsection. The regionalized Qc (Fig. 3) was obtained by Singh et al (2019) by using the back-projection method by Xie & Mitchell (1990) independently at each frequency fb. This back-projection was originally formulated for Lg coda Q (Xie & Mitchel l990), and it represents a tomographic inverse for a forward model assuming that   measured  for a source-receiver pair is an average of a similar in-situ property of the Earth, which we denote :
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In this equation, the integrals are evaluated over an elliptical area S containing all scattering points with total travel times smaller than the maximum time considered within the coda window, weights W(x,y) equal one, and . The inverse of eq. (7) similarly represents  at any point (x,y) as a linear combination of  for source-receiver ellipses covering that point (Xie & Mitchell 1990):
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where n is the number of coda observation and Kn(x,y) is the pseudo-inverse kernel function for nth observation.



Equation (7) with a constant weight within the scattering ellipse is only an ad hoc areal averaging formula, and eq. (8) is its inverse. A number of different integration weights W(x,y) in eq. (7) were proposed, such as by DelPezzo et al. (2016) and Giampiccolo & Tuvèt (2018). These approaches also start by assuming that some scattering and intrinsic Q-factors exist within the subsurface, and by their averaging along single- or multiply-scattered rays within a homogenous half-space, the observed coda Q is predicted. However, as explained in section 1, these models do not explain the basic end-member case of  which is close to reality in the study area (Fig. 5). Thus, as a minimum, a consistent forward model for coda envelopes should include the case of  and consider layered Earth’s structures with different wave modes contributing to the scattering process. The model should also differentiate between site and propagation-path effects, frequency dependences of scattering amplitudes, and spatial distributions of scattering without mixing all of these properties into a Q (Jhahria et al. 2017). In this paper, we do not explore any possible alternatives to eq. (7) further and assume that eq. (8) and the images in Fig. 3 represent some useful frequency-dependent (apparent) quantity . By this notation, we indicate that this quantity is obtained from the observed coda envelopes by using eq. (3) with assumption  = 0 = 1. Let us try representing this quantity in a way independent of this assumption. 

Because of the assumption  = 0 (i.e.,  = 0 in eq. (4)), by multiplying the reported  (Fig. 3) by fb, we obtain (fb) (eq. 4). According to the mapping equation (8), the same relation should apply to the in-situ subsurface properties, and consequently we have
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The model t– with  = 1 in eq. (3) does not accurately match (underestimates) the actual variation of average amplitude within the coda and its error generally increases with t. Therefore,  in eq. (9) contains an uncertainty in the form of a positive drift with t. This drift leads to the regionalized  increasing with distance from the seismic station as seen in Fig. 3. For geologic interpretation, this arbitrary drift should be removed. For simplicity, let us estimate this drift by the coefficients 0 and  of a linear regression
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where r(x,y) is the distance from point (x,y) to the seismic station. By fitting eq. (10) in the least-squared sense for the entire area,  is found and the de-trended value of  is obtained by

                            . 	(11)

This relation represents the requirement that across a sufficiently large area, detrend does not correlate with distance to the station, which appears natural to expect. Safashahi & Morozov (submitted to BSSA) showed that when measuring , this constraint can be included directly in the initial inversion for  for multiple event/station pairs. 
As shown in Figure 6, the spatially de-trended attenuation coefficients lie between about 0.01 to 0.02 s-1 and oscillate with frequency fb. At each frequency, most of these variations correspond to the vicinity of the seismic station, which still suggests that the “footprint” of the source-receiver distribution has not been completely removed. However, spatial variations of detrend at each fb is below 20% (Fig. 6), compared to 100% variation of the apparent Qc at 1 Hz (Fig. 3).
At each surface point (x,y), the attenuation coefficient detrend is close to a constant with some dependence on frequency fb. Similar to eq. (4), the average trend with frequency can be described by a linear regression model with respect to fb:  
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where
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and where  and  are regression coefficients with meanings of the geometrical attenuation and in-situ coda Qc, respectively. Subscripts ‘c’ in these notations indicate that these medium properties still refer to the seismic coda, and they may differ from analogous quantities for body or surface waves. By evaluating linear regressions at every point (x,y), maps of  and  are obtained (Fig. 7). Although these quantities are still empirical, they are better constrained, independent of the selection of G(t) in eq. (3), and therefore much more physical than Q0 or . In particular, in contrast to the original  controlled by the assumed value of 0 and assumptions of Aki’s (1969) model (Fig. 3),  is independent of such assumptions. This quantity is rigorously defined as a coefficient in the Taylor series for (fb) (eq. 13). Similar transformations of frequency-dependent Q observations and interpretations from several areas of seismology were given by Morozov (2008, 2010a, 2010b, 2013).



Thus, instead of eight independent models for apparent Q-factors at each fb (Fig. 3) related by an ad hoc scaling law , we obtain two much more tightly constrained, frequency-independent quantities  and  (Fig. 7). Errors of regression (12): 

                             	(14)
can be interpreted as frequency-dependent coda attenuation (deamplification) factors for points (x,y) (Fig. 8). These quantities could potentially be useful for seismic site characterization.


The images in Fig. 7 and 8 are still affected by the (likely) acquisition footprint discussed above. Removal of this footprint could be a difficult task requiring special measures during the inversion (Safarshahi and Morozov, submitted to BSSA), and it seems impossible without revisiting the raw data. However, the footprints in these images are relatively weak and do not affect the principal conclusions. The geometric attenuation  in the study area is between 0.01 and 0.013 s-1, which corresponds to tectonically active areas but close to the borderline level of  = 0.008 s-1 separating them from stable cratons (Morozov 2008). The values of  also seem to decrease into the interior of the craton west of the seismic station (Fig. 7a). The average crustal attenuation is extremely weak, with the lowest Qc,Earth value of about 5700 (Fig. 7b). Similarly to our observations in section 2, this Qc,Earth should be negligible compared to the frequency-dependent site (de)amplification effects (Fig. 8). Also as expected, site factors show significant variability and increase attenuation near 2 Hz within the basin of Ganga river. Is this true?? Resonances where and at what frequencies?? What else can be said??
2.3. Model for coda amplitudes
Determination of a suitable form of “reference” geometrical spreading for coda waves is a difficult problem, and no universal and unique solution for it likely exists. From the preceding section (eq. 10), a reasonable empirical form of G(t) (additionally dependent on distance from the station r) can be suggested:
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This dependence follows the average trend of frequency-dependent coda amplitudes within the study area. In Fig. 9, this dependence is compared to Aki and Chouet’s (1975)  by taking , where VS is the S-wave velocity (which assumes coda time equal twice the body S-wave time). As described in section 1, the difference of this empirical law from  is overwhelming for Q measurements.

As illustrated by eq. (15), the geometrical spreading for coda cannot be rigorously represented by a single time dependence G(t) as in eq. (3). The coda consists of waves scattered within a broad area surrounding the source and receiver, and the geometrical spreading depends on the entire structure within this area. In particular, the coda depends the source-receiver distance, at least for wider separations between them. This dependence can be seen from the difference between parameters  = 1 modeled in a boundless homogeneous half-space (Aki & Chouet 1975),   2 measured at local distances (Jhajhria et al. 2017), and   5 at near regional distances estimated in subsection 2.1. The geometrical spreading for coda should also depend on the selection of coda start time and window lengths. Note that even at 300–350-km distances, Singh et al. (2019) use the definition of coda start times recommended for local-earthquake studies:  (where tS is the direct S-wave time) and not definitions by certain group velocity, such as 3.15 km/s  by Xie & Mitchell (1990).



To understand the strong sensitivity of  to the source-receiver distance and other parameters of the data, note that the geometrical-spreading functions have different meanings for traveling waves and codas. For a traveling wave (body or surface), the purpose of the geometric spreading function is to describe its amplitude at time t, such as represented by factor  in eq. (3). By contrast, for coda, the amplitude itself is unimportant, and only its time derivative  is used (eq. 2). For a power law , these two functions are closely related as 
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However, this relation cannot be used for seismic coda, in which the local variations of amplitudes are not simply proportional to G(t), and they do not simply decrease with t. Large values of  derived from  in coda measurements refer to such local scattered-wave amplitude variations (as in eq. 16), and they should not be replaced with simplistic G(t) models inferred for body waves. Numerical modeling (Morozov 2010a) shows that power-law wave amplitude decays are close to the t– form (still with  > 1) only to about 50 to 100-km distances. Beyond these distances, amplitude variations become non-monotonous and complex. Note that unlike , the attenuation coefficient  appears to always attain stable values ranging from zero to about 0.1 s-1, with consistent correlations with tectonic types of the crust (Morozov 2008, 2010a, 2010b). This is because  is always a differential quantity evaluated locally, similar to  above.
Although the geometrical spreading for coda is not a simple function of time, the model of subsection 2.2 allows writing it for each earthquake/station pair as an integral over the interior of the scattering ellipse (eqs. 7 and 12):

[bookmark: EQ_G_final]                              . 	(17)
This empirical expression should explain coda amplitudes in the absence of attenuation, and therefore it can facilitate measurement of Q when moderate attenuation is present. The complete location-, time-, and frequency-dependent model replacing eq. (3) is

[bookmark: EQ_A_final]                 . 	(18)
where G(t) is the geometrical spreading for the region in eq.  (17).
4. Discussion
Combined with the background level of  = 0, quantity Earth derived in this paper describes the first-order effects of the Earth’s structure causing spatial variations of frequency-independent amplitudes and ground-motion amplification: geometrical spreading, major reflectors, velocity gradients, impedance contrasts, and scattering. As noted by Morozov (2008), the values of  quantitatively correlate with tectonic types, with  < 0.008 s-1 (when evaluated by using the background of 0 = 1) observed for stable tectonic areas, and larger values up to about 0.1 s-1 found in areas of active tectonics. This difference was explained by higher seismic velocities, lower velocity gradients, and lower average reflectivity within stable areas. 

Similar to Earth, the inverse coda Q () has a simple physical meaning of the frequency-dependent part of attenuation. The values of Qc,Earth are very large (~104) (Fig. 7b) and likely are within the measurement error. Thus, the Q-type crustal attenuation within the study area is weak, and elastic-wave phenomena are dominant, as in our end-member model in Fig. 1.

The model in eqs. (17) and (18) is accurate, unbiased toward the frequency-dependent Q and radial variations of parameters, and it should therefore be reliable in practical coda measurements. At the same time, the model is limited because it represents only a re-interpretation of the results of the study by Sing et al. (2019). In particular, the model contains all limitations of the heuristic averaging relations for Q-1 in eq. (7). More physically rigorous models directly explaining coda amplitudes A(f,t) or their logarithmic decrements  are needed. Such models could follow the single- or multiple-scattering energy transport theories (e.g., Zeng et al. 1991), or numerical waveform modeling (Fehr et al., 2019; Morozov et al. 2008). Consequently the integrals over area S in eqs. (17) and (18) would need to be replaced with integrations over the appropriate forward- and scattered-ray paths and over the scattering areas. These integrals should be evaluated using realistic crustal models, wavefront shapes, and distributions of scatterers. Effective cross-sections (coefficients) of scattering are likely frequency-dependent, such as resonances occurring in the near surface. All of these aspects of the deterministic Earth’s structure require adequate representations in the model. The subsurface property c,Earth discussed in this paper could form the basis of such a complete model of coda envelopes.
5. Conclusions
The frequency-dependent coda Q results by Singh et al. (2019) for the eastern Indian Shield are reinterpreted by using two new properties of the Earth’s subsurface: the geometrical attenuation denoted  and an alternate (effective) Q-factor. Both of these parameters are frequency-independent, which makes these quantities better constrained and easier to compare for different geographic areas. The inverted level of   0.010 to 0.013 s-1 is similar to those in other areas of active tectonics around the world. The effective Qc is above 5000 and appears to be below the detection level. In addition to  and effective Qc, maps of frequency-dependent and spatially-variant attenuation (coda deamplification) are obtained. Effects of these resonances on coda spectra also exceed those of the effective coda Qc. Thus, coda amplitudes in this study area are principally determined by the structure of the crust and not by Q-type (intrinsic or small-scale random scattering) attenuation effects. This observation is corroborated by observations of raw spectral amplitudes of the coda, in which the logarithmic decrements of coda envelopes are nearly frequency-independent. 
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Figures

[bookmark: FIG_coda_in_layer]Figure 1. Schematic frequency-independent coda envelope A(t) (eq. 1) produced by reflections within a single-layer crust or sedimentary basin. Triangle is the seismic station, star is the source, near-surface scatterers for different orders of multiple reflections are labeled ‘S’. Source waveforms ae schematically modeled by Gabor wavelets.




[bookmark: FIG_Q_eta_tradeoff]Figure 2. Trade-off between parameters Q0 and  (diamonds) for 30-s coda window in the model by Singh et al. (2019; part of their figure 13). Nonphysical range of parameter  > 1 is highlighted by gray background.



Make these images in gray scale, 
maybe with only two color bars for 1-5 and 8-14 Hz frequencies
[bookmark: FIG_Qc_models]Figure 3. Maps of Qc by Singh et al. (2019; their figure 6) within eight frequency bands (labels). Triangle indicates the Dhanbad seismic station used for deriving this model. For each frequency, note the systematic increases of Qc with distance from the station.





[bookmark: FIG_lnA_decrements]Figure 4. Spherical geometrical spreading corrected logarithms of coda amplitudes  (with 0 = 1) for one event (solid lines; derived from figure 3 in Singh et al. 2019). Arbitrary constants C are added in order to combine all frequency bands in one plot. Gray dashed lines show linear regressions of a(t) by using least-squares regressions. Frequency bands and the values of  (slopes of regression lines) are listed on the right. 



[bookmark: FIG_chi_one_event]Figure 5. Frequency dependence of the temporal attenuation coefficient for coda. Diamonds are the values  listed in Fig. 4, and thick gray dashed line is the interpreted (f) with two peaks. Black dashed is shows a linear approximation (eq. 4), with intercept   0.018 s-1 and labeled Q  30500 labeled. Dotted lines with labels Qc show the slopes (assuming  = 0) used by Singh et al. (2019) to estimate coda Q values (labels).





Make these images in gray scale with one common color bar 
[bookmark: FIG_chi_map]Figure 6. Maps of attenuation coefficients  within eight frequency bands (labels), with regional trend with distance removed. Triangle shows the seismic station used in this study. Note that the values of  are close at all frequencies, indicating frequency-independent coda envelopes.
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[bookmark: FIG_gamma_result]Figure 7. Coda attenuation model derived from  maps in Fig. 6: a) geometrical (frequency-independent) attenuation; b) inverse effective Q-factor. Triangle shows the location of the seismic station.
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[bookmark: FIG_amplfication]Figure 8. Coda amplification factors for frequencies used in Qc measurements (labels).







[bookmark: FIG_geometric_spreading]Figure 9. Logarithms of theoretical geometrical spreading  assumed in the model by Aki & Chouet (1975) (dashed line) and empirical spreading estimated from the data by Singh et al. (2019) (solid line).
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