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ABSTRACT 

This dissertation addresses several important aspects of observational earthquake 

seismology: 1) methods for data management and processing large datasets, 2) analysis of seismic 

wave propagation at local to regional (up to about 700 km) source-receiver distances, 3) analysis 

of seismic coda, and 4) critical re-evaluation of the fundamental problem of seismic wave 

attenuation and measurement of the seismic “quality” factor (Q). These studies are carried out 

using new and previously analyzed earthquake data from Iran.  

In each of the four application areas above, innovative methods are used and significant 

new results are obtained. First, for efficient managing and processing of large earthquake datasets, 

I use a flexible, exploration-style open-source seismic processing system. Custom and problem-

oriented scripts using Matlab or Octave software are included as tools in this processing system, 

allowing interactive and non-interactive analysis of earthquake records. In the second application, 

I note that the existing models for body-wave amplitudes are hampered by several difficulties, 

such as inaccurate accounts for the contributions of source and receiver effects and insufficient 

accuracy at the transition between the local and regional distances. Finding a reliable model for 

body-wave amplitudes is critical for many studies. To achieve such a reliable model, I use a joint 

inversion method based on a new parameterization of seismic attenuation and additional 

constraints on model quality. The joint inversion provides a correct model for geometrical 

spreading and attenuation. The geometrical-spreading model reveals the existence of an increase 

of body S wave amplitudes from about 90–115 km from the source. Outside of this distance range, 

amplitude decays are significantly faster than usually assumed in similar models. 

Third, in two chapters of this dissertation devoted to coda studies, I consider the concept 

of the frequency-dependent coda Q (Qc). Although this quantity is usually attributed to the 

subsurface, I argue that because of subjective selections of model assumptions and algorithms, Qc 

cannot be rigorously viewed as a function of surface or subsurface points. Also, frequency 

dependence of the measured Qc strongly trades off with the subjectively selected parameters of the 

measurement procedure. To mitigate these problems, instead of mapping a hypothetical in-situ Qc, 

I obtain maps of physically justified parameters of the subsurface: exponents of geometrical 

spreading (denoted ) and effective attenuation (denoted qe). For the areas of this study, parameter 



iii 

 

 range from 0.005 s-1 to 0.05 s-1 (within Zagros area of Iran) and 0.010 s-1 to 0.013 s-1 (within the 

eastern Indian Shield).  

Finally, from both body- and coda-wave studies, I derive estimates of seismic attenuation 

within the study areas. In two areas of Iran and within the Indian Shield, weak attenuation with Q-

factors of 2000–6000 or higher is found. In particular, coda envelopes can be explained by wave 

reverberations within elastic crustal structures, and the Q-type attenuation appears undetectable. 
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CHAPTER 1      

INTRODUCTION 

The structure and physical properties of the Earth can be understood by the analysis of 

seismic waves produced by earthquakes. Quantitative measurements of the various properties of 

seismic wavefields and their interpretation are among the key tools for estimating and mitigating 

seismic hazard, understanding the physical properties and structure of the Earth, monitoring 

mining hazards, and nuclear weapons tests. This broad variety of goals is achieved by developing 

physical and mathematical models for the travel times, amplitudes, and waveforms of various types 

of seismic waves and quantitative correlations of these predictions with observations. Thus, 

accurate mathematical models capturing the essential physical phenomena, and their inversion for 

the Earth’s properties are most important for achieving these goals.  

In this dissertation, I describe new contributions to several groups of quantitative 

seismological research methods, including inversions for high-frequency spectral decays (the so-

called “kappa” ()), analysis of coda mapping methodology, earthquake relocation, and processing 

of large datasets. These studies are carried out in application to seismic datasets from two areas in 

Iran (Rigan and Zagros), and also in a re-interpretation of a recently published study of the East 

Indian Shield by Singh et al. (2019). Further in this chapter, I describe the main research questions 

addressed in this work and its specific objectives. 

1.1. Research Questions 

In observational seismology, several types of waves are used for characterizing different 

depth ranges and types of structures within the Earth. Body waves (seismic waves moving through 

the interior of the Earth) recorded at distance ranges from several meters to thousands of kilometers 

are generally characterized by higher frequencies, and their travel times are used for constraining 

the seismic velocity structure. In particular, body waves are the basis of reflection seismology. 

Body waves are often followed by coda waves, which consist of long wave trains of scattered 

arrivals approximately exponentially decaying with time. The physical mechanisms of these waves 

are still not well understood, nevertheless, they represent a powerful and convenient tool for 
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characterizing the Earth’s crust beneath the seismic stations (Aki, 1969). Surface waves are 

characterized by effective propagation within a limited range of depths (meters to hundreds of 

kilometers), and they are broadly used for constraining layered structures. Free oscillations of the 

Earth represent the extreme long-wavelength type of surface waves, and they are used for 

constraining the structure of the Earth’s core, and in particular its seismic-wave attenuation. 

Finally, in the recent about twenty years, seismologists started effectively using seismic noise 

waves (microtremor and microseisms) for producing analogues of body-wave and surface-wave 

imaging. 

Of the different types of seismic waves described above, in this dissertation, I focus only 

on the higher-frequency body and coda waves at local to regional distance ranges. The term “local” 

refers to the separations between the earthquake source and receiver by less than the typical 

distance of the so-called “critical” reflection from the base of the crust, which is about 90–100 km. 

Larger distances beyond about 110–150 km and to about 1000 km are called “regional”. These 

source-receiver distance ranges are represented in all datasets of this study. Beyond the regional 

distance range, the “teleseismic” range begins. 

In the following subsections, I briefly pose the key research questions of this dissertation. 

I start with three of the more fundamental questions related to the methods of data measurement 

and inversion, and finish with three relatively common topics related to earthquake data analysis. 

Nevertheless, these topics also include significant research questions that are very important for 

the present project. 

1.1.1. Standard models for body-wave amplitudes 

For body and coda waves within the local to regional distance ranges, there are several 

general research questions addressed in this dissertation. First, decomposition of the spectral 

amplitudes of body waves into the contributions of the source, receiver, and path-related effects 

still presents substantial difficulties. Although a number of travel-time- (t) and frequency- (f) 

dependent models for seismic-wave amplitude A(t,f) have been proposed, none of them achieve 

sufficient accuracy within both the local and regional distance ranges (Atkinson, 2012) and 

particularly across the transition between these ranges. In this dissertation, I identify four general 

reasons for this difficulty of obtaining consistent and accurate A(t,f) models:  
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1) Usually insufficiently parameterized frequency-independent variation of amplitudes 

(Morozov, 2008b, 2010a). This lack of parameterization exists at both the local and 

regional distance ranges, but as shown in this dissertation, it is particularly strong in 

the transition between them. 

2) The use of a frequency-dependent Q(f) for modeling the travel-time (denoted t below) 

and frequency (f) dependent amplitudes for a seismic wave: 

( ) ( )1

0, expA t f A Q ft −= − . This hypothesis of the “frequency-dependent Q-factor” 

is very broad in seismology, and it has been debated by Morozov (2008b, 2010a, and 

other papers) for some time and from multiple points of view. Despite its broad 

acceptance, the frequency-dependent Q has a limited physical meaning of only an 

apparent (measurement-specific) quantity (Morozov and Baharvand Ahmadi, 2015). 

Even if taken as a pure mathematical (phenomenological, or empirical) law, the 

above dependence with a single Q(f) does not allow accurate matching of the 

observed A(t,f) at all t. The data are usually dominated by regional distance ranges, 

which results in poor A(t,f) fitting at local distances.  

3) When modeling A(t,f), all relevant physical factors such as the source and receiver 

coupling factors, geometrical spreading, the corresponding high-frequency source- 

and receiver-site parameters (often called “kappa”), and the Q need to be inverted for 

simultaneously. This requirement (implemented in this dissertation) also represents 

a significant change compared to today’s standard practice. In the existing 

approaches, the geometrical spreading is usually not analyzed, and the inversion 

starts with the frequency-dependent Q. 

4) In the existing methods for A(t,f) data fitting, it is rarely noted that the resulting 

amplitude errors vary systematically with travel time (t) and frequency (f). Such error 

trends are unacceptable in data inversion, and they need to be corrected by 

modification of the data-fitting methods.  Contrary to what is commonly assumed, 

least-squares or similar fitting of data alone does not guarantee a unique or even a 

correct solution. Thus, inverse methods themselves need to be carefully revised for 

the A(t,f) fitting problem. 
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Solution of the above problems and finding a reliable model for body-wave amplitudes 

A(t,f) is of key importance for many applications: measurement of seismic attenuation, inverting 

for physical properties of passive and active sources, determining the structure and physical state 

of the Earth, and for locating zones of crustal heterogeneities within the subsurface. In this 

dissertation, I refer to this problem as formulating a “standard model” for body-wave amplitudes 

and examine it on the detailed example of S waves in the study area.  

1.1.2. Analysis of seismic coda 

Another very general problem of time- and frequency-dependent amplitudes A(t,f) 

considered in this dissertation is related to coda amplitudes. Since the pioneering studies of seismic 

codas by Aki (1969), the amplitudes A(t,f) themselves are actually not analyzed, but only their 

logarithmic decrements dlnA(t,f)/dt are interpreted in terms of a phenomenological property of the 

crust called the frequency-dependent “coda Q” (denoted Qc). The observed Qc is further explained 

by similar quality-factor properties of the Earth, such as the S-wave Q, intrinsic, and scattering Q-

factors. Spatial variations of these Q-factors are mapped and correlated with geological structures, 

zones of heterogeneity and increased temperatures, or zones containing partial melts or fluids 

within the Earth’s crust.  

However, as shown in this dissertation, all of the traditional Q-factors are still 

phenomenological attributes, which actually cannot be rigorously associated with spatial locations. 

To obtain a rigorous model of coda amplitudes and derive rigorous physical properties of the 

subsurface, the complete coda amplitudes A(t,f) need to be inverted. The mapped properties should 

be carefully differentiated from the observed ones. This differentiation is somewhat complicated 

in the existing Q models, and it is investigated in this dissertation. 

1.1.3. Physical meanings and measurement of the seismological Q 

The analysis of body-wave and particularly coda amplitudes leads us to the question of the 

physical meaning and properties of the Q-factor for certain materials, structures (crust, layers, etc.), 

or of the whole Earth. This question is extremely broad and important but poorly understood in 

seismology. The notation ‘Q’ and the common use of the term “attenuation” in physics usually 

refer to amplitude decays A(t,f) in some oscillatory processes, in which the relative mechanical-
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energy loss is proportional to the number of oscillation cycles. In seismology, this proportionality 

is represented by using the inverse Q-factor in the time-distance relation for a decaying harmonic 

wave, similar to the A(t,f) relation mentioned above: 

( ) 1

0, exp 2 exp
x x

w t x A fi t Q f
c c

  −    
= − − −    

    
, where x is the observation distance, and  c is the 

phase velocity of the wave (Aki and Richards, 2002). Thus, Q-1 represents the characteristic 

exponential decrease of the observed wave amplitude with the travel distance x and frequency f.  

However, the physical meanings and frequency dependencies of c(f) and Q(f) are poorly 

understood (Morozov and Baharvand Ahmadi, 2015). The definitions of these Q-factors and most 

of their measurement procedures in observational seismology rely on subjective assumptions about 

some “reference” geometrical spreading (Morozov, 2008b). Physical interpretations of Qc are only 

supported by theoretical models of scattering on small random heterogeneities in macroscopically-

homogenous media (e.g., Fehler and Sato, 2003). These models are extremely simple and 

disregard even the key elastic structures of the study areas, such as the crust-mantle boundary, 

crustal layering, and velocity gradients. Morozov (2008b, 2010a) showed that by removing these 

assumptions, frequency dependencies Q(f) often change from nearly proportional to frequency to 

frequency-independent, and the values of Q at f = 1 Hz typically  increase by as much as 20–30 

times. 

1.1.4. Relocation 

In addition to the “advanced” topics above, the data analysis in this dissertation addresses 

several research goals that are well-established and relatively common for local and/or regional 

seismic studies. Nevertheless, these steps of data analysis require significant efforts and provide 

key information for seismic characterization of the study areas.  

Of such relatively standard data analysis, in this dissertation, I present results of event 

relocation of Zagros area. Relocation allows obtaining more accurate locations of the earthquakes 

recorded in the datasets, which also helps improving any further steps of data analysis. Therefore, 

the achieved results of relocation provides significant information about how the seismicity 

distributes in the Zagros area. 
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1.1.5. Processing of large earthquake datasets 

With large and rapidly growing volumes of data collected by today’s seismographic 

networks, efficient procedures for their analysis have become a significant issue. For example, the 

Zagros dataset of this study was obtained in the form of over 250,000 files recording nearly 1300 

earthquakes at 62 stations. These data are arranged in multiple multi-level directories on a file 

system. One well-known difficulty of this dataset structure is that if it is done without proper 

precautions, its simple listing in Unix often returns error “Argument list too long”. Each of the 

files contains a single-channel recording of one seismic event (usually an earthquake) from a 

certain station. Lists of earthquakes and stations, and files containing station responses are 

provided separately, and all of these data need to be tied together with the dataset. Finally, all of 

these files need to be looked at in various sequences and combinations, and by using various types 

of transformations and displays. 

In seismological research, there is currently no universal and broadly available software 

that would allow efficient management of such amounts and complex structures of data. Thus, 

development of a robust data-management approach was one of the first challenges of the present 

project. As described in this dissertation, this task was achieved by combining a high-throughput, 

seismic-exploration style open-source processing system (IGeoS, Morozov, 2008a) with custom 

scripts using Matlab or Octave software. 

1.2. Specific Objectives and Contributions 

From the preceding section, the research scope of this project encompasses several 

significant problems in earthquake seismology ranging from the basic physics of the Earth’s 

interior to modeling seismic wave propagation to inversion, seismological imaging and data 

management. In a brief summary, the specific objectives and expected contributions of this study 

are as follows: 

1) Developing a procedure for efficiently managing large earthquake datasets and 

carrying out versatile data analysis; 

2) Performing relocation of seismic events; 
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3) Proposing improvements to inversion of geophysical data using additional model-

quality control and additional constraints; 

4) Developing a joint inversion method for obtaining “standard models” for seismic 

body wave amplitudes A(t,f). This model should provide good and uniform S-wave 

data fitting at local and regional distances, and it should also be applicable to other 

types of seismic waves and other regions. 

5) Together with the standard model, producing more accurate models for geometrical 

spreading and kappa effects, source and receiver coupling factors, and also estimates 

of the Q-factor inverted for the crust; 

6) Performing rigorous statistical analysis of the uncertainties of the standard wave-

amplitude model; 

7) Study of the regionalization (mapping) methods for seismic coda properties. This 

study will be done for Zagros area, with a comparison to the earlier results from the 

East Indian Shield (Singh et al., 2019).  

8) Coda mapping by interpolation and mapping of scatterers; 

9) Analysis of coda mapping methodology and interpretation of the physical meaning 

of coda maps.  

1.3. Data and Methods 

The datasets of this study will be described in chapter 2, and here, I only outline them. The 

main dataset is a large dataset from the area of Zagros Mountains in Iran, provided by the Iranian 

Seismological Center. These data were acquired in 2016-17 and consists of over 250,000 data files 

recorded from about 1300 earthquakes on 62 seismic three-component stations (short, medium- 

and broad-band).  

In addition to the large Zagros dataset, I also use a small dataset from an adjacent area of 

southeastern Iran (Rigan). The small dataset allows detailed analysis of the inversion procedures 

and results, and it reveals model features which may be difficult to notice in a large and complex 

dataset. Rigan dataset consists of 31 records from two Rigan area earthquakes with magnitudes 

Mw ≈ 6.5 and Mw ≈ 6.2 (magnitudes reported by the U.S. Geological Survey) recorded in 2010 

and 2011 by the Iranian Strong Motion Network. This dataset was used in my previous study 
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(Safarshahi et al., 2013), and in the present dissertation, it is completely re-interpreted with the 

goal of obtaining a much more accurate standard model for body S-wave amplitudes. 

Also, in the coda regionalization study (chapter 6 of this dissertation), I employ yet another 

single-station dataset from eastern India. However, this part of the study is purely methodological 

and carried out by re-interpreting the coda Q (Qc) measurements by Singh et al. (2019). Because I 

have no access to the original data by Singh et al. (2019), I will not describe these data in this 

dissertation and only discuss the different interpretations of Qc measurements and their 

implications.  

The general methodology of this study can be subdivided into three parts:  

1) Organization of the data and its analysis; 

2) Physical and mathematical approaches to describing the seismic amplitudes and 

attenuation; 

3) Inversion methods. 

 Regarding the data organization and handling in the computer (methodology 1) above), 

analysis of large earthquake datasets such as the Zagros dataset often presents significant 

challenges. Data analysis can be complex and requires combing different types of data from 

multiple sources, standard and customized types of data filtering, and multi-step imaging with 

interpretation procedures. The analysis is often elaborate and requires extraction of various subsets 

of the data, with numerous approaches to visualization. Combinations of “batch” processing 

(standalone processing of large data volumes) and interactive analysis of small subsets are needed. 

Use of unconventional inversion methods require creation of new software and algorithms. These 

requirements determine the computer methods used in this study.   

In seismological research, seismic data are commonly presented by multiple single-record 

files and processed by specialized packages such as SAC, SEISAN, or specialized subroutine 

libraries used with Matlab, Python, or similar high-level interpreted computer languages. In this 

dissertation, I use an efficient approach to earthquake data processing, based on the software 

system called IGeoS (Morozov, 2008a). This package is a Unix-based, high-throughput and 

modular seismic processing system, so that most data-handling operations such as sorting, 

filtering, and maintaining any number of record headers (metadata) is performed by the system 
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automatically. To include customizable processing of earthquake data, IGeoS includes tools 

allowing execution of arbitrary scripts by invoking Octave (or Matlab), Generic Mapping Tools 

(GMT), and other software tools.The IGeoS system natively supports multicomponent, variable-

length records with unlimited headers (metadata), and its tools provide essentially unlimited 

options for input/output, flexible data sorting, access to databases, several types of displays, and 

numerous tools for single- and multichannel signal filtering and imaging. All secondary analysis 

of the data and inversion is performed by Octave, and the resulting databases are stored in the form 

of Octave workspaces. Finally, final high-quality plotting is performed by using GMT programs 

under Unix. 

The methodology of data analysis in this project also uses many approaches standard in 

earthquake and exploration seismology. In particular, a large portion of the time was spent on 

interactive editing and quality control of the data, picking P- and S-wave travel   times, examination 

of coda windows, and examination of ground motion in the first arrivals, and other interactive or 

semi-interactive data processing. 

 With regard to the physical and mathematical methodologies 2), this dissertation makes 

several significant contributions. I introduce a new model for seismic spectral amplitude A(t,f), 

which resolves difficulties the long-standing issue of under-parameterization of geometrical 

spreading and over-parameterization of Q (section 1.1; Safarshahi and Morozov, 2021a) and 

achieves accurate data fitting at all distance ranges. The approach is general and applies to time-

frequency dependencies used in many studies. Another major contribution is the first application 

of the new model of “geometrical attenuation” and the frequency-independent Q (Morozov, 2008b, 

2010a) to new seismic data. This model applies to numerous studies of studies attenuation, and it 

offers a new view on the popular concept of the frequency-dependent Q. 

An important general methodological observation important for many attenuation studies 

is made in chapters 5, 6 and 7. As argued there, the Q is only an apparent quantity, which means 

that this quantity can only be defined for the observed wave amplitudes, but it cannot be rigorously 

attributed to the Earth’s subsurface. By careful differentiation between the true physical and 

apparent properties, physically-consistent models of the subsurface are obtained. 

Regarding the inversion methodology 3) above, the dissertation also attempts 

reconsidering the paradigm established in the current seismological research. In the study of 

https://www.thesaurus.com/browse/essentially
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standard models, I show that traditional inversions based on minimizing the data misfits only is 

insufficient, and additional constraints are required. These constraints are imposed in the form of 

exact equations, which is again different from the usual ways in which, for example, smoothness 

constraints are used in existing methods. To evaluate model uncertainties, statistical bootstrapping 

of the datasets is used in several cases. In this dissertation, an original modification of inversion 

methods is also proposed (chapter 5). 

1.4. Structure of this Dissertation 

This dissertation is based on several recent publications (Morozov and Safarshahi, 2020; 

Safarshahi and Morozov, 2021a, 2021b, and submitted). Each of these papers is included as a 

chapter, and additional chapters are added for introduction. In the present chapter 1, I give a general 

introduction to this dissertation, pose the critical research questions, summarize the specific 

objectives, and outline the general approach and the significance of this research. In chapter 2, I 

overview the data and the relevant geology of the study areas. In the subsequent chapters, I present 

the different aspects of data analysis and results of this study: 

1) In chapter 3, I describe the existing approaches to seismic data analysis for similar 

(large) earthquake datasets and present the approach used for Zagros dataset of this 

study. In this chapter, I also illustrate the quality of the data and the travel time picks 

made in them. 

2) In chapter 4, I perform relocation of seismic events and adjustment of their origin 

times by using picked P-wave travel times. This is a preliminary inversion procedure, 

which is important for subsequent analysis, such as the travel-time tomography. This 

procedure also gives important geological information, such as the start times of the 

earthquake ruptures and their improved locations.  

3) In chapter 5, I invert the Rigan-area seismic data for an improved “standard model” 

for time- and frequency dependent amplitudes of body S waves.   

4) In chapters 6, and 7, I evaluate the characters of seismic codas from two different 

areas. In both cases, I show that coda amplitude envelopes are nearly independent of 

frequency and are likely caused by mostly elastic reverberations. In chapter 6, this is 
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shown by re-interpreting Qc results from a paper by Singh et al. (2019), and in chapter 

7, this observation is derived from the Zagros dataset of this study.  

Finally, in chapter 8, I recap and integrate the most significant results of this dissertation 

and suggest several directions for future research.
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CHAPTER 2    

DATA AND STUDY AREAS 

This chapter gives an overview of the study areas, their geology, and the available 

earthquake seismic datasets. Most of the work in this dissertation is done for Iran, but in chapter 6, 

I also consider an adjacent area of the eastern Indian Shield. The Indian Shield dataset will be 

described in that chapter. 

Parts of the descriptions of the seismic datasets and geology of the study areas are based 

on the following papers:  

• Safarshahi, M., Rezapour, M., Hamzehloo, H. (2013). Stochastic finite fault modeling of 

ground motion for the 2010 Rigan earthquake, southeastern Iran. Bulletin of the 

Seismological Society of America, 103, 223–235, DOI: 10.1785/0120120027. 

• Safarshahi, M., and Morozov, I. B.  (2021a). Robust empirical time-frequency relations for 

seismic spectral amplitudes, part 1: Application to regional S waves in southeastern Iran. 

Bulletin of the Seismological Society of America, 111, 173-192, DOI: 

10.1785/0120200172 

The copyrights for these papers belong to the Seismological Society of America, which 

allows authors to use their papers in their dissertations. The texts were modified and reformatted 

for inclusion in this dissertation. My contributions to the papers consisted in preparing and 

proccessing the data, modeling, providing codes, interpretation and writing. 

2.1. Introduction: Wave Types Used in this Study 

An earthquake generates multiple seismic waves that propagate through the Earth and are 

recorded by seismic instruments. The different waves are differentiated by the mechanisms of their 

generation, propagation paths and styles, polarizations, and conditions (such as frequencies, 

distances) at which they can be recorded. According to the propagation paths, seismic waves are 

broadly differentiated into “body” waves traveling through the bulk of Earth, surface waves 
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propagating in the vicinity of the surface, and guided waves, which may propagate within complex 

waveguides formed within the Earth’s crust and mantle.  

Each of the seismic waves usually has a range of characteristic velocities and a pattern of 

ground movement by which it is recognized in the recorded seismograms. For example, the key 

waves used in most seismic studies are the “primary” (denoted P) and “secondary” waves 

(denoted S) (Figure 2.1). Body P waves are waves of volumetric (compressional) deformation, and 

they are characterized by relatively fast velocities and particle movement in the direction of 

propagation. By contrast, S waves are formed by shear deformation, and therefore they are slower 

than P waves and arrive later in the seismograms (green seismogram in Figure 2.1). Surface waves 

represent combinations of P and S waves which exist only within the near surface (Figure 2.1). 

The depth of penetration for surface waves depends on their frequency, and it ranges broadly from 

about 1 m to 1000 km. Based on these basic wave types, numerous more complex wave types are 

created by their refractions, reflections and mutual transformations on various boundaries, and 

within the weathered near surface zone (grey in Figure 2.1). These waves are sensitive to the to 

variation of seismic velocities, discontinuities, and other geological structures, and they are most 

important for seismic interpretation.  In the following, I describe some of these waves used in this 

dissertation (Figure 2.1). 

 

Figure 2.1. Schematic illustration of seismic waves within the Earth’s crust and uppermost mantle. 



 

14 

 

According to the IASPEI (International Association of Seismology and Physics of the 

Earth’s Interior), a standard notation of seismic phases consisting of pairs of upper and lower-case 

characters. The phases considered in this dissertation are those commonly recorded in regional-

distance (i.e., up to about 1000 km from the source) seismic investigations, which are denoted Pg, 

Sg, Pn, Sn, Lg, and “coda”. Properties of these waves are briefly described in the following 

paragraphs. 

Pg waves are the P waves propagating within the Earth’s crust (with letter ‘g’ referring to 

the “granitic” crust) at average velocity around 6 km/s. This wave is observed from near zero to 

about 100-150-km distances. At larger distances, the Pg wave train is continued by multiple P-

wave reflections within the crust. Among these reflections, the P-wave reflection from the base of 

the crust (called the Mohorovičić, or “Moho” discontinuity) is denoted PmP. This complex and 

reverberatory wave train propagates with group velocity of approximately 5.8 km/s.  

Analogously to Pg, Sg waves travel within the crust, and at larger distances, Sg is extended 

by a superposition of multiple SmS reflections and other S-wave reverberations and conversions 

between P and S waves within the crustal waveguide. At larger distances, the Sg wave is 

conventionally designated Lg to represent its “long-range” character. The Sg/Lg wave is usually 

recognised as a strong and reverberatory package of transversely polarized ground motions 

traveling with a group velocity between 3.1 to 3.6 km/s (Figure 2.1). Due to the shearing 

mechanism of the earthquake source (called “double-couple”), Sg/Lg waves are often the strongest 

in higher-frequency seismic records at regional distances, such as used in this dissertation. In 

chapter 5, I use the amplitudes of S waves to measure the geometrical-spreading and attenuation 

properties of the crust. 

Mantle velocities and structure are characterized by using the Pn and Sn waves, which are 

body P and S waves refracted (so-called head waves) on the Moho discontinuity (Figure 2.1). Pn 

waves travel with velocities near 8 km/s and are the fastest waves at these distances. Because these 

waves arrive before any other waves (and thus forming the “first arrivals”), these waves are 

generally easily detectable and most useful for source location (chapter 4) and P-wave velocity 

tomography. By contrast, mantle S-wave refractions (Sn) are slower than Pn and Pg. Because Sn 

waves arrive in the background of the preceding P waves, they are often difficult to identify. 
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However, when picking seismic arrivals (chapter 3), I made several attempts to identify Sn in the 

data. 

Another wave type broadly used in seismology and in this dissertation (chapters 6, and 7) 

is the earthquake coda (Figure 2.1). Coda waves represent the low-amplitude, exponentially 

decaying wavefields recorded much later than all primary arrivals. Because of their late times, 

codas are formed by superpositions of numerous waves of all types scattered from a large area 

surrounding the seismic station (Figure 2.1). Despite its extremely complex composition, codas 

have relatively simple (near-exponential) shapes in which most of the detail of the source and 

receiver are averaged out (Aki, 1969). Therefore, codas are often viewed as a simple way for 

characterising the averaged properties of the crust beneath and around the seismic station 

(Figure 2.1). Because the S waves are dominant within the crust and there also exist two S-wave 

modes (polarizations) per one P-wave mode, it is generally believed that the coda consists of 

predominantly S waves.  

There is no universal agreement about how the coda is generated. Current coda models 

vary from uniformly-distributed, random, single scattering within the entire crust and parts of the 

uppermost mantle (Aki and Chouet, 1975) to multiple scattering (Shapiro and Treitel, 1997) and 

further to non-uniform scattering occurring within the shallow crust and involving surface waves 

(Figure 2.1; Morozov, 2011b).   

Because coda represents no specific wave arrival, its start and end times are selected by 

convention, and in principle, these times should not affect the measurements. In practice, the coda 

time window is empirically estimated by the time larger than twice of the S-wave travel time after 

S-wave arrival time (Aki, 1969), so that both the source and receiver are located within the 

scattering area. However, at regional distances (more than about 100-150 km), this rule gives long 

times at which coda amplitudes become too low. Therefore, Lg coda time windows are empirically 

defined as starting at lag times corresponding to group velocity 2.6 km/s, and with fixed lengths 

such as 40 seconds (Lacombe et al., 2003).  

As summarized above, the different seismic waves contain valuable information about the 

interior structure of the Earth, and they are recorded by modern seismographs (red triangle in 

Figure 2.1). Each seismogram recorded by a seismograph represents the time series of the three 
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components of ground motion (horizontal and vertical movements) for a time period sufficient for 

capturing all seismic waves of interest and sampled at a sufficiently short time interval 

(Figure 2.2). The vertical component is usually directed downward, and the horizontal components 

oriented in the north-south and the east-west directions. The time series (waveforms) contain 

valuable information that can be used for a variety of seismological studies, such as finding the 

precise time of onset and location of the earthquake rupture, estimating the mechanism of the 

earthquake, analysing spectral amplitudes of different waves, and other.  

 

Figure 2.2. Two three-component seismograms from station ABH1. Source magnitudes (Mb), 

distances (dist), back-azimuths (baz), depths (d), and channel components are given in the labels. 
Vertical bars indicate the times of several types of seismic waves identified in the records. The 

horizontal axis is the “reduced time”, which is the time of “reference” arrival from the source with 

velocity of 8 km/s. 

2.2. Seismic Datasets 

In this dissertation, I use two earthquake seismic datasets described in the following 

subsections. Similar to data from many other experiments, the datasets consist of a large number 

of files in several formats. Here, I start by briefly summarizing the general structure of modern 

seismological datasets based on the information from the Incorporated Research Institutions for 
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Seismology (IRIS) web pages (https://ds.iris.edu/ds/nodes/dmc/data/types/, last accessed April 21, 

2021). IRIS is a global consortium of universities dedicated to maintaining and disseminating 

seismic data from the U.S. and global seismographic networks. After about 30 years of operation, 

this consortium is currently being merged with a similar consortium in geodesy (UNAVCO), to 

form an organisation dedicated to solid-Earth science research, called EarthScope. 

The earthquake data from regional networks in Iran were received in the format called 

miniSEED. MiniSeed as a simplified subset of the format SEED (the Standard for the Exchange 

of Earthquake Data). SEED is the foundation for the data archiving system used for the past 30 

years by the International Federation of Digital Seismograph Networks (FDSN) and IRIS Data 

Management System. The SEED format is fairly complex, and it is capable of storing the 

waveform time series as well as channel calibration information and various metadata such as 

names and parameters of the instruments, coordinates, sensor orientations, earthquake parameters, 

etc. By contrast, miniSEED contains the waveform data (time series) only and includes no 

geographic coordinates of stations, instrument response, or other auxiliary information. 

To provide station parameters and channel calibration information (response spectra), 

additional files in the so-called “dataless SEED” format were provided by the seismic data centers. 

Dataless SEED files contain no waveform records but include the metadata including instrument 

responses, channel parameters, and geographic coordinates of stations. By using the rdseed 

computer program (SEED reader) from IRIS, the dataless SEED format can be converted into text 

formats, which can be further used by other software. 

The third key component of the datasets consists of multiple lists of earthquake parameters. 

In this study (as well as in most traditional studies), I utilize time windows extracted from 

continuous recordings and corresponding to certain identified earthquakes. For each earthquake, a 

time window containing the arrivals of all waves of interest (from Pn to coda) was extracted and 

saved in a miniSEED file. A catalog of these earthquakes including the estimated epicentre 

coordinates, magnitude, time, depth, and other parameters was also provided in a text file. 

Thus, the datasets of this study come as a large number of files (hundreds of thousand of 

miniSEED and dozens of other), and it requires efficient software for its handling and reformatting. 

https://ds.iris.edu/ds/nodes/dmc/data/types/
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In chapter 3, I will describe this processing procedure by using the IGeoS package 

(Morozov, 2008a).  

2.2.1. Rigan area dataset 

The Rigan area dataset is relatively small and consists of 31 records from two earthquakes 

in Rigan region of the southeastern Iran: the 20 December 2010 and 27 January 2011 earthquakes 

with magnitudes Mw ≈ 6.5 (denoted 1 in Figure 2.3) and Mw ≈ 6.2 (earthquake 2 in Figure 2.3). 

The magnitudes and coordinates of these earthquakes were reported by the U.S. Geological 

Survey. The seismic data were recorded by the Iranian Strong Motion Network, using three-

component SSA-2 accelerometers at sampling frequency 200 Hz.  

I performed initial data processing and analysed the Rigan-area records in a previous study 

(Safarshahi et al., 2013), and in this dissertation, I use these edited and pre-processed data from 

that study. Examples of the data and more detail about their processing are given in chapter 5. 

The analysis by (Safarshahi et al., 2013) was performed by using several well-established 

methods which led to results corroborating those found in many other areas of the world. These 

results are briefly described in section 2.4. However, as also shown in section 2.4, a new look at 

these established methods also reveals a number of fundamental questions which are still 

unanswered by conventional interpretations. In this dissertation (chapter 5), I revisit these data 

from a completely different viewpoint and by performing an unusually detailed and critical 

analysis of the inversion methods. The localized and relatively small Rigan dataset is ideal for 

achieving this analysis of the methodology, which is also applied to other parts of the present 

study.  
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Figure 2.3. Location map of the earthquakes (stars), receiver stations (triangles), and source–

receiver pairs (lines) in Rigan area (box in the insert; Safarshahi et al., 2013). Labels show site 
numbers and names and earthquake numbers in this study (chapter 5). Several site names are 

abbreviated: CA – Chah Ali; CM – Chah Malek; DR – Deh Reza; GG – Ghaleh Ganj; HA – Hossein 

Abad; IS – Iran Shahr; JD – Jiroft Dam; MA – Mohamad Abad; PR – Posht Rood; QA – Qotb 

Abad; ZK – Zeh Kelot. 
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2.2.2. Zagros area dataset 

In most of the dissertation (chapters 3, 4, and 7), I use a large and raw dataset provided by 

the Iranian Seismological Center (IRSC, http://irsc.ut.ac.ir/, last accessed December 2017). The 

dataset contains over 250,000 miniSEED files extracted for 1300 earthquakes from continuous 

recordings on 62 seismic three-component stations in the Zagros region of Iran. Figure 2.4 shows 

the locations of these stations and earthquakes. 

 

Figure 2.4. Location map of the study area (Iran). Triangles are the seismic stations are shown by 

triangles (green: short-period, black: triangle broad-band), and red dots are the earthquakes. 

http://irsc.ut.ac.ir/
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The stations were instrumented using different types of seismometers: short-period SS1 

seismometers, medium-band Trillium-40s, and broad-band Guralp CMG3ESP-120s, CMG3T-

360s and Trillium-240s seismometers.  Sampling frequency was set equal 50 Hz for all records in 

this dataset.  

2.3. Geological Setting  

The tectonics of Iran is dominated by interaction between Eurasia and the Arabian Plate. 

The southwest of the Iranian plateau is trapped by the Arabian plate, and the northeast of the 

Iranian plateau trapped by Turan platform (Eurasia) (Berberian et al., 1981). Due to continuous 

relative movement of these plates, the Iranian plateau is affected by compressional deformation 

along the Alpine-Himalayan mountain belt (Mirzaei et al., 1998). Because of these geological 

conditions, Iran represents one of the most seismically active areas in the world and often 

experiences damaging earthquakes (Mirzaei et al., 1997), with human losses and extensive 

destruction. 

In the following subsections, I describe the geological and tectonic structures of the two 

study areas of this project. I only focus on regional scales and near-surface conditions which are 

relevant in this project. 

2.3.1. Zagros area 

As a part of the Alpine-Himalayan mountain belt, the Zagros fold and thrust belt is one of 

the most active regions of continental collision on the Earth (Snyder and Barazangi, 1986). The 

Zagros belt extends across approximately 1500 km from southeastern Turkey (Taurus mountains) 

to the Minab fault in the eastern part of the Strait of Hormuz located in southern Iran (Mirzaei et 

al., 1998). According to Vernant et al. (2004), the present-day crustal deformation through the 

Zagros orogen consists in a northward movement of the Arabian plate relative to Eurasia at the 

rate of 22±2 mm/yr at Bahrain (26.0667° N, 50.5577° E). Figure 2.5 shows a simplified geologic 

and tectonic map of Iran with locations of the Paleo-Tethys suture zone (PTS) suggested by several 

studies (e.g., Besse et al., 1998; Alavi, 1991; Hassanzadeh and Wernicke, 2016) and the Neo-

Tethys suture zone (NTS) (e.g., Paul et al., 2006; Agard et al., 2011; Berberian, 1995). 
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Figure 2.5. Simplified geological map of Iran showing locations of the major ophiolites, the major 

intrusive rocks, major faults (using Safarshahi, M., 2011), and main geological features (using 
Besse et al., 1998; Paul et al., 2010; Agard et al., 2011). Labels and lines indicate the Zagros fold 

and thrust belt (ZFTB; black irregular polygon), Sanandaj-Sirjan zone (SSZ; blue dashed irregular 

polygon), the main Zagros thrust (labeled MZT), the main recent fault (labeled MRF), Alborz (red 
irregular polygon), Makran (brown irregular polygon), Kopeh-Dagh (green irregular polygon), 

Central Iran, the Urmia-Dokhtar magmatic arc (labeled UDMA), Eastern Iran belt (red dashed 

irregular polygon) the Neo-Tethys suture (NTS; shown by the arrow) and the Paleo-Tethys suture 

(PTS; shown by the arrow). 
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 During the Triassic period, the present territory of Iran was a set of continental blocks (the 

Cimmerian continent proposed by Sengör and Hsu, 1984) separated from Gondwana that came 

into collision with Eurasia (Stöcklin, 1968, as cited in Besse et al., 1998). In the Sinemurian time 

(200 Ma), the closure of the Paleo-Tethys caused an expansion of a large number of molassic 

basins in Iran, and the subduction-related volcanism within the Sanandaj-Sirjan and Lut block 

started in the north part of the Neo-Tethys (Stampfli and Borel, 2004). However, some authors 

argued that the closure time of the Paleo-Tethys Ocean occurred at the Late Triassic or even earlier 

time (e.g., Agard et al., 2011). Two sutures shown in Figure 2.5 were created, one related to closing 

the Neo-Tethys ocean in the south, and the other to the closure of the Paleo-Tethys ocean in the 

north (Besse et al., 1998; Alavi, 1991; Bagheri and Stampfli, 2008; Hassanzadeh and Wernicke, 

2016). Precise locations of those two suture zones and the times of the opening and closure of the 

Neo-Tethys ocean is still controversial.  

According to Stöcklin (1968), the Zagros orogenic system can be subdivided into five 

major subparallel tectonic elements shown in Figure 2.5: 1) the Zagros fold and thrust belt (ZFTB); 

2) the Zagros thrust zone (ZTZ), which is recognized by the highest elevations in the whole Zagros 

mountain range; 3) the main Zagros thrust (MZT) or the main Zagros reverse fault (Berberian, 

1995); 4) the Sanandaj-Sirjan metamorphic zone (SSZ); 5) the Urmia-Dokhtar magmatic arc 

(UDMA). Below, I briefly describe these tectonic elements separately.  

The Zagros fold and thrust belt (ZFTB) contains 12-13 km thick shelf sediment deposits 

of the Permo-Triassic to Late Cretaceous/Paleocene age (James and Wind, 1965; Stöcklin, 1968; 

Berberian and King, 1981; Berberian, 1995; Agard et al., 2011). After the Mio-Pliocene, these 

deposits were folded into a sequence of NW-SE trending belts extending for about 1500 km from 

southeastern Turkey to the eastern part of the Strait of Hormuz (James and Wind, 1965; 

Stöcklin, 1968; Berberian and King, 1981; Berberian, 1995; Agard et al., 2011). Due to a collision 

of the Arabian Peninsula with central Iranian plate, this zone is still tectonically active with 

extensive shortening, uplifting, and thickening (Berberian, 1995). Several authors proposed 

different subdivisions within the ZFTB.  

According to Berberian (1995), the ZFTB from NE to SW is subdivided to five key parallel 

trends located south of the MZT: 1) the Zagros thrust zone (ZTZ), 2) the simple folded belt, 3) the 

Zagros foredeep; 4) the Zagros coastal plain, and 5) the Persian Gulf-Mesopotamian lowland. By 



 

24 

 

contrast, based on the structural style and topography, Agard et al. (2011) classified the ZFTB into 

two prominent domains from the SW to NE :1) the simple folded belt (SFB) bounded by the 

Persian Gulf at the south with hundreds of kilometers folding and constrained by several faults, 

and 2) the high Zagros consisting of higher topography, a sharp growth of elevation, and major 

thrusts.  

The ZTZ (also called the high Zagros thrust belt (Berberian,1995) or the Crush Zone 

(Alavi, 1994; Mirzaei et al., 1998; Agard et al., 2005) is a narrow-thrust belt with width up to 80 

km extending between the MZT and the ZFTB and subparallel to them (Berberian, 1995). The 

highest surface topography in Iran belongs to this zone. The ZTZ is characterized by widely 

overthrusted anticlines mostly consisting of allochthonous Jurassic-Cretaceous limestones of the 

Bisutun seamounts, obducted ophiolites and radiolarite from the Upper Cretaceous, and Eocene-

Oligocene flysch deposits (Berberian, 1995; James and Wynd, 1965; Stöcklin, 1968).  In the 

northeast of its margin, the ZTZ results in a sharp topography contrast with the central Iranian 

plateau (Mirzaei et al., 1998).  

The main Zagros thrust (MZT), which is also called the main Zagros reverse fault (MZRF) 

(Berberian 1995), extends with NW-SE strike from the west of Iran to the north of Bandar Abbas. 

To the northwest of MZT, there is a group of right-lateral strike-slip faults called the main recent 

fault (MRF; Figure 2.5; Tchalenko and Braud, 1974). The MRF roughly follows the trace of the 

MZT (Berberian 1995). The MZT is known as the boundary between the ZFTB and the Sanadaj-

Sirjan zone (SSZ; Stöcklin, 1968; Berberian, 1995). Due to the presence of ophiolites near the 

MZT, several studies suggested that the MZT is possibly rooted at Moho depths (Agard et al., 

2005; Paul et al., 2006). 

During the Mesozoic and Cenozoic times, the subducted Neo-Tethys oceanic plate 

produced volcanic arcs across the Iranian plateau in the UDMA, SSZ, and Alborz areas and Central 

Iran (Verdel et al., 2011). Among them, the SSZ is a metamorphic and igneous zone, extending 

approximately 1500 km from NE to SW with width up to 200 km. This zone is oriented parallel to 

the ZFTB, and its southern margin is bounded by the MZT (Stöcklin, 1968, Alavi, 1994). The SSZ 

is mostly made of Jurassic phyllites laid between other layers such as metamorphic rocks and 

sometimes containing massive volumes of calc-alkaline plutons of the Mesozoic period (Agard et 

al., 2005). The SSZ is characterized as an active Andean-type zone with calc-alkaline magmatic 
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activity, which migrated to the north of the present-say Iran during the last half of the Mesozoic 

and later time (Berberian and King, 1981; Sengör, 1990; Agard et al., 2005; Verdel et al., 2011).  

The UDMA is located between the SSZ and Central Iran, and parallel to Zagros and the 

SSZ (Figure 2.5). The calc-alkaline magmatic activity of UDMA continued from the Eocene to 

the present time, with the highest level of activity during the Oligo-Miocene (Berberian and 

Berberian, 1981; Berberian and King, 1981; Bina et al., 1986; Agard et al., 2005). 

Many studies showed that the Zagros orogen experienced a long history of convergence 

consisting of multiple steps such as subduction, ophiolite obduction, and collision between the 

Eurasian and Arabian plates across the Neo-Tethys ocean. Agard et al. (2011) proposed the 

evolution of the Zagros orogen of these processes recorded from 150 Ma to 0 Ma. However, there 

are still several issues which are not understood and need to be discussed. I describe some of the 

main outstanding questions below. 

In many studies, a slab break-off was suggested in the subducted oceanic lithosphere. For 

example, von Blanckenburg and Davies (1995) hypothesized that slab break-off occurred in this 

area, which means that some parts of the subducting oceanic crust were fragmented and sunk 

during the continental collision. However, the fate of the broken-off slab and the time of the 

collision are still being debated. This question could be elucidated by seismic methods because 

fragments of subducted crust may be detected as low-velocity anomalies at relatively shallow 

depths within the mantle.  

The crustal break-off may have occurred in several stages. At the beginning of the 

continental collision, this subduction caused the Andean type Sanandaj-Sirjan volcanic zone (SSZ; 

Agard et al., 2005) and subduction started. According to Agard et al. (2011), in Late Paleocene 

(60-55 Ma), the first slab break-off in the north-central Zagros (ZTZ, Kermanshah region) occurred 

when the remaining Neo-Tethys ocean in this area had a width of around 1000 km then the second 

break-off of the slab occurred in the Late Miocene. 

An important and still open question relates to the time of the continental collision and the 

evolution of the Zagros orogen. Agard et al. (2011) proposed a model for it consisting of three 

main periods: 
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1) From 115 to 85 Ma, subduction and fragmentation of the upper Eurasian plate took 

place;  

2) From 60 to 40 Ma, slab break-off, crucial shifts of arc magmatism, and distributed 

growth in the upper Eurasian plate, and 

3) After about 30 Ma, continental collision continues with a SW-dominant migration of 

deformation into several different zones. From 20 to 15 Ma, the SSZ was formed, 

from 12 to 8 Ma, the dominant deformation occurred at High Zagros, and from 5 to 

0 Ma, the Simply Folded Belt was built.  From 10 Ma to present, the second break-

off of the crustal slab occurred. 

In this scenario (Agard et al., 2011), the closure of Neo-Tethys ocean was suggested to 

occur in the mid-Miocene time, whereas other studies suggested that the Neo-Tethys was closed 

during the Miocene–Pliocene time (Glennie et al., 1973; Stoneley, 1981). However, Agard et al. 

(2005) reported that in the northern part of Zagros (Kermanshah-Hamadan area), the oceanic 

closure occurred in the Oligocene-Miocene period (25-23 Ma). Therefore, this time can be viewed 

as the start of the continental collision. 

Another still unsolved geological problem is the location of the suture zone. Some authors 

argue that crustal deformation associated with the suture zone is located between the main Zagros 

thrust (MZT), which may be marked by possibly large Moho depth (e.g., Agard et al., 2005; Paul 

et al., 2006; Berberian, 1995), and the crush zone and the SSZ (Stöcklin, 1968; Agard et al., 2005; 

Hassanzadeh and Wernicke, 2016; Berberian, 1995). By contrast, other authors suggest that the 

suture zone runs northeast of the MZT between the SSZ and the UDMA (Alavi, 1994; Shafaii 

Moghadam and Stern, 2011).  

The location of the suture largely depends on identifying large-scale variations of the 

crustal structure involving the entire crust and extending into the mantle. Such major tectonic 

features can be constrained by seismic methods. According to Motaghi et al. (2017), in the northern 

part of Zagros, the crustal thickness increases from 43 to 59 km beneath the main recent fault 

(MRF) and reaches 62 km between SSZ and UDMA, and then decreases to 42 km in the middle 

of the Central Iran. Paul et al. (2010) inferred Moho depth beneath the MZRF equal to 69±2 km 

and 56±2 km along two receiver function profiles across the central and northern Zagros, 

respectively, while beneath the ZFTB and in the central part of Zagros, the crustal thickness was 
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estimated as 42±2 km. Several studies reported that earthquakes occurred in the Zagros are 

restricted to the upper continental crust with depths less than 20 km (Engdahl et al., 2006; Tatar et 

al., 2004). In central parts of Zagros, the crustal thickness was estimated as about 46±2 km 

(Hatzfeld et al., 2003). Snyder and Barazangi (1986) suggested that the depth of Moho beneath the 

MZT is near 65 km, although an interpretation of gravity data estimated the Moho depth of about 

55 km in this area (Dehghani and Makris, 1984). 

As shown above, similar to other areas around the world, seismic observations provide 

critical data for constraining the deep structure of the Zagros region. Based on earlier observations 

of earthquakes at depths exceeding 50 km, a model of active subduction of the continental crust of 

the Arabian shield underneath the Zagros was hypothesised in many studies (e.g., Nowroozi, 1971; 

Kadinsky-Cade and Barazangi, 1982). Nevertheless, later studies showed that the interpreted 

continental mantle earthquakes in this area largely resulted from source mislocations. Maggi et al. 

(2000) and Engdahl et al. (2006) suggested that almost all of Zagros earthquakes occurred at upper 

crustal depths less than 20 km. This controversy shows that accurate earthquake location is critical 

for interpreting the deep structure, and particularly crustal subduction and break-off within the 

upper mantle. I present my results of relocation of seismicity in the Zagros in the chapter 4, 

although this analysis does not extend to constraining the earthquake depths. 

In addition to earthquake source locations, imaging of seismic velocities within the crust 

and the upper mantle can provide robust constraints on the geodynamic setting of the Zagros 

suture. For example, seismic Pn velocity tomography can effectively address problems such as 

determining the locations of the subducted oceanic slabs, whether it is attached or detached, and 

whether a lithospheric delamination is present.  

2.3.2. Rigan area 

Earthquake events in Iran are often accommodated by faults in Zagros, Alborz, Kopeh-

Dagh and eastern Iran (Walker et al., 2003). The Central-east Iran as an intraplate region which is 

located between Zagros and Kopeh-Dagh and represents one of five principal seismo-tectonic 

provinces in this country (Mirzaei et al., 1998). The earthquakes in the Central-east Iran are also 

often accompanied by surface faulting (Berberian, 1979).  
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The Rigan study area of the second dataset of this dissertation is located within the Kerman 

plateau, which is a part of the Central-east Iran province. The Kerman plateau region experienced 

several large earthquakes with right-lateral strike-slip fault mechanism, located along the west part 

of the Lut block. This faulting mechanism accommodates the right-lateral shear occurring between 

the Central Iran and Afghanistan (Berberian et al., 2001). Due to the relative lack of seismicity and 

low topography of the plateau, the Lut block is known as a quite rigid and stable block almost in 

Tertiary period with approximately 400 km length and 200 km width (Berberian et al., 2001). 

However, the north-south zone surrounding the Lut block with major right-lateral strike-slip faults 

is known as a seismic active zone (Walker et al., 2003; Berberian et al., 2001). The Central-east 

Iran province is fragmented by a series of Quaternary fault systems (Berberian, 1976; Mirzaei et 

al., 1998) and covered by sedimentary and Quaternary volcanic rocks (Komak Panah et al., 2002).  

Instrumental and historical earthquake catalogues show that Central-east Iran occasionally 

experienced large earthquakes such as the Bam earthquake in 2003, with magnitude Mw of about 

6.6 (USGS estimate) and more than 32,000 deaths. Two other large earthquakes in the Rigan region 

occurred in 2010 and 2011 with moment magnitudes of Mw = 6.5 and 6.2 (also USGS estimates) 

respectively. The seismicity of the Central-east Iran is shallower than 20 km (Maggi et al., 2000; 

Engdahl et al., 2006).  

Because for the Rigan area, a substantial part of the present work focuses on  (“kappa”) 

measurements and applications to engineering seismology, it is important to summarize what is 

known about the structure of the shallow near surface beneath the stations. Unfortunately, little of 

such data is available in this study. Because of the complexity of geology and tectonics of the 

region, bedrock depths and thicknesses of sedimentary deposits vary for different sites. For 

example, in the vicinity of Bam station (number 7 in Figure 2.3), soil profiles show sandy clay 

within the upper part and silty sand at the lowest part. Because of this thick soil deposits, Bam 

station was classified as class C site (Rayhani et al., 2008). According to Komak Panah et al. 

(2002), the Bam site is located on soft soil, Globaf station (number 2 in Figure 2.3) is on 

moderately soft soil, and Sirch site (number 1 in Figure 2.3) is on hard soil or weak bedrock. As it 

will be shown in section 2.4 and chapter 5, these site conditions somewhat correlate with the 

measured values of   
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2.4. Results of Previous Analysis of Rigan Dataset 

The Rigan-area dataset was used in my previous study (Safarshahi et al., 2013), which 

posed a number of questions revisited in this dissertation.  The study by Safarshahi et al. (2013) 

focused on quantitative analysis of body S waves within the crust. Broadly, this analysis consists 

in measurements of the geometrical spreading, attenuation (measured by the Q-factor; chapter 1), 

and the high-frequency spectral parameter . In chapter 1, I described a significant controversy 

about the physical meanings of Q and  . The key problem with these parameters is that they are 

not clearly separable from each other, and the values of both of them depend on the measurement 

methods employed. In standard approaches to earthquake data analysis, this problem is generally 

recognized and mitigated by using a set of carefully selected and fixed data processing parameters 

and model assumptions (e.g., Havskov et al., 2016). In the earlier study (Safarshahi et al., 2013), I 

adhered to such strictly conventional recipes for single-station measurements of Q and . The key 

results are summarized below. 

In the conventional method, the Q and  are determined separately. To estimate QS 

(subscript S denotes the shear waves) for body waves of ground acceleration records (e.g., Aki and 

Chouet, 1975), the spectral amplitude is presented as a function of distance (r) and frequency (f): 

                                  ( ) ( ) 1, expi i

S

f
U f r S f r r

Q





−  −
=  

 
   .   (2.1)  

In this relation, 
1r−
 is the geometrical spreading for spherically-spreading body waves, and ( )iS f   

is the source amplitude spectrum, and   denotes the S-wave velocity, and Qs is the desired 

measure of attenuation (Aki and Chouet, 1975). In the single-station method, a set of fixed 

frequencies f (passbands of data filtering) are considered, and amplitude U in eq. (2.1) is viewed 

as a function of r. After taking the natural logarithm of eq. (2.1) and calculating the slope (denoted 

b) of its linear regression with respect to r (Figure 2.6), QS is obtained at each f as S

f
Q

b




= − . 

These values are labeled for each frequency band in Figure 2.6. 
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Figure 2.6. Distance-corrected logarithms of amplitudes for body S waves from Rigan earthquakes 

(Safarshahi et al., 2013). Each panel corresponds to one centre frequency indicated by labels F. 

Panels on the left are for the transverse horizontal component (labeled T), and plots on the right are 
for the longitudinal component (labeled L). Dots are the measured corrected amplitude values, and 

red lines show their linear regression with distance. Downward slopes of these lines give the Q 

values shown in labels.   
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Thus, the above procedure basically remaps the measured decrease of the amplitudes with distance 

(b) into a decay of the spectra with frequency (QS). Morozov (2008b, 2010a) criticized this 

remapping as nonphysical and arbitrary (controlled by unverifiable and inaccurate model 

assumptions). Plots similar to Figure 2.6 are not often shown in earthquake studies, but they 

provide important evidence in support for this critique. Note that the negative slopes of the red 

lines in Figure 2.6 (–b) increase with frequency much slower than proportionally to f. 

Consequently, QS calculated from S

f
Q

b




= − , systematically increases with frequency. Safarshahi 

et al. (2013) approximated this increase as ( ) 0.5899SQ f f= . Similar and often much steeper QS(f) 

dependencies are reported by many authors and they are interpreted as a fundamental property of 

the Earth related to its “seismic absorption band” (Anderson, 1989). However, in chapters 5, 6 and 

7, I describe a completely different approach to this problem, which will also explain the 

systematic increase of Q(f) with frequency. 

In another application of the standard methodology to Rigan earthquake records, I 

calculated the parameter  by the classical approach by Anderson and Hough (1984). This 

parameter characterizes the slope of the line fitted to the logarithm of the exponential decay of the 

spectral amplitude versus frequency: ( ( ) 0

fA f A e −= , and therefore ( )ln A f const f= − .  

Similarly to the distance dependence in eq. (2.1), spectrum A(f) in this equation must be corrected 

for the source spectrum S(f) and the Q along the wave propagation path (Anderson and 

Hough (1984). By measuring this regression for amplitude spectra of individual S-wave records,  

Safarshahi et al. (2013) estimated   62.5 ms for the longitudinal and   57.7s for transverse 

components. Finally, after determining the QS(f) and , Safarshahi et al. (2013) used these two 

parameters to simulate the time series for ground motion by using the stochastic finite-fault model 

by Motazedian and Atkinson (2005) (Figure 2.7).  

 

 

 

 



 

32 

 

 

Figure 2.7. Observed longitudinal-component (upper plot, labeled L) and transverse-component 

(middle, labeled T) records of ground acceleration and the simulated time series (bottom plot, 
labeled SIM) within the shear-wave window for Rigan station at 41 km epicentral distance 

(Safarshahi et al., 2013). Vertical bars indicate the shear-wave window. 
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As shown in the above summaries, the conventional Q factors and  are not calculated 

simultaneously but instead corrected for each other in the two types of measurements. However, 

as argued in chapter 5 of this dissertation, this approach causes a great “hidden” uncertainty in 

both Q and , which is difficult to assess. It is better and much more reliable to invert parameters 

Q and  jointly, and also together with parameters of geometrical spreading (chapter 5). When 

inverted jointly with other attenuation parameters, it turns out that  describes most of the observed 

attenuation, and Q becomes large and nearly insignificant. In addition, parameters  should also 

be associated with the earthquake source (Beresnev, 2019a, 2019b), which is also not considered 

in standard approaches (Anderson and Hough, 1984). 
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CHAPTER 3     

EARTHQUAKE DATA PROCESSING 

This chapter describes the general procedures for processing large earthquake datasets and 

their application to the Zagros dataset of this project. Earthquake data management and processing 

is a significant research subject by itself. In the following sections, I overview the traditional and 

emerging methods for managing seismological data and software design and then describe a 

different approach, which is taken in this dissertation. This chapter is written in the form of a paper 

that may be submitted (in an abbreviated form) to The Seismic Record, which is the new open-

access journal of the Seismological Society of America. The early stages of this work were 

described in the presentation by Safarshahi and Morozov (2019). 

3.1. Introduction 

In both exploration and earthquake seismology, substantial efforts for data organization 

and processing are required before an interpretable result can be obtained. Seismic imaging almost 

always involves combining multiple records obtained from heterogenous types of instruments 

operated by multiple operators, often in different countries, and at different times. Imaging 

procedures are almost always implemented by numerous computer algorithms, which need to be 

applied to the records in certain sequences, with numerous parameters that need to be properly 

documented. In addition to seismic waveform data (“time series” in chapter 2), seismic data 

analysis relies on “metadata”, such as geographic coordinates of seismic stations and instrument 

responses, and also various “models”, such as models of travel times for certain waves within 

certain parts of the Earth. Some of the data analysis tasks are performed interactively with the help 

of the human operator or analyst, and some of them are applied in unattended, large-volume 

“batch” processing. All of these diverse characteristics of modern seismic data analysis show that 

it requires a systematic approach to processing and imaging.  

A number of distinct approaches exist, which are summarized in the following sections in 

this chapter. All of these approaches contain two key elements: 1) some method for organizing the 

heterogeneous dataset consisting of numerous files and data sources, and 2) methods for 
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organizing complex sequencies of algorithms and applying them to the records. These two tasks 

are solved by complex software packages, which are usually called seismic processing systems.  

In the early days of seismology, seismic processing was largely done by manual 

interpretation of seismogram plots or by processing individual records by programs written by the 

individual researchers. Over the past fifty years, this model of seismic processing has evolved 

greatly. With regard to the above requirements to processing systems, the challenge of data volume 

and complexity has increased tremendously, and numerous new types of data sources became 

available. For example, the Zagros dataset of this dissertation contains about 250,000 data and 

metadata files distributed over multiple directories, and they ideally need to be treated in a simple 

and common way. Another seminal recent development is the advent of web services 

automatically supplying seismic waveforms, metadata, documentation, and even pre-assembled 

and pre-processed datasets pertaining to important events, or historical data (e.g., 

https://ds.iris.edu/ds/nodes/dmc/data/#requests, last accessed April 21, 2021). With these recent 

developments, the notion of a data file is being replaced with a “cloud”, or some generalized data 

access mechanism. 

With regard to the second aspect of the seismic processing system mentioned above (ways 

for combining tools and algorithms), the situation has been greatly improved, but in consequence 

also became somewhat complicated. A number of new and convenient computer languages have 

become available, and the increasing computer power now allows processing large datasets on a 

laptop. However, seismologists are all the more left with the choice of processing model based, 

for example, on the newest Python- or Julia-based software packages or the more traditional 

Matlab- or even Fortran-based software. Each of these paradigms offers certain advantages and 

disadvantages, but once one processing style is selected, switching to other styles may become 

difficult. As a solution to this problem, in this project, I employ a different approach, in which the 

integration of the different software tools is done by using a specialized seismic-processing (or 

even more general geophysical) data processing system called IGeoS 

(http://seisweb.usask.ca/igeos; last accessed April 21, 2021; Morozov, 2008a). This type of 

software design is standard in reflection seismology, in which a similar (and actually greater) 

variety of processing tasks is encountered. In this approach, the individual tools can be written by 

https://ds.iris.edu/ds/nodes/dmc/data/#requests
http://seisweb.usask.ca/igeos
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using any computer languages. The tools are free from most data search and input/output 

operations, and therefore they focus on the specific tasks. 

In the following sections, I summarize the existing approaches to data organization and 

processing (sections 3.2 and 3.3), and then describe the IGeoS-based approach taken in this project 

(section 3.4). 

3.2.  Existing Approaches to Seismic Data Management 

In seismic data processing at any scale, the waveform records are usually stored in data 

files (usually binary but sometimes ASCII), and the difference between the different processing 

models is in the way these files are accessed. In the older, classical approaches such as the Seismic 

Analysis Code (SAC; https://ds.iris.edu/files/sac-manual/, last accessed April 21, 2021) and 

SEISAN (http://seisan.info/, last accessed April 21, 2021) each record is represented by a file of 

the format specific to that software. The critical parameters such as the name of the station and 

channel are usually placed in file names, which have to be of a strictly defined format. The files 

are managed using these file names by the standard tools of the operating system. With modern 

datasets, the numbers of data files in such systems often become very large (many thousands in a 

directory), which causes numerous technical difficulties. The use of file names and directories 

limits the ability to sort the data and access them in variable ways. Thus, systems using single-

record files are very restrictive and suitable only for small datasets. 

A powerful alternative to keeping track of millions of individual files consists in using 

databases. A seismic database contains a table of all available waveform records, which may be in 

multiple individual or contiguous files of variable formats, and it also contains all of the metadata. 

By making calls to the database, the user is therefore able to retrieve any amount of data and make 

an arbitrary selection of it, without the need of knowing its internal structure and data formats. In 

commercial reflection seismic processing systems such as ProMAX, the database represents the 

core mechanism for data storage and retrieval. The first applications of databases in earthquake 

seismology were made at the University of Colorado at Boulder, in a system called DataScope. 

This system was later developed by Boulder Real Time Technologies into a commercial system 

for local seismic network management, named Antelope (https://brtt.com/software/, last accessed 

April 21, 2021). 

https://ds.iris.edu/files/sac-manual/
http://seisan.info/
https://brtt.com/software/
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The Antelope software uses a custom DataScope database, which is directly accessed by 

its codes. However, a much more general approach is to use the portable Structured Query 

Language (SQL) databases. There are two well-known and broadly used open-source (free) 

implementations of SQL databases called MySQL and PostgreSQL. These databases are accessed 

by forming SQL query strings describing the records requested by the user, and they return tables 

of metadata and indices of data files (or sometimes data files themselves). SQL databases can be 

queried by multiple remote users simultaneously by using Unix shells or graphical user interfaces 

(GUIs), and they usually also have application programming interfaces (APIs) to efficiently access 

them from software. A seismic database can return arbitrary subsets of the data sorted in various 

ways, and arbitrary processing can be performed with the returned data. In project Emerald 

(https://seiscode.iris.washington.edu/projects/emerald, last accessed April 21, 2021), a 

PostgreSQL database is used to perform the complete earthquake data processing and displays. 

A natural (and relatively recent) extension of the database access to observational 

seismological data is in using web services. Web services currently represent the key data access 

mechanism at the IRIS (Incorporated Research Institutions for Seismology, a U.S.-based 

University consortium) Data Management Center (https://ds.iris.edu/ds/nodes/dmc/tools, last 

accessed April 21, 2021), and most other datacenters of the FDSN (International Federation of 

Digital Seismograph Networks;  http://www.fdsn.org/datacenters/, last accessed April 21, 2021). 

Web services provide flexible data access methods to the centers’ databases without knowledge of 

their SQL database schemas and without the need for handling variable file formats. Web requests 

can be made from any web browser or  software working on any computer platforms and located 

anywhere in the world.  

Most modern seismic toolboxes, such as described in the next section, are focused on the 

“file-centric” data-processing paradigm described at the beginning of this section. A data record is 

defined as one or several arrays of waveforms plus a structure of record headers with fixed names. 

The interaction between tools is performed by passing the data record from one tool to the other. 

In this way, for example, Matlab program serves as a shell script in SAC data processing. However, 

the more flexible code allows including tools which can access databases and web services. 

The processing paradigm used in this dissertation (IGeoS) is significantly different from 

the “file-centric” model above. This paradigm can be described as “process-centric”, or “stream” 

https://seiscode.iris.washington.edu/projects/emerald
https://ds.iris.edu/ds/nodes/dmc/tools
http://www.fdsn.org/datacenters/
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(Morozov, 2008a), and it inherits from the way seismic datasets are usually processed in reflection 

seismology (e.g., the Seismic Un*x, https://cwp.mines.edu/software/, last accessed April 21, 

2021). In this approach, the partitioning of the data into files is unimportant, and the data are 

processed as a continuous stream of records in a common, high-performance code. The databases 

and web services are also noncritical for the operation of the system, but they can be accessed by 

the individual tools as needed. More detail of this data processing paradigm will be given in the 

following sections.  

3.3. Approaches to Data Analysis 

In observational (earthquake) and exploration (reflection and controlled-source crustal) 

seismology, the approaches to data processing and software design are significantly different. To 

explain this difference, I will refer to a case of “custom”, or “research” processing required when 

exploring new data or developing a new imaging approach. In observational seismology, such 

tasks are usually accomplished by custom software using some general-purpose programming 

language. Therefore, the flexibility, convenience, and power of such processing depends on the 

capabilities of this programming language, and also on the programming skills of the data analyst. 

By contrast, in reflection data processing, the data volume and software performance requirements 

are much higher, but the expectations of programming skills are reduced. In consequence, 

reflection seismic processing systems are based on specialized “data processing languages” 

allowing extensive parameterizations of processing flows without significant computer 

programming. I will briefly describe both of these models below. 

At present, there exist numerous high-level, procedural-type programming languages 

suitable for seismological data analysis (see 

https://en.wikipedia.org/wiki/Comparison_of_numerical-analysis_software, last accessed April 

21, 2021). Probably the most broadly used of such languages, particularly in the past, is Matlab 

(https://www.mathworks.com/products/matlab.html, last accessed April 21, 2021). Matlab is a 

simple, general-purpose language for scientific and engineering computing. In this language, the 

basic data structure is a multidimensional matrix, and most linear-algebra equations have a natural 

syntax, which makes this language convenient for handling seismic waveform records.  Free, open-

source implementations of this language are available, such as FreeMAT 

https://cwp.mines.edu/software/
https://en.wikipedia.org/wiki/Comparison_of_numerical-analysis_software
https://www.mathworks.com/products/matlab.html
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(http://freemat.sourceforge.net/, last accessed April 21, 2021) and GNU Octave 

(https://www.gnu.org/software/octave/index, last accessed April 21, 2021). In the data processing 

and inversion in this project, I use GNU Octave because of its free availability and slightly 

improved syntax containing elements of C++ (Figure 3.1). 

 

Figure 3.1. A fragment of GNU Octave code used for interactive data quality control in this project. 

In academic and nuclear-test monitoring seismology, large seismic processing toolboxes 

were created based on Matlab. One of the most notable of these projects is MatSeis developed at 

the Sandia National Laboratory (https://www.sandia.gov/MatSeis/, last accessed April 21, 2021). 

Numerous additional tools working in the Matlab command line interface are contributed by 

various researchers, for example the P-phase Picker for automatic or semi-automatic picking of P-

http://freemat.sourceforge.net/
https://www.gnu.org/software/octave/index
https://www.sandia.gov/MatSeis/
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wave arrival times in seismograms (https://www.usgs.gov/software/p-phase-picker, last accessed 

April 21, 2021). Such tools also usually work under GNU Octave. 

Matlab-based toolkits were also developed for exploration-seismology applications, likely 

in almost every University seismology group. The simplicity and power of matrix language makes 

it a convenient method for teaching and quick prototyping of new algorithms. However, its 

performance is still significantly limited compared to codes compiled from C or Fortran, and the 

flexible syntax sometimes makes it error-prone. Also, for larger-scale and complex coding, object-

oriented programming methods are highly beneficial, and these methods are also poorly 

represented in Matlab. 

Starting from mid-1990’s, IRIS sponsored a number of projects aiming to introduce 

modern object-oriented programming and distributed computations in seismological research. In 

particular, a number of tools for web data retrieval and processing by using Java language were 

developed (see packages beginning with ‘j’ at https://seiscode.iris.washington.edu/, last accessed 

April 21, 2021). The advantage of Java is that it is an object-oriented language that can be executed 

on practically any computer by using the Java Virtual Machine (JVM). Because of this cross-

platform capability, Java is often used for developing interactive graphical user interfaces. 

However, it appears that the performance of the JVM is still limited for seismic data retrieval and 

significant processing tasks, and Java coding is still relatively complex.  

It appears that the Python language is currently the most popular in the seismological and 

geophysical communities. Python is an object-oriented, general-purpose programming language, 

which also offers broad cross-platform functionality. Advantages of this language include the 

simplified syntax and easy linkages with codes written in Fortran and C, and with graphics toolkits. 

However, the original Python had no significant capability for processing arrays of data samples. 

This limitation was overcome in the package NumPy (https://numpy.org/, last accessed April 21, 

2021).), which added Python classes for implementing operations with multidimensional arrays. 

These classes operate similarly to the basic data structures in Matlab. Further, project SciPy 

(https://www.scipy.org/, last accessed April 21, 2021) combined NumPy with packages for 

plotting, symbolic computations, libraries for scientific computations (such as optimization, 

integration, statistics, cluster analysis, interpolation, Fast Fourier Transform, and signal 

processing), and an enhanced interactive console for developers. SciPy also provides efficient tools 

https://www.usgs.gov/software/p-phase-picker
https://seiscode.iris.washington.edu/
https://numpy.org/
https://www.scipy.org/
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(package  scipy.weave) for including C/C++ codes within the Python code. This allows obtaining 

Python code with high numerical performance. 

Based on SciPy, Krischer et al. (2015) developed the open-source project ObsPy 

(https://github.com/obspy/obspy/wiki, last accessed April 21, 2021), which is a Python library to 

facilitate earthquake data processing in seismology. The library supports all file formats broadly 

used in seismic processing and contains client programs to access the various data centers. The 

library also integrates the key algorithms developed for observational seismology. For example, 

ObsPy includes the computation of travel times in the IASPEI global-Earth model by using a cross-

platform version of Kennett and Buland's "iaspei-tau" program, which was originally written in 

Fortran.  

Other notable open-source programming languages which are rapidly becoming used in 

seismology are Perl (https://www.perl.org/, last accessed April 21, 2021), R (mostly for statistical 

applications such as model bootstrapping and cluster analysis; https://www.r-project.org/, last 

accessed April 21, 2021), and Julia (https://julialang.org/, last accessed April 21, 2021). In terms 

of convenience and performance, all of them seem to be comparable to Python, and they also have 

similar limitations related to the need of writing code in order to process the data. It appears that 

from the perspective of productive data analysis, the optimal language is the one offering most 

community expertise in terms of libraries and processing tools. 

As mentioned at the beginning of this section, in reflection seismology, the paradigm of 

data processing is different from those described above. Although Java, Python, or Matlab 

programs are often used for prototyping, tests, and solving auxiliary tasks, large-scale data 

processing is performed using specialized software systems. No knowledge of computer 

programming is necessary to perform such processing. Generally, for any processing task (many 

more of which may be required than in average earthquake work), a custom executable program 

is created and executed. For example, in Seismic Un*x, the executable processing flow consists of 

multiple programs connected via the Unix pipeline (input/output stream) mechanism. In more 

sophisticated systems such as commercial reflection data processing systems (ProMAX, Echos) 

and IGeoS, the custom processing code is obtained by dynamic linking of “objects” from multiple 

libraries, producing a single computer code (Morozov, 2008a). This code operates within a single 

address space, and therefore it allows the fastest possible performance and close integration 

https://github.com/obspy/obspy/wiki
https://www.perl.org/
https://www.r-project.org/
https://julialang.org/
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between the different tools. Hundreds of tools developed for previous projects can be directly 

utilized in processing any new data or developing new processing approaches.  

The “back-propagation” design of the IGeoS system (Morozov, 2008a) is particularly 

advantageous in this regard, because it allows very general forms of processing, for example 

loading and removing (or introducing) any number of data records at any point within the 

processing flow. Unlike its commercial analogs, IGeoS can operate with no waveform data records 

at all. The concept of data records in IGeoS is also very general, including multicomponent records 

with variable time starts and durations, arbitrary user-named headers, and arrangement in 

structured data ensembles. Details of the different file formats and access to web data repositories 

are included in the corresponding input/output tools. Currently, the system can use combinations 

of any number of generic IGeoS files or files in SAC, SEED, miniSEED, SEGY, SEG2, or Seismic 

Unix formats, files retrieved in real time from IRIS web services, or from indexed SQL databases 

stored remotely or locally (Morozov and Pavlis, 2011a, 2011b). Currently, the system contains 

over 300 seismic processing tools, including data selections and sorting, filtering, displays, 

evaluation of distances and (back)azimuths on various models of ellipsoidal Earth, instrument 

response corrections from dataless SEED files, evaluation of IASP91 travel times, SQL and non-

SQL database access, and other. 

Finally, an important part of seismological data analysis consists in plotting of 

georeferenced data and creating maps. Because of the need to accurately account for the curvature 

of the Earth and multiple map projections, this is a significant problem for seismology and other 

areas of geophysics. Fortunately, for many years, the U.S. National Science Foundation supported 

development of the Generic Mapping Tools (GMT; https://www.soest.hawaii.edu/gmt, last 

accessed April 21, 2021), which serve as a free and open-source geographical information system 

for the geophysical community. GMT is a collection of Unix-based tools, which are now available 

on most computer platforms. These tools maintain a database of coastline shapes for the whole 

world, perform basic processing of gridded images (such as smoothing and interpolation), and plot 

them in high-quality PostScript files. The GMT tools were integrated in several of the plotting 

tools in the IGeoS system (Morozov, 2008a). These tools were also used for creating most 

illustrations in this dissertation (Figure 3.2). 

https://www.soest.hawaii.edu/gmt
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Figure 3.2. A fragment of Unix shell script for PostScript plotting using GMT codes. 

3.4. Organizing and Processing Zagros Earthquake Data 

In processing the large dataset from Zagros area, I use a hybrid approach combining the 

exploration- and earthquake-seismology style approaches described in the preceding section. The 

bulk of heavy-duty management, standard processing, and storage of the large dataset was 

performed by the large-scale and high-throughput processing system IGeoS (Morozov, 2008a). As 

all IGeoS processing (and similarly, for example, Seismic Un*x and Promax), the processing 

sequence may be quite complex, and are described by “job scripts”. This standard processing 

included operations commonly applied to any kinds of seismic records: loading and saving files in 

various formats, applying several types of filtering, rotation of components, operations with trace 

headers, measurement of amplitudes, and other operations. With the data prepared, the data stream 

was split into relatively small subsets (typically, 1 to about 100–200 records), which were 
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processed by invoking GNU Octave scripts from within the IGeoS processing jobs. Details and 

examples of such scripts are given below. Any type of software using Matlab-type languages can 

be used, and we selected Octave because of its license-free operation and convenience in batch 

(command-line) operation. In a similar way, calls to Octave can be replaced with executing, for 

example, Python or Julia programs within the IGeoS processing flow. 

To invoke the GNU Octave to perform dataset- and earthquake-seismology specific 

operations, I. Morozov wrote a new IGeoS tool called “procmat” 

(http://seisweb.usask.ca/igeos/index/index.html, last accessed April 21, 2021). With a given subset 

of data records, this tool extracts the selected record headers and time windows within the 

waveforms, and passes them into a Matlab-type code, which is further inserted in the desired 

Matlab/Octave code. In this way, arbitrary information from the IGeoS job can be passed to the 

Octave code performing the data analysis. On the other hand, the Octave code is completely 

unconcerned about the input and output if the data, formats of their records, and any basic 

operations such as filtering. The outputs of the Octave code are stored directly in the database, and 

they can be returned to the calling IGeoS job by using temporary files. Thus, from the user’s 

perspective, this procedure works as a single IGeoS processing job. 

The complete data processing sequence for all Zagros data consists of a set of IGeoS jobs, 

a set of GNU Octave codes, and a set of GMT scripts for plotting images. Some of the Octave 

codes are executed within the seismic processing jobs, and some of them are used for maintaining 

the database of earthquake records and travel-time and other picks, and also for the various types 

of inversion described in this dissertation. The scripts were designed so that in principle, the entire 

processing can be repeated by executing a single Unix shell script. 

In this project, I chose to take a simplified approach to the database by using Matlab arrays 

and workspaces (“*.mat” files) to store all metadata tables and inversion results. With the number 

of records considered (about 250,000, with 62 stations), with a properly designed code (avoiding 

redundancies), this approach presented no difficulties on an average computer workstation. 

Similarly, I did not require random access to the waveform records (for which an SQL database 

would be needed).  Instead of the random access, I created two copies of the dataset sorted by the 

recording stations (as in the original data) and by events. However, as described in the preceding 

http://seisweb.usask.ca/igeos/index/index.html
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sections, for larger projects, SQL databases such as PostgreSQL would be preferable. Such SQL 

databases could also be readily accessed from both within IGeoS and Matlab or Octave. 

In the following subsection, I describe several key steps of the data preparation and analysis 

procedure. I group the variety of tasks into data reduction and quality control (QC) (subsection 

3.4.1), advanced data analysis (subsection 3.4.2), and modeling and inversion (subsection 3.4.3). 

3.4.1. Data reduction and quality control 

The earthquake dataset from Zagros region of Iran provided by the Iranian Seismological 

Center (IRSC) in the form of approximately 250,000 miniSEED files distributed in several 

hundreds of subdirectories, 126 dataless SEED files with station response parameters, and a 

catalog of earthquake events in a text file. The waveform data were generally selected in order to 

capture the time windows corresponding to wave arrivals from the selected earthquakes. The data 

reduction procedure aimed at combining all of these data together and verifying that the earthquake 

times and locations match the time ranges in the waveforms. The data reduction also included 

assignment of geometry parameters, instrument corrections, and storage in the form suitable for 

further processing.  

The data reduction was performed by one IGeoS job (“read_mseed.job”) executed in 

“batch” (unattended) mode for each station and acquisition year (2016 or 2017). For each relevant 

minSEED file, the job identified the source in the catalog, calculated the source-receiver distance, 

azimuth, and back-azimuth in the IASP91 Earth model, executed the IRIS SEED reader to obtain 

the instrument response parameters for the selected station, and applied the response corrections 

to each record. All records for that station were saved in a single IGeoS file (with the conventional 

name extension “.sia”). Thus after pre-processing, the dataset was saved in a smaller number of 

files (two per station) containing the complete waveform and metadata (trace header) information. 

These data files were used all subsequent processing.  

Simultaneously with data pre-processing, by using IGeoS tool “procmat” described above, 

read_mseed.job invoked an Octave script “geometry.m” for groups of records. This script used the 

record information (source number and coordinates and other parameters, receiver and record 

parameters) to build up the database in Matlab/Octave workspace files. After loading a station, 
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several quality-control operations were performed. Figure 3.3 shows source-receiver paths for 

earthquakes with magnitude above four occurred from January 2016 to December 2017. To reduce 

the density of pairs, a maximum of 10 paths for each station is shown. Figure 3.4 shows a 

histogram of source-receiver distances for the entire dataset. As one can see, the “regional” 

distance range from about 120 to 700 km is most commonly represented in the dataset. The 

azimuthal distributions of the source-receiver paths are quite uniform (Figure 3.5). 

 

Figure 3.3. Locations of stations (black triangles), earthquakes with magnitudes above 4 (red 

circles), and source-receiver paths (purple lines) in Zagros dataset. For plot clarity, a maximum of 

10 paths is shown for each station.  
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Figure 3.4. Histogram of source-receiver distance distribution from all stations. 

 

Figure 3.5. Rose diagrams of azimuth distribution from all stations of the dataset. 

Figure 3.6, illustrates the interactive part of the initial data quality control (QC) and travel-

time picking, which took most of the time of data processing, and also required the most complex 

of the interactive Octave codes. To perform this QC, another IGeoS job (“qc.job”) was created, 

which executed an Octave script “qc.m” for one or two events recorded at the given station. The 

Octave scripts produces interactive displays showing all three components of seismic records, such 

as for station ZNGN in Figure 3.6. The records are displayed in black (default), green, or red colors 

corresponding to being selected as “good” (preferred for subsequent imaging, such as coda 

analysis) or “poor” quality (skipped in the analysis). These selections are made by the user, by 
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using the mouse pointer and pressing keys on the keyboard. In addition to selections, time arrivals 

of the different seismic phases such as P, Pg, Sg, and optionally coda time windows are made 

interactively. These time picks are shown by the colored vertical bars in Figure 3.6. To guide the 

interpretation of seismic phases, the program displays the group velocities corresponding to the 

times of the seismograms. For example, note that the Pn wave (blue bars in Figure 3.6) arrives at 

group velocities of about 7.7 km/s in this area (labels in Figure 3.6). Note that the functionality of 

code “qc.m” allowing picking (and modifying) the times of seismic arrivals and selecting or 

deselecting records is also included in most other interactive tools for data analysis described in 

the next subsection.  

 

Figure 3.6. Quality control and picking times at station ZNGN for two events (M =5.2 and 4.2) with 
epicentral distances 400 and 561 km, respectively. Vertical bars are the times of events (cyan), P 

wave (blue), S-wave (red), and coda window (magenta) picks. Labels above the waveforms indicate 

the reference group velocities. 

In Figure 3.7, I show another version of this interactive QC analysis using all vertical-

component records recorded by a given station (ABH1) and displayed with spacings proportional 

to the source-receiver distances. This form of data presentation is typical in controlled-source 
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seismology, and it allows observing the variation of wave velocities with depths and also checking 

consistency of travel-time picking. In this plot, travel times are reduced by using velocity 6 km/s, 

which means that the plotted times equal the travel time minus the source-receiver distance divided 

by six. An arrival at 6 km/s (roughly equal the crustal P-wave velocity) would appear as horizontal 

in this type of plot. 

 

Figure 3.7. Distance section of the available 61 vertical-component records at station ABH1. 
Travel-time reduction with velocity 6 km/s is used. The original records shown in black, green 

records are selected for further analysis, red records are marked for deletion. Lines show the P-

wave (blue), S-wave (red), and coda start (green) times. Yellow lines indicate the reference group 

velocities. Interactive time picking and record selections as in Figure 3.6 are also available in this 

display. 

3.4.2. Advanced analysis 

After the data reduction and QC, the data were processed by using IGeoS jobs which read 

portions of the prepared data, performed additional sorting or filtering as needed, and passed 

segments of the data to GNU Octave scripts. Several tasks of such advanced data analysis were 

performed in “batch” mode on the whole dataset, and some tasks were performed interactively 

with selected data. In particular, all good-quality data were sorted into files containing source 

locations within 0.5-degree coordinate bins. These data are convenient to display in section plots 
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shown in Figure 3.7. Also, by using these binned records, another pass of interactive arrival-time 

refinement was performed in order to improve the accuracy of the time picks. In this improved 

picking, the estimated average travel-time model (subsection 3.4.3) was used to guide the 

identification of seismic-wave arrivals. 

Figure 3.8 shows an illustration of spectral analysis of one three-component record from 

station ABH1. Note that above frequencies of about 7 to 10 Hz, all components show linear 

decreases in the logarithms of spectral amplitudes. These decreases are usually measured by 

parameter  (“kappa”), which serve a valuable measure of the near-surface conditions in the 

vicinity of the receiver (Ktenidou et al., 2014). The interactive display shows the spectra within 

the Pn, Pg, and Sg-wave time windows, and also within the coda and Lg coda windows 

(Figure 3.8). By using the interactive functionality in this display, records can be selected for coda 

or H/V (horizontal- to vertical-component amplitude ratio) analysis. 

As described in chapter 1, coda analysis is an important part of research with similar 

datasets. Raw coda envelopes are rarely shown in the literature, but in this study, I performed a 

detailed initial investigation of coda records by using another interactive display in the IGeoS – 

GNU Octave combination (Figure 3.9). In this display, note how the logarithms of amplitude 

within the coda and Lg coda window decrease with time. These amplitude decays represent the 

exponential decays of the recorded amplitudes, which are expected from coda. The logarithmic 

decrements of these amplitude decays are called the temporal attenuation coefficients (Morozov, 

2008b), and these quantities are plotted in red in the bottom of Figure 3.9. Note that interestingly, 

these attenuation coefficients are near zero and often decrease with frequency (Figure 3.9). This 

observation has extensive consequences for explaining the nature of the coda, which will be 

discussed in chapters 6 and 7. 

After the interactive examinations of selected three-component and coda records, I 

performed (for records deemed “good” only): 

1) Measurements of the amplitudes within the seismic-phase arrival-time windows; 

2) Polarization angle measurements; 

3)  Coda amplitude and logarithmic decrement measurements within several frequency 

bands; 
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Figure 3.8. Interactive analysis of record spectra within the Pn, Pg, coda, Sg, and Lg coda windows (left, middle, and right columns in the 

top and the bottom) for one earthquake record at station ABH1. 
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Figure 3.9. Interactive analysis of coda amplitude decays for one earthquake record at station KGS1. Left: vertical-component record 

unfiltered (top) and filtered within different frequency bands (labels). Middle and right: the corresponding amplitude envelope records for 

coda and Lg coda. Purple horizontal lines in these plots represent the minimum amplitude level required by the selected signal-to-noise ratio 
thresholds. In the bottom of each of these columns, measured values of attenuation coefficients (red crosses) and their trends with frequency 

(red lines) are shown.   
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4) Measurements of parameters kappa characterizing the slopes of the high-frequency 

spectral amplitudes; 

5) Measurements of the ratios of spectral amplitude ratios of the horizontal and vertical 

(H/V) components for each record. 

Results of these measurements were stored in the Octave workspace databases and used in the 

inversions described in chapters 7 and 8 of this dissertation.  

3.4.3. Modeling and inversion 

Similar to the conventional method of seismic data analysis (section 3.2), the main results 

of this study are obtained by a number of modeling and inversion methods applied to the 

measurements extracted from the waveform data. These inversions were implemented in a group 

of GNU Octave codes. These codes included: 

1) Finalizing and plotting the geometry database; 

2) Finalizing the database of arrival-time picks. This operation was repeated every time 

when a substantial amount of new data was added to the dataset. By using the current 

arrival-time picks, this code calculates the averaged dependencies of the travel times 

for each phase on the source-receiver distances (Figure 3.10). These regional-

average travel times are then displayed in the QC and phase-time picking displays 

(subsection 3.4.1 ) and provide good guidance for future picking.  

3) Several codes for correcting errors encountered from unexpected parameters in the 

input data files; 

4) Several codes for plotting the various contents of the database; 

5) Relocation and refinement of source times (chapter 4); 

6) Codes for coda mapping and inversion (chapter 7);  

7) Codes for analysis of wave polarizations (chapter 8). 
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Figure 3.10. Travel times in Zagros dataset, plotted versus the source-receiver distances. Colored 
symbols are the interactive picks, and solid lines show the average distance dependencies of the 

travel times determined for each seismic phase.   

3.5. Conclusions 

Large earthquake datasets can be conveniently and efficiently processed and inverted by 

sophisticated algorithms by using a combination of a high-throughput, exploration-style seismic 

processing system, which invokes specialized tools based on data analysis or programming 

packages such as Matlab (Octave), Java, Python, Julia, GMT, or other. This approach maximizes 

performance and flexibility of data analysis while minimizing the complexity of coding and the 

number of intermediate data files. In the present project, all steps of data analysis and inversion 

are done by using this approach, with the IGeoS seismic processing system with command lines 

on GMT and Octave interfaces. The resulting processing is completely self-documented and 

reproducible on any Unix system. 
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CHAPTER 4    

EARTHQUAKE SOURCE RELOCATION 

In this chapter, I describe a key part of earthquake data analysis, which consists in accurate 

determination of the times and locations of earthquake sources. This determination is a part of 

routine data processing, which is performed in several stages. First, soon after the earthquakes 

occur and the records are acquired, initial locations and times are calculated by the local 

seismographic networks operators and published in catalogs. These initial locations are used for 

further data archiving and processing. In particular, the initial location and event times from the 

IRSC catalog were used for extracting the record segments used in this study (chapter 2). However, 

for more detailed and accurate data analysis, improvements of the original locations and source 

times are often needed. These corrected locations are often referred to as event relocations. 

In the following sections, I describe relocations performed for the Zagros area dataset 

(chapter 2). The relocation method is relatively simple (and standard) and only consists in 

adjustment of surface coordinates and times of seismic sources. In section 4.1, I give an 

introduction to several common relocation methods and a brief discussion of them. In section 4.2, 

I describe the relocation method used in this research, in section 4.3, I give the results, and in 

section 4.4, the resulting location errors are estimated. Finally, the chapter concludes with a 

discussion and conclusions (section 4.5). 

4.1. Introduction 

Earthquakes are unpredictable natural phenomena occurring at unknown locations and 

times, and therefore the determination of these parameters is a critical and fundamental problem 

in earthquake studies. In this dissertation, the datasets included catalogs of initial estimates of 

source coordinates and times (chapter 2), and therefore our task consisted in only improving these 

locations. This procedure of improving the earthquake locations and origin times presented in the 

catalog is called relocation. 
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The accuracy of event locations and origin times depends on several factors including 

travel time errors, accuracy of the model for seismic velocity structure, uncertainties in arrival time 

picks, or mathematical methods of location using, for example, only the arrival time picks or 

complete waveforms (Pavlis, 1986). In the simplest form used in this chapter, relocation can be 

performed by using the picked P-wave arrival times. This location or relocation by using arrival-

time picks from individual records is called the absolute location method. This type of method is 

used in the following sections.  

The absolute (re)location relies on accurate picking of seismic arrivals, which is usually 

has to be done interactively by an experienced analyst. Such picking of P-wave onsets took a 

significant part of the time in this study (chapter 3). However, arrival picks often cannot be made 

accurately, particularly at larger distances or for weaker events. In such cases, event relocation can 

be solved through relative location methods. The idea of the relative relocation method consists in 

correcting the location and origin time of an event by comparing the waveforms to another event 

located sufficiently close to it. For closely spaced events of similar sizes and mechanisms, the 

waveforms may also be similar, which allows accurate measurement of the time difference 

between them by using waveform cross-correlations (Waldhauser and Ellsworth, 2000). If the 

hypocentral separation between the two events is insignificant compared to the hypocenter-station 

distance and the scale length of the velocity gradient, then the ray paths between the source and a 

common station are similar along the whole ray path. By using this similarity, the travel-time 

difference for the pair of events recorded at one station is related to their spatial separation and 

difference in origin times (Waldhauser and Ellsworth, 2000). The waveform cross-correlation 

procedure can be performed in the time domain (Deichmann and Garcia-Fernandez, 1992) or in 

frequency domain (Poupinet et al., 1984).  

A powerful and popular technique for relative relocation of earthquakes is known as the 

double-difference method. This location algorithm uses pairs of absolute travel-time 

measurements or cross-correlation of pairs of waveforms of P and/or S waves. The relocation is 

performed by forming differential travel times and further minimizing their residuals (differences 

between the observed and theoretical travel-time differences for pairs of arrivals) (Waldhauser and 

Ellsworth, 2000). As in all location methods, it is important to know the velocity structure in the 

vicinity of the located events.  In double-difference methods, the forward problem is usually solved 



 

57 

 

by using 1D-layered velocity models. However, Michelini and Lomax (2004) showed that if a 1-

D gradient model is used, it can result in substantial distortions and errors in the relative relocation 

results for closely spaced events.  

Another common method for determining earthquake locations or relocations is the 

probabilistic non-linear approach, which represents modern implementation of classical graphical 

methods for locating earthquakes. In this method, the location is achieved by inverting for a set of 

points at which the location satisfying the given travel times could occur within a 1-D or 3-D 

layered model. When estimated from multiple travel-time picks, these sets of points give the 

posterior probability density function (p.d.f.), from which the location and its error estimates are 

obtained (e.g., Lomax et al., 2000). The estimation of this p.d.f. is subject to uncertainties due to 

assuming Gaussian distributions of time errors, network geometry, uncertainties in arrival time 

picks, and travel time computing errors. Due to non-linear relationships between the travel times 

and event location in the forward model, the location uncertainty area is often of non-ellipsoidal 

shapes (Lomax et al., 2001).  

In this research, I perform relocation by using a simple method similar to the one described 

in the preceding paragraph. Because the Zagros dataset is dominated by regional-distance 

recordings, I only adjust the horizontal coordinates of source locations and leave the depths 

unchanged. Note that the determination of depths usually requires local-distance recordings and 

careful analysis of phases reflected from the surface. This analysis has likely not been performed 

with the present records, and most of the reported depth values in the catalog are likely filled with 

nominal (average for the area) values. I also perform relocation without considering any velocity 

model. Instead of constructing a velocity model and modeling travel times in it, I construct an 

average 1-D travel-time model (dependence time(distance)) by averaging all of the available P-

wave travel times from 592 events.  

4.2. Method 

Each event within the dataset is relocated independently, by using all travel-time picks 

available for that event. The relocation is posed as an inverse problem with three unknown 

parameters, which are the shifts in the longitude and latitude of the event and a modification of its 

time. Therefore, when using more than three arrivals to constrain the event, the inverse problem is 
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overdetermined and can be solved by least-squares inversion. Because the ray geometry depends 

on the location of the event, the location problem is nonlinear, and it would be solved by an 

iterative method as described below.  

During one step of the iterative relocation, the travel-time fitting problem is linearized as 

follows. Denoting by (x, y, z) the coordinates and depth of the event, xi and yi the coordinates of ith 

seismic station recording this event, x and y the unknown shifts in the coordinate of the station 

and t the shift of its origin time, the requirement of travel-time fitting for this event is written as 

                                                 ( ), ,i it t T x x y y z z+  = +  +  +  ,   (4.1) 

where ti is the travel time picked at station i, and Ti(x,y,z) is the regional-average travel-time 

function. This function is determined prior to relocation and concurrently with interactive travel-

time picking, by interpolating the time-distance curve of all available P-wave onset picks (chapter 

3). When relocations are performed, the function Ti(x,y,z) is re-calculated, which allows to improve 

the locations further. In the present simplified approach, I used the regional travel-time model in 

“1-D” form, as a single function ( ) ( ), ,i iT x y z T d= , where di is the source-receiver distance. 

As mentioned above, because the dataset contains few local-distance recordings, I do not 

attempt hypocenter depth location (i.e., consider z = 0). The inverse problem consists in finding 

x, y, and t giving the best approximation of equation (4.1). This problem is nonlinear, and its 

solution is implemented by an iterative method. During each iteration, eq. (4.1) is linearized as 

                                                  0
i i

i i

T T
t t T x y

x y

 
+   +  + 

 
,   (4.2) 

where ( )0 , ,i iT T x y z= . The partial derivatives of travel time represent components of the ray-

parameter vector pi for waves from ith station at the position of the source. Therefore, eq. (4.2) is 

                                                   0ix iy i it p x p y t T− +  +   − .   (4.3) 

During the nth iteration of the inverse, this equation can be written in matrix form as 



 

59 

 

( ) ( )n n
 = L m t , where the ith row of matrix L equals ( )1 ix iyp p− , the ith element of the right-

hand side vector t(n) equals 
( )

0

n

i i it t T = − , the model vector is 
( ) ( )

Tn
t x y =   m , and 

superscript ‘T’ denotes the matrix transpose. For more than two travel-time records i, this system 

can be solved for m in the form of a matrix multiplication of the data (the generalized linear 

inverse): 
( ) ( )1n n

g

− = m L t . I use the ordinary least-squares method, in which ( )
1

1 T T

g

−
− =L L L L . 

Note that similar to t(n), matrices L and 
1

g

−
L  are evaluated by using current positions of the 

relocated source, and therefore they also depend on the iteration n.  

To evaluate the components of ray parameter in eq. (4.3), at this initial relocation stage, I 

take the 1-D form of the travel-time model: assume that regional travel times depend only on the 

source-receiver distance ( ) ( )
2 2

i i id x x y y= − + − ,  

                                                   ( ) ( ), , | ,i i iT x y z x y T d= .   (4.4) 

With this travel-time function, sinxi ip p = −  and cosyi ip p = − , where i is the azimuth to the 

ith station (Figure 4.1), and p T d=    is the ray parameter measured from T(d). 

To solve the nonlinear travel-time inverse problem (4.1), I take the initial linear 

approximation (with n = 1) equal ( ) ( )1 1
= m m  and obtain the next iteration as 

( ) ( ) ( )1n n n


+
= + m m m . This iteration converges when 

( )n
 →m 0 , i.e. when the travel-time misfits 

t(n) can no longer be reduced by changing t, x, or y. Empirical factor   1 is included to 

“slow down” this convergence, in order to avoid oscillations due to “overshooting” of the optimal 

model. Parameter  = 0.5 allows achieving stable convergence with 15 iterations in the present 

case. 
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Figure 4.1. Schematic map of relocation and notation in eqs. (4.1)– (4.3). 

4.3. Results 

The relocation is applied only for events satisfying three criteria: 

1) Producing at least three picked P-wave travel times. 

2) The largest azimuthal gap is less than 240. The requirement on the azimuthal gap is 

important in seismic location, because it allows avoiding one-sided distribution of 

ray paths causing large location errors in the transverse direction.   

3) The inverted relocation distances are below 30 km in each step of the iterative 

procedure. This criterion removes events for which the P-wave picking errors are 

unreasonably large. These events likely require revisiting the quality control and 

picking operations (chapter 3). 

The above selections resulted in 592 successfully relocated events out of the about 1300 events in 

the dataset. A histogram of relocation distances for the relocated events is shown in Figure 4.2.  

Figure 4.2 shows that most events are shifted by less than 20 km by the relocation 

procedure. The amounts of source location shifts in the horizontal spatial directions for all 

relocated events are presented in Figure 4.3.  
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Figure 4.2. Histogram of relocation distances. 

 

Figure 4.3. Longitudinal (X) and latitudinal (Y) shifts for all relocated events. 

Figure 4.4 shows histograms of the distributions of the longitudinal and latitudinal shifts 

of the sources. The width of distributions of shifts for each of the horizontal coordinates is about 

20 km. Larger estimated relocated distance for some events (outliers) such as near 60-km 

relocations in Figure 4.2 appear to result from travel time errors caused by several factors such as 

lower signal noise ratio, poor phase identification, and unfavourable azimuthal distribution of 

receiver stations.  
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Figure 4.4. Histograms of relocation distances in the longitudinal (X) and latitudinal (Y) directions.  

Figure 4.5 shows the distribution of event origin time shifts derived by the relocation 

procedure in the preceding section. Roughly, the time shifts are within about ±5 s. The time shifts 

are slightly (by about 1 s) shifted toward negative values, which suggests that our arrival-time 

picking was done (on average) somewhat later than in the original locations (which likely used 

mostly local-earthquake data).  

 

Figure 4.5. Histogram of estimated origin time shifts. 
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Another possibility for the time shifts may consist in the effects of topography (variable 

elevations of the stations) and variations of the velocity structure within this large region. All these 

observations show that the presented relocation is only a rough first approximation necessary for 

preconditioning the dataset for subsequent work. With the development of a 3-D tomographic 

model or a more accurate empirical travel-time model Ti(x,y,z), relocation iterations can (and 

should) be continued, and its errors (next section) should reduce. Similarly, using the derived 

travel-time model and information about location errors above, additional quality control and 

correction of the travel-time picks can be performed. These operations would also improve the 

quality of event locations and origin times and reduce their errors. 

As a geometrical criterion of the quality of location problems, a histogram of the numbers 

of paths used in each relocation is shown in Figure 4.6. Because at least three receivers are needed 

to calculate relocation, the smallest number of paths is three, and the largest is 15. For most 

relocated events, the number of paths ranges from five to nine. 

 

Figure 4.6. Histogram of the number of paths used in the relocation. 

Figure 4.7 compares the initial time errors (black plus signs) with similar errors after 

relocation (stars). For each event, the time errors are measured by the root mean square (RMS) 

differences of all travel times from the available stations from the regional time Ti(x,y,z) (preceding 

section). The reduction of the errors was achieved by shifting event coordinates (relocation) and 
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changing the source times. As shown in Figure 4.7, the final travel-time errors are noticeably 

reduced compared to the initial ones, and both of the initial and final errors strongly vary for 

different events. As discussed above, these travel-time errors are affected by the velocity structures 

and elevations of the receivers, and therefore they would change with tomographic inversion and 

more accurate relocation. 

 

Figure 4.7. Travel time misfits versus the number of the performed relocation. The initial travel-

time errors are shown by plus signs and the final travel-time error are shown by blue stars. 

Because earthquakes are caused by crustal faulting, it is interesting to compare their 

locations with known active faults within the study area. In high-resolution local-earthquake 

studies, double-difference relocations often lead to relocated events tightly clustering near faults 

(e.g., Waldhauser and Ellsworth, 2000). For the present study, the relocated events with fault traces 

mapped at the surface are shown in Figure 4.8, and Figures 4.9 and 4.10 also show its zoomed-in 

versions. For comparison, the original origin locations from the IRSC catalog are also shown in 

Figures 4.9 and 4.10. Although the relocation improves the consistency of the travel-time dataset 

(Figure 4.7), the resulting locations (Figures 4.9 and 4.10) show no convincing associations with 

faults. Some of the relocated events appear to come closer to the mapped faults (red arrows in 

Figures 4.9 and 4.10), some get farther away from them, and some may become closer to a different  
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Figure 4.8. Coordinates of the relocated events (red dots) and mapped fault traces (black lines with 

indicators of slip directions). Triangles are the seismic stations of this study.   

 fault.This is not surprising, because earthquake sources are located at significant depths at which 

their locations may differ from surface projections of the faults. Also, many earthquakes may be 

produced by faults not reaching or not mapped at the surface. For the events in the recent catalog 

I used, there has been no studies associating them with specific faults. This task of event 

association with subsurface structures can be difficult and equivocal. For example, in my previous 

study (Safarshahi et al., 2013), I presented evidence for associating a known event with a fault 

different from the one with which it was previously associated. Finally, as shown in the next 

section, the accuracy of the simple relocation scheme above is likely insufficient for making such 

accurate associations with subsurface structure in this complex area. 
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Figure 4.9. A zoom-in of Figure 4.8, additionally showing the original locations (small plus signs 

connected with relocated origins (red circle) by blue lines). Red arrows show the relocated events 

that get closer to the mapped faults.  

 

Figure 4.10. Another zoom-in of Figure 4.8, additionally showing the original locations. Symbols 

and lines are as in Figure 4.9.  
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4.4. Location Uncertainties 

As in any physical measurement, the best-fit locations and origin times obtained by the 

procedure in the preceding section are subject to uncertainties. In particular, location uncertainties 

are caused by errors in travel-time measurements, inaccuracy of the regional travel time model 

(due to simplification of the 1-D structure), and uneven distribution of receivers (and particularly 

azimuthal gaps). These factors lead to appearance of a near-elliptical location uncertainty area for 

each event, whose shape and size I try estimating in this section.   

For multi-parameter or nonlinear inverse problems, uncertainties of model parameters can 

be analyzed by the “Monte Carlo” (random sampling) method. To evaluate uncertainties of the 

location problem for one event (section 4.2), I performed a series of Monte Carlo tests by 

generating new travel time data equal ( )0 , ,i i it t T x y z t= + +  (eq. (4.1)), where t0  is the origin 

time for this event and ti is a random time error.  The time errors were assumed to belong to a 

Gaussian distribution with standard deviation equal the final travel time error (Figure 4.7). Using 

these random synthetic times as data ti in eq. (4.1), the iterative relocation procedure was repeated 

giving an updated location of the earthquake. Such trials with random ti were repeated 250 times 

to obtain sampling of possible locations.  

The method described above was applied to each of the relocated events in the dataset. 

Here, I present examples for two events for which the relocations were obtained. For one of these 

events, the deviations of locations caused by random time errors ti are shown by green dots in 

Figure 4.11. The average travel-time error is shown in this figure by the blue circle of radius 

( )stddevP iR V t= , where stddev() denotes the standard deviation of the time errors, and 

VP = 5 km/s is the characteristic P-wave velocity within the crust. This circle shows a simple 

estimate of the expected level of location uncertainty due to travel-time uncertainties.  

To obtain more rigorous and detailed measures of location uncertainty, the distribution of 

dots in Figure 4.11 can be approximated by a 2-D Gaussian distribution. Parameters of this 

distribution can be obtained by calculating the 2-D covariance matrix for source coordinates (x,y): 
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( ) ( )

( ) ( )

,

,

v x c x y

c x y v y

 
=  

 
C , (4.5) 

where x and y are the components of the deviations of locations, and the variances and covariances 

of coordinate values are defined by the usual relations: 

                                          ( ) ( )
2

1

1 n

i

i

v x x x
n =

= − , (4.6) 

                                         ( ) ( )( )
1

1
,

n

i i

i

c x y x x y y
n =

= − − . (4.7) 

Then, the standard deviational ellipse (SDE) can be drawn by using the eigenvectors of the 

covariance matrix C. The semiaxes of this ellipse are given by square roots of the eigenvalues of 

C (variances of the principal components), and the directions of the semiaxes are those of the 

eigenvectors. The SDE is shown by the dashed red line in Figure 4.11. 

 

Figure 4.11. Evaluation of location uncertainty for event 1135452. Coordinated x and y are the 

deviations of location due to time uncertainties. Blue dot shows the amount of source relocation 

(section 4.2). Green dots show the deviations locations due to random travel-time errors. The blue 
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circle average travel-time misfit. Red ellipses are the SDE (dashed line) and the 95% confidence 

ellipse (solid). 

Approximating the distribution of random location errors by a 2-D Gaussian distribution, 

location accuracy can be described graphically by drawing ellipses centered on the best-fit 

location. These ellipses are obtained from the SDE by scaling both of its dimensions by a positive 

factor r, so that the value of r = 1 corresponds to the SDE. Denoting by x and y the coordinates in 

the directions of the principal axes of the SDE, the shape of the ellipse of size r are given by 

equation: 

                                          

2 2

1 2

1
x y

r r 

   
+ =   

   
, (4.8) 

where 2

1  and 2

2 are the eigenvalues of the covariance matrix for randomized locations 

(variances), and 1 and 2 or the semiaxes of the SDE. Relation (4.8) can also be expressed by 

replacing variables (x,y) with scaled Cartesian coordinates (x
1
,x

2
) as 1 1x x=  and 2 2y x= . In 

terms of these variables, the 2-D Gaussian distribution probability density function equals

( )
2 2

2 2

1 21 2

1 1
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2 22 2

x y
p x y

  

 
= − − 

 
 and ( )

2 2

1 2
1 2

1
, exp

2 2

x x
p x x



 +
= − 

 
, respectively. 

For any r, the confidence level of location is defined as the probability P(r) for a random 

location to be found within the error ellipse. Integrating over the interior of the ellipse, this 

probability is obtained as 

    ( ) ( )
2 2 2 2

1 2

2 2 2
1 2

2

2 2 2
1 2
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1 1
, 1
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+
− − −

+ 

= = = = −    , (4.9) 

where a further transformation into polar coordinates was used: 1 cosx  =  and 2 sinx  = .  

Equation (4.9) shows that for r = 1, P = 39.35% of points are expected to be found within 

the 2-D SDE (dashed red ellipse in Figure 4.11). This level of confidence is usually insufficient, 
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and instead of the SDE, error ellipses with confidence of  P = 95% are typically used. By inverting 

eq. (4.9), the corresponding ( )2ln 1 2.447r P= − −   (solid red ellipse in Figure 4.11). 

As Figure 4.11 shows, there is an approximately 15-km location uncertainty at 95% 

confidence in the present dataset. The uncertainty area is extended in the E-W direction and 

approximately in the same direction as the relocation shift (blue dot in Figure 4.11). The relocation 

amount is smaller than the error ellipse, which suggests that the amount of relocation for this event 

was insignificant compared to the measurement error. Figure 4.12 shows another way for 

assessment of the location problem for the same event. In this figure, P-wave time misfits with 

respect to the regional travel-time model are shown for all stations recording this event. Each 

travel-time misfit ti is shown by a segment in the direction of the back-azimuth to the 

corresponding station i, and the length of the segment equals 
it . Red lines indicate positive 

travel-time misfits 0it   (suggesting that the source might be farther away from the station), and 

blue lines correspond to 0it  . Correlations of these errors with azimuths might indicate possible 

effects of geographical distribution of seismicity. The larger negative misfit (–2.1s) for station 

KLNJ with epicentral distance 342 km may be caused by a larger azimuthal gap.   

 

Figure 4.12. Travel-time misfits for each station recording event 1135452. Station codes and 
epicentral distances are labeled. The directions of the lines correspond to the directions to the 

stations used in relocation, and their lengths are proportional to the travel-time misfits. Red and 

blue lines indicate positive and negative travel-time misfits, respectively.  
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The relocation amount smaller than the 95% confidence interval and the combinations of 

travel-time misfits (red and blue lines in Figure 4.12) suggest that the source is indeed located 

(within measurement errors) close the location reported in the catalogue. 

Figures 4.13 and 4.14 show a similar Monte Carlo uncertainty analysis for event number  

1137741. Because of the poorer coverage by seismic stations, the location uncertainty is much 

larger in this case. There is an over 100-km estimated location uncertainty (red ellipse) due to 

random time errors in this dataset. However, these estimates of the SDE and the 95% confidence 

ellipses are likely exaggerated by several outliers present in the data (green dots far from the main 

cluster in Figures 4.13), which are due to a small number of stations used for this event. The 

uncertainty area is extended in the NEE-SWW direction.The optimal relocation is located at north-

east of original location. The relocation with relatively few stations and significant azimuthal gaps 

(Figures 4.12 and 4.13) can potentially be improved by detailed comparative analysis of the 

waveforms and improving the P-wave travel-time peaks ti. Another improvement of this location 

could be made by using a more detailed travel-time model ( ), , | ,i iT x y z x y . Such a model can be 

obtained, for example, from travel-time tomography or by using regionally variable and/or 

anisotropic extension of the approximate time-field model in eq. (4.4).  

 

Figure 4.13. Evaluation of relocation uncertainty for event number 1137741. Symbols and lines are 

as in Figure 4.11.  
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Figure 4.14. Travel-time misfits for each station recording event 1137741. The maximum time 

errors are +2.2 s and -2.1s for stations BRJ and ABH1, respectively. Lines and symbols are as in 

Figure 4.12. 

4.5. Discussion and Conclusions 

In this chapter, I performed a simple 2-D relocation of 592 events from in Zagros region 

by using a non-linear algorithm and a 1-D empirical model for travel times dependent on source-

receiver distances. The present event relocation results using picked P-wave travel times help to 

improve any further measurements of data analysis such as travel time tomography, and they 

provide significant geological information such as the origin time of the earthquake ruptures and 

their improved epicenters locations. However, the results can be improved in a number of aspects 

including improved quality control and travel-time picking, and also iteration of the relocation 

procedure with tomographic inversion of P-wave travel times. A more sophisticated probabilistic 

approach using 3-D velocity models could improve the accuracy of relocation results (chapter 8).  

Most relocated earthquakes have horizontal spatial distributions in the range 10-25 km. 

The accurate relocations can provide us a better knowledge of seismicity pattern. Some of the 

relocated events suggest improved clustering near known mapped crustal faults. However, the 

information of depths is not inverted to provide a more detailed and accurate seismicity pattern. 

With the above improvements of the background travel-time model and relocation methods, the 
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pattern of seismicity should definitely become more accurate, and it may suggest associations of 

the earthquakes with mapped or hitherto unmapped crustal faults.  
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CHAPTER 5     

EMPIRICAL TIME–FREQUENCY RELATIONS FOR BODYS-WAVE 

SPECTRAL AMPLITUDES IN RIGAN AREA 

This chapter describes a new method for deriving empirical time-frequency relations for 

body-wave seismic spectral amplitudes. Empirical distance- and frequency-dependent relations for 

body-wave spectral amplitude are extensively used in seismic regionalization and nuclear test 

monitoring, and these models are referred to as “standard models” below. This chapter proposes a 

much more accurate approach to such models. The approach is applied to the body S waves from 

Rigan area (chapter 2), but as argued in this chapter, it can be applied to much larger datasets from 

other areas. In addition, similar approaches can be used for other type of empirical amplitude 

models, such as for surface waves and coda. 

The results of this chapter were published in the following papers: 

• Safarshahi, M., and Morozov, I. B.  (2021a). Robust empirical time-frequency 

relations for seismic spectral amplitudes, part 1: Application to regional S waves in 

southeastern Iran. Bulletin of the Seismological Society of America, 111, 173-192, 

DOI: 10.1785/0120200172 

• Safarshahi, M., and Morozov, I. B.  (2021b). Robust empirical time-frequency 

relations for seismic spectral amplitudes, part 2: Model uncertainty and optimal 

parameterization. Bulletin of the Seismological Society of America, 111, 193-205, 

DOI: 10.1785/0120200180 

The copyright for these papers belongs to the Seismological Society of America, which 

allows authors to use their papers in their dissertations. The papers were modified and reformatted 

for inclusion in this dissertation. My contributions to the papers consisted in preparing the data, 

modeling, providing codes, participation in interpretation and writing.  

The discussion in this chapter is rather extensive and organized as follows. In section 5.1, 

I describe the methodological difficulties of many existing standard models for seismic amplitudes. 

These problems originate in understanding the physical and mathematical meanings of the term 
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“seismic attenuation”, the significance of the “frequency-dependent Q-factor”, separation of the 

different “attenuation effects”, and the “over-underdetermined character” of the inverse problems 

used for deriving standard models. The precise meanings of these terms are rarely considered in 

the literature, and they are considered in section 5.1. 

 In section 5.2, I develop a general parameterization for body-wave standard models and a 

general inverse method for them. A data-driven and physically meaningful parameterization for 

seismic-wave amplitudes is critical for formulating an accurate and stable standard model. Another 

key part of the proposed method consists in forming additional constraint equations to remove the 

biases observed within the model. By using different sets of constraints, the method also allows 

deriving the existing A(t,f) models and Q(f).  

In section 5.3, I apply the new approach to the Rigan data. The most notable observation 

from this section is that after creating a robust model parameterization, Q values within the study 

area become frequency-independent and much higher (by over 20 times at frequencies near 1 Hz) 

than previously inferred by conventional analysis (Safarshahi et al., 2013). In subsections 5.3.1 

and 5.3.2 I summarize the key findings, and in subsections 5.3.3 and 5.3.4, I give details of 

normalized source and site spectra and quantitative evaluation of the significance of the frequency-

dependent Q-factor.  

In section 5.4, I interpret the new standard model for Rigan area and point out some 

uncertainties inherent in interpreting similar models. Some of these uncertainties are conceptual 

(such as the differentiation between the source and receiver parameters kappa), and some are 

quantitative and related to the limited data coverage and data errors. These quantitative errors are 

measured in section 5.5. 

In section 5.6, I propose an approach to parameterization of standard models for body-

wave amplitudes that has also not been used before. Instead of using predefined mathematical 

forms of equations, the standard model is based on a statistical analysis of the obtained best-fit 

model for the given area. In section 5.7, I discuss the expected relation of this method to datasets 

of different types and volumes, and also implications for other studies. In particular, I show how 

the well-known standard model by Atkinson (2004) is reproduced as a special case of the approach 

in this study. 
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5.1. Introduction 

Quantitative characterization of recorded seismic-wave amplitudes is among the key goals 

of seismic observations, and it is critical for estimating seismic hazard, measurement of 

attenuation, inverting for physical properties of earthquake and explosive sources, structure of the 

Earth, coda studies, constructing ground-motion prediction equations (GMPEs), and nuclear test 

monitoring. Empirical time and frequency dependencies of wave amplitudes are often referred to 

as “attenuation” in seismology (e.g., Castro et al., 1990; Atkinson, 2004). However, in physics, 

this term is understood more specifically, as hysteretic frictional phenomena within materials or 

damping in resonant systems. In this dissertation, I understand attenuation in this physical sense, 

and following Fisk and Phillips (2013a, 2013b), use the more general term “standard models” to 

describe the source-, site-, and particularly combined path and frequency dependencies of seismic 

amplitudes. 

This chapter focuses on analyzing a general parameterization for time- (denoted t, or 

alternatively distance) and frequency- (f) dependent standard model A(t,f) for S waves at local to 

regional distances. I use factorized time-frequency dependencies similar to those considered in 

many approaches, such as spectral decomposition, empirical Green’s functions (EGF) (e.g., 

Trugman and Shearer, 2018), and GMPE. Although all these problems are closely related, spectral 

decomposition and EGF primarily focus on estimating the source and site spectra, whereas 

“standard models” mostly focus on the path and endpoint effects on wave amplitudes (e.g., Fisk 

and Phillips, 2013a, 2013b). In this chapter, my emphasis will be on reducing the mutual trade-

offs between the Q factor, high-frequency site effects (kappa), parameters of geometrical 

spreading, and also on their relations to the selected form of the frequency-dependent Q (Morozov, 

2008b). After evaluating the standard models, source and site spectra will also be estimated.  

Ideally, the explicit mathematical form or computer code for calculating a time-frequency 

amplitude model should not be important as long as it accurately captures all significant features 

of the observed amplitude dependencies. Nevertheless, in practice, models used by different 

authors are often particular about their mathematical forms. These forms are motivated by 

theoretical considerations, simplicity, selections of inverse methods, and often by historic 

conventions evolved in various research or engineering areas. The commonly used 
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parameterizations of wave amplitudes include power-law exponents of geometrical spreading 

(denoted  here), parameters fmax,  and their distance dependences (in high-frequency spectral 

decay, or “kappa” studies), spatial, temporal, and “geometrical” attenuation coefficients (, , and 

, respectively; Morozov, 2010a), t* and Q (in body wave and coda studies), resonant frequencies 

f0 and other site response parameters, the value of Q at 1 Hz (often denoted Q0), and exponent  in 

the broadly used frequency dependence ( ) 0Q f Q f = . The so-called “nonparametric” approaches 

(e.g., Castro et al., 1990; Oth et al., 2008, 2011) also utilize parameterizations of amplitudes by 

coefficients of polynomial spline functions in distance. 

Atkinson (2012) summarized several forms of “parametric” standard models for seismic 

ground motion but noted that none of them achieves satisfactory data fitting at both local (< 80–

100 km) and regional (> 100–150 km) distances. As shown in this chapter, the same problem 

occurs for “nonparametric” models across the transition between the local and regional distance 

ranges. These difficulties of the existing models are related to the common role of the frequency-

dependent Q-factor in them. The Q (path effect) typically represents the key result of the inversion 

or the key parameter needed for isolating the source and/or site effects (e.g., Aki and Chouet, 1975; 

Castro et al., 1990; Edwards et al., 2008; Oth et al., 2008; Trugman and Shearer, 2018; Palmer and 

Atkinson, 2020). Most attenuation parameters (t*, , fmax,  Qcoda) are explained by Q factors 

within portions of wave paths (e.g., Anderson and Hough, 1984; Ktenidou et al., 2014). However, 

the Q itself is only an intuitively defined phenomenological attribute of a seismic wave, and its 

meaning is strongly variable in different research areas (Morozov and Baharvand Ahmadi, 2015). 

As stated by Castro et al. (1990), in wave amplitude/attenuation studies, “… estimates of Q can 

only be obtained relative to some assumed geometrical spreading curve …” This observation 

means that this particular type of Q only represents the difference between the observed wave 

amplitudes and some reference model for them. This quantity contains the cumulative effect of the 

entire crustal structure, and its relation to physical attenuation is uncertain. 

Because of reliance on assumed reference models and the empirical Q(f), the key challenge 

of defining a standard model consists in achieving uniqueness, sufficient accuracy, and reliable 

physical meaning. As shown in this chapter, most existing models for A(t,f) contain an important 

common problem, which can be described as “over-under-parameterization.” This two-tier 
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parameterization is expressed in a two- (or more) step approach to inversion. This problem can be 

seen even in pivotal studies, such as by Aki and Chouet (1975) and “parametric” approaches by 

Castro et al. (1990) and Atkinson (2004). In these models, an oversimplified form of reference 

geometrical spreading (i.e., an under-parameterized A(t) dependence not fitting the data) is 

combined with a permissive (over-parameterized) model of arbitrarily frequency-dependent Q(f). 

In most models (e.g., Aki and Chouet, 1975; Atkinson, 2004; Fisk and Phillips, 2013a, 2013b), the 

source and receiver couplings (usually a large number of parameters) are also excluded from the 

inversion for the geometrical spreading and Q(f). Although the model turns out to be grossly under-

parametrized and biased in its frequency-independent part, this bias is absorbed by Q values 

inferred independently at each measured frequency f. As a result of this two-step procedure, the 

bias caused by the assumed geometrical spreading is presented as an apparent Q(f) with low 

Q0 = Q(1 Hz) and increasing with frequency. Such Q(f) is found in practically all studies based on 

assumed geometrical spreading (e.g., Bowman and Kennett, 1991; Morozov, 2008b, 2010a; 

Morozov et al., 2018). 

The key shortcoming of the tricky “over-under-parameterization” of standard models 

consists in excluding the basic case of elastic crustal and upper-mantle structure. For an elastic 

Earth with layering or velocity gradients, all amplitudes A(t,f)  A(t) are independent of f, and the 

measured attenuation should presumably equal Q-1 = 0. However, current models can practically 

never produce a Q-1 = 0. Because the actual geometrical spreading differs from ( ) 1G t t− , single-

station measurements based on Aki and Chouet’s (1975) and similar approaches yield 

( ) 0Q f Q f= (i.e.,  = 1) in the elastic case, where Q0 < 0 for ray focusing and Q0 > 0 for 

defocusing (Morozov, 2008b, 2010a). Thus, a Q(f) with 1   represents not as a Q-type 

attenuation but geometrical spreading ( ) ( ) 1 0
,

Q
G t A f t

− =
  deviating from the assumed level 

(Morozov, 2008b). Conventionally, Q(f) with  > 0 is attributed to “scattering attenuation” (Aki 

and Chouet, 1975). However, both of these interpretations are cumbersome for a layered elastic 

medium, because there are neither inelasticity nor Aki’s (small-scale random) scattering in this 

case. 
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The missing zero-attenuation limit can be corrected by changing the parameterization of 

the path-related factor ( ) ( )1, expA f t ftQ f −  −   to ( )exp f t−    , where ( ) 1

ef fQ   −= +  

is a two-parameter temporal attenuation coefficient, ( )0 =  is the zero-frequency 

(“geometrical”) attenuation, and Qe measures the deviation from it (“effective Q” by Morozov 

(2008b, 2010a)). The conventional Q(f) therefore equals ( ) ( ) ( )1Q f f f c d f − = = +  (where 

1

ec Q−=  and d  = ). The latter form of frequency dependence was also used by Castro et 

al. (1990). This parameterization contains no singularity at f → 0 and Q–1 → 0, and it reveals 

another important elastic parameter . For these reasons, the (f) parameterization is stable and 

advantageous in practice (Morozov, 2008b, 2010a, 2010b). 

When solving an “over-under-parameterized” inverse problem, the time/distance 

dependence of seismic amplitudes is underfitted during the first step of inversion whereas the Q 

part is overfitted during the second step. Model parameters related to frequency dependencies of 

amplitudes (Q0, , Qc, , or fmax) mutually trade off, and they also trade off with parameters 

selected by convention, such as , , “prior” model, or model smoothness. This trade-off is difficult 

to measure in practical studies, but it is critical for understanding the meanings of the respective 

physical properties. In particular, the resulting Q(f) trades off not only with the assumed value of  

(e.g., Kinoshita, 1994) but also with kappas, the entire source-receiver pattern in the data, and with 

equation weights applied in the inverse problems. Because the source-receiver distribution is 

unique to every dataset, I need to look for ways to exclude such trade-offs from final interpretation. 

Despite the complex tangle of issues above, a robust inversion of wave amplitude data can 

be achieved by flexible parameterizations and rigorous quality control of the inverse problem. In 

this chapter, I perform such an inversion by integrating multiple broadly used parameterizations 

for A(t,f). The chapter is organized as follows. In a previous analysis of these data, Safarshahi et 

al. (2013) used conventional methods and reported kappa and frequency-dependent Q values 

similar to those found in many other areas around the world. Thus, I expect that the methodology 

and key observations from these data should also be relevant to many other studies.  
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5.2. Method 

To formulate a standard model for S-wave amplitudes in some study area, we should focus 

not on justifying a preferred mathematical expression but on finding a set of parameters sufficient 

for describing amplitude variations in the data. The mathematical form of the model is of secondary 

importance, but it is critical that: 1) the model captures all significant features of the data and 2) it 

makes no hypothetical assumptions such as an idealized body-wave spreading law, amplitudes 

monotonously decreasing with distance, scattering uniformly distributed within the crust and 

mantle, “smoothness” of amplitude dependences, proximity to known “prior” models, or even the 

intuitive relation Q > 0. With regard to requirement 2) above, the approach of this chapter is 

sharply different from conventional models (Aki and Chouet, 1975; Atkinson, 2004; Fisk and 

Phillips, 2013a, 2013b). 

The definition of a frequency-dependent standard model for body S waves contains several 

aspects described in the following subsections. In subsection 5.2.1, I define the general functional 

form comprising most of the existing models as special cases. In subsection 5.2.2, I describe the 

most critical part of this model and compare it to existing non-parametric and parametric 

approaches to geometrical-spreading. In subsection 5.2.3, I outline the structure of the inverse 

problem. In subsection 5.2.4, I explain the general use of constraints in standard-model problems 

and specify the constraints preventing spurious spatial patterns of model parameters and data 

errors. Mathematical details of inversion with explicit constraints are given in Appendix A.  

5.2.1. Generalized standard model 

For given wave, let us denote its amplitude corrected for the source and receiver responses 

by symbol  This amplitude represents the result of an idealized experiment with both the source 

amplitude and receiver response equal to one. Quantity  should only be dependent on the 

structure and physical properties of the Earth in the study area, and this dependence is called the 

standard model. In this dissertation, similar to many studies, the standard models is considered as 

only a function of the travel time t and frequency f, denoted (t,f). Despite the variety of existing 

functional forms and notations for (t,f) (e.g., Aki and Chouet, 1975; Anderson and Hough, 1984; 

Castro et al., 1990; Mayeda, 1993; Atkinson, 2004; Graizer, 2017), all of them represent the same 
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physical property, which is the source- and receiver-normalized, time and frequency-dependent 

wave amplitude recorded from a given source at a given recording site:  

                 ( )
( )

( )

,
,

SR

A t f
t f

A f
 = ,        where           ( ) ( ) ( ) ( ) ( )s f

SR c S RA f B f f A f A f e
−

 . (5.1) 

Here, A(t,f) is a smooth function approximating the amplitudes recorded in the appropriate 

component of ground motion, ( ) ( )2 21B f f f= +  is the normalized Brune’s (1970) ground-

acceleration spectrum, fc is the source corner frequency, f  is the normalized frequency, AS(f) 

denotes some additional variation of the normalized source spectrum, AR(f) is the receiver response 

spectrum, and s(f) is an additional spectral shaping function. This function is used as a correction 

for unknown shapes of AR(f) and AS(f) during the linearized inversion for (t,f). In this chapter, I 

use two functions s(f) associated with the sources, but these functions turn out to be close and 

attributable to either AR(f) and AS(f) (section 5.3). Measurement of A(t,f) from the data may include 

some types of averaging or, for example, evaluation of response spectra or the peak ground 

acceleration (PGA). 

By including in eq. (5.1) contributions from source number j and receiver number i, let us 

consider the following generalized form for (t,f): 

                                                      ( ) ( ) ( ) ( ) *
0 0, Sj Rif f f f ft

ij ij j i ijt f S R G t e e e
  − − − − − = . (5.2) 

In this expression, 
*

ijt qt=  is the cumulative attenuation along the wave path, 1q Q  is the 

inverse quality factor, Sj is the source amplitude relative to spectrum AS(f) in eq. (5.2), Ri is the 

frequency-independent receiver site effect, G is the empirical geometrical spreading, and 

parameters  and f0 are explained below. With the above normalization of AS(f), the source and 

receiver amplitudes in eq. (5.2) equal 

                                                       

2

34

c
j

f
S


= ,          and        

i FS redR R A A= , (5.3) 
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where β is the shear wave velocity,  is the density near the source, R
 is the radiation pattern, AFS 

is the receiver site amplification due to the free surface, and Ared is the amplitude reduction factor 

(Brune, 1970). 

Model parameters in eq. (5.2) are differentiated exclusively by separating the path and 

endpoint effects and by the functional dependencies on variables t and f. The geometrical-

spreading factor G(t) depends only on the travel time tij, and it represents the “elastic” limit of 

ij(t,f) at f → 0 or ( → 0, Q–1 → 0). The exponential factors containing kappas denote the 

frequency-only dependencies, which are the high-frequency site effect Ri for each receiver i 

(Anderson and Hough, 1984) and its (possible) source counterpart Sj. Similarly to R, parameters 

S can contain effects of the Q and/or scattering within the near-source zone (Parolai, 2018). The 

factors containing kappas in eq. (5.2) are normalized so that they equal one at some reference 

frequency f = f0. With f0 = 0 and S = 0, the conventional definition of  = R (at zero distance) is 

obtained (Anderson and Hough, 1984). Note that factors Sj and Ri absorb any variations of scaling 

caused by selecting different f0. 

Parameters AR(f), Ri, and R are mutually related and represent the local (path-independent) 

receiver site response. Similarly, AS(f), Sj, and S constitute the source spectra. Because of mutual 

relations, these quantities should be carefully differentiated in eqs. (5.1) and (5.2). If taking 

parameter  purely empirically, great uncertainty in its physical meanings is observed, with 

dependencies on distances, back-azimuths, sensor orientations, source and site properties, and 

measurement methods (Ktenidou et al., 2014). To render simple and unique physical meanings to 

R and S in eq. (5.1), we can interpret them as parameters of amplitude responses for the site and 

source, respectively. Because parameters Si, Rj, S, and R are extracted from the spectra AS(f) 

and AR(f), these spectra must be normalized so that 

                                     ln ln 0S RA A= = ,         and        
ln ln

0S R
d A d A

df df
= = , (5.4) 

where the angle brackets represent the average values. 
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Finally, the factor containing q in eq. (5.2). is defined as the frequency-dependent path 

effect proportional to the product ft (number of wave periods). Its possible frequency dependence 

can be tightly constrained from the following, very general considerations. Eq. (5.2) can be 

understood as a Taylor series with respect to t, f, and ft: 

                                         ( ) ( ) ( )ln , ln Sj Rit f const G t f qft    = + − + − , (5.5) 

which is the perturbation-theory approximation (Morozov, 2010a). Thus, my restriction to a 

frequency-independent q (or Q) follows from the recognition that frequency-dependent effects are 

weak compared to elastic ones (Morozov, 2010a). For similar reasons,  is also usually viewed as 

frequency-independent. If higher orders in f are indicated by the data, second-order terms 

( ) 2

Sj Ri f   − +  (i.e., frequency-dependent kappas) may need to be considered in eq. (5.5). Third-

order terms 2q f t −  (i.e., the frequency-dependent Q) would be even more redundant, particularly 

if considering regional variations of q (i.e., its dependencies on t). Subsections 5.3.3 and 5.3.4 

contain a quantitative evaluation of such terms for this dataset. 

The functional form for ij(t,f) (eq. (5.2)) includes most time-frequency relations used in 

the literature. Generally, G(t) may contain the standard dependencies ( )G t t − , optionally within 

several source-receiver distance ranges and combined with the spatial attenuation coefficient by 

Bowman and Kennett (1991), coda amplitude exponent by Mayeda (1993), or “geometrical 

attenuation” ( )exp t−  by Morozov (2008b, 2010a). This parametrization is consistent with those 

by Aki and Chouet (1975), Atkinson (2004), and many other researchers, but extends them by 

treating   as variable in the inversion With allowing multiple variables, G(t) is hybrid between 

the “non-parametric” and “parametric” models by Castro et al. (1990). In time-domain 

measurements, eq. (5.2) can be used for modeling seismic coda envelopes (Aki and Chouet, 1975; 

Morozov, 2010a; Jhajhria et al., 2017). In GMPE applications, eq. (5.2) can also be used with 

slightly different forms of G(t) (Atkinson and Boore, 2006; Graizer, 2017; Kiuchi et al., 2019). 

Factors containing R correspond to kappa studies (Anderson and Hough, 1984; Ktenidou et 

al., 2014; Parolai, 2018). Source-end values 0S   can also describe a source rupture occurring 

slightly slower than the idealized displacement across the entire fault area (Beresnev, 2019a). 
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Mayor et al. (2018) also measured a somewhat different 
*t =  for coda waves by using a fixed t 

equal the coda lapse time. Distance dependencies of  (Anderson, 1991) are not included in 

eq. (5.2) because such dependencies should be contained in the path-attenuation parameter q. In a 

spatially variable (e.g., tomographic) model, G(t) and q should depend on coordinates (x,y) along 

the ray path. Parameters R and S can also be viewed as parts of the spatially-variable q within 

the receiver- and source-end blocks of the ray path. 

The key difference of eq. (5.2) from most existing models is in using the data at all 

frequencies simultaneously and inverting for all parameters including , q, Sj, and Ri in joint 

inversion. The only exceptions are the normalized spectra AS(f) and AR(f) (eq. (5.1)), which are 

inverted for separately, after solving for the standard model. The complete AS(f) and AR(f) spectra 

can readily be included in joint inversion, such as done, for example, by Edwards et al. (2008). 

However, for more interpretable and better constrained results, I include in the main inversion only 

the key parameters of these spectra, which are the respective amplitudes Sj and Ri, and average 

spectral slopes S and R. 

As illustrated in section 5.2,  correlated variations of Sj and Ri and data errors are significant 

and may exceed the effects of  and q. Therefore, strict error control is required for reliable 

inversion (subsection 5.2.4). The second major difference of the present method is that all available 

frequencies are considered together, and therefore the value of q is constrained more strongly than 

the conventional Q(f). At the same time, a significant trade-off between parameters q, , Si and Rj 

is also recognized (section 5.5.2). 

5.2.2. Effective geometrical spreading 

The frequency-independent amplitude dependence G(t) in eq. (5.2) is not truly 

“geometrical spreading” in the sense of some simple mathematical model of spreading wavefronts. 

For the effective (empirical) function G(t) in eq. (5.2), I use a five-parameter form (Figure 5.1a) 

encompassing several existing distance-range dependencies in the literature (e.g, Aki and 

Chouet, 1975; Atkinson, 2004; Drouet et al., 2008; Fisk and Phillips, 2013a, 2013b). This form 

of G(t) can be readily recognized in the data by a local amplitude minimum at travel-time t1 
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followed by a possible local maximum or inflexion at time t2 > t1 (Figure 5.1a). Algebraically, the 

frequency-independent amplitude in Figure 5.1a can be represented as 

                                         ( )
( ) ( )

( )
near near far far

1 2

r

t t

r tt t
G t e

   



 

− −

   
=    

   
, (5.6) 

where r, near, and far are model parameters to be determined by data fitting, and r(t), near(t), 

and far(t) are the respective basis functions (Figure 5.1b). Similar to many studies (e.g., Castro et 

al., 1990; Anderson, 1991; Atkinson, 2004; Fisk and Phillips, 2013a, 2013b), I could also use 

distances X1 = t1 and X2 = t2 (where  is the average S-wave velocity) for partitioning the 

geometrical spreading range. 

 

Figure 5.1. Geometrical spreading G(t) parameterized by extremal times t1 and t2, near- and far-

distance amplitude-decay exponents near and far, and relative-amplitude exponent r: a) schematic 

form of G(t) showing the near-and far-distance asymptotes and extrema at travel times t1 and t2 

(labels); b) basis functions in eq. (5.6) (gray and dashed lines and labels). In plot a), Gd(t2) denotes 

the amplitude extrapolated to t2 by the power law from times t < t1. 

The above parameterization for G(t) is selected purely empirically, to ensure that the model 

captures all important observations in the data. As it will be shown in section 5.3, a significant 

increase in the amplitudes is indeed seen across a relatively short interval [t1, t2] in Rigan-area 

data. To illustrate that such amplitude variation is not unique to these data, Figure 5.2 shows S-

wave amplitudes from an event within the Guerrero subduction zone (Mexico). These data are 

from Figure 5 by Castro et al. (1990), which was modified by normalizing all amplitudes by their 

average levels within 100-km epicentral distances and overlaying all frequency bands in one plot. 
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In the nonparametric spectral decomposition (e.g., Castro et al., 1990; Oth et al., 2011), amplitude 

decays are treated as independent at each frequency but smooth across the entire distance range 

(lines in Figure 5.2a). However, because of this required smoothness, the estimated amplitude 

trends are strongly affected by the single data point beyond 120 km (Figure 5.2a). If not assuming 

a uniform smoothness of amplitudes, the same data suggest a steeper and nearly frequency-

independent amplitude decrease to about 100 km and a relative amplitude increase or plateau 

beyond this distance (black lines in Figure 5.2b).  Such a plateau or small amplification in G(t) are 

also present in “trilinear” distance dependencies by Atkinson (2004, 2012) and also in 

nonparametric attenuation curves by Oth et al. (2011). 

 

Figure 5.2. Distance dependence of logarithms of normalized S-wave amplitudes from the 25 April 
1989 event recorded at stations along the Guerrero subduction zone in Mexico (Ms = 6.9; data from 

Figure 5 in Castro et al. (1990)): a) spectral amplitudes within six frequency bands (labeled in the 

legend) and non-parametric models for them by Castro et al. (1990) (lines); b) the same data points 

with an alternate, frequency-independent distance dependence (black lines).  

Theoretically, non-monotonous amplitude amplifications corresponding to r > 0 in 

eq. (5.6) are expected beyond about 80 to 150-km distances. Such amplifications should come 

from the onsets of near- and post-critical reflections from the Moho (hence my notation of r). For 

Sg/Lg waves, such effects due to layered crustal structure were modeled by Bowman and 

Kennett (1991) and other authors. These reflections are most coherent at lower frequencies, and 

therefore they are also seen by the increases in the values of empirical  near 100–120 km 
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(Anderson, 1991). Such effects can be included in the frequency-dependent geometrical spreading 

(Yang et al., 2007), which is, however, not considered in this chapter. 

The basis functions r(t), near(t), and far(t) in eq. (5.6) are selected so that function G(t) 

and its derivatives are continuous across the entire time interval, is of power-law forms for t < t1 

and t > t2, and shows extrema or inflections at times t1 and t2 (Figure 5.1a). The values of t1 and t2 

are determined by inspecting the amplitude-decay curves prior and after the inversion for G(t) 

(section 5.3). To match the times t1 and t2 observed in the data, the characteristic times 1 and 2 

are determined by solving equation ( )ln ln 0d G t d t = , which should have two roots located 

at t = t1 and t2 (Figure 5.1a). The resulting values of 1 and 2 are close to t1 and t2 respectively, but 

slightly shifted from them. 

For practical characterization of the shape of G(t) in eq. (5.6), it is convenient to use values 

directly seen in the time-amplitude plots: the power-law exponents near, far, and inflection or 

extrema times t1 and t2.  To visualize the value of r, it is convenient to use the amplitude ratios 

measured from the data, for example (Figure 5.1a): 

                                   
( )

( )
2
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1

G t
b

G t
=      and      

( )

( )
( )
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2 1
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2 2d

G t
b G t

G t t



 
= =  

 
. (5.7)  

Here, Gd(t2) is the “direct-wave” amplitude that would have been observed if the near-distance 

power law (at t < t1) continued to time t2. Quantity b21 in eq. (5.7) is the ratio of the largest and 

smallest amplitudes across the interval [t1, t2], and b22 can be interpreted as the amplification of the 

“direct wave” by reflections and other waves at time t2 (Figure 5.1a). 

5.2.3. Linear forward model and inverse 

Similar to kappa and Q studies and for consistency with the exponential parameterization 

in eq. (5.2), the selected frequency intervals in the data should be sufficiently broad, contain 

consistent spectral slopes ( ) ( )2 ln t f    , and be unaffected by near-surface resonances (Parolai, 

2018; Pilz et al., 2019). To form a linear inverse problem for parameters Sj, Ri, near, far, r, R, S, 
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and q (eq. (5.2)), I divide the observed amplitudes by  the normalized source and receiver spectra 

in eq. (5.1): ( ) ( )obs ,ij ij SRa A t f A f=  and combine all model variables in a model vector 

                                       ( )near farln ln
T

j i S RS R r q   m , (5.8)  

where the first two elements are groups of logarithms of all source and receiver factors. Taking 

logarithms of eqs. (5.2) and (5.6) gives  

                                

( )

( ) ( )

( )( ) ( )( )

( )

0 0

near 1 near far 2 far

r

ln ln ln

              

              ln ln ln ln

               + ,

              

ij j i

S R

ij ij ij ij

ij ij

a f S R

f f f f

t t t t t t

t r ft q

   

   

 

= + −

− − − − −

− − − − +

−

 (5.9) 

where tij is the travel time from source j to receiver i. These equations can be written in matrix 

form:  

                                                                  =d Lm , (5.10) 

where matrix L consists of the coefficients with which the above variables enter the right-hand 

side of eq. (5.9). The data vector d consists of all values of ( )ln ija f  selected for inversion. 

The linear inverse problem in eq. (5.10) usually contains more equations than unknowns 

(202 vs. 35 in this dataset), and therefore it has to be solved in an approximate sense. Such 

approximate solutions are often obtained by minimizing some data-misfit norm (Menke, 1984). 

However, it is difficult to construct a single norm representing all model-quality criteria for a given 

dataset. The approximate inverse of eq. (5.10) is also non-unique because variables lnRi trade off 

with lnSj, variables  trade off with spatial patterns of lnRi and lnSj, and variables  trade off with q. 

Once these issues are noted for the specific dataset, they can be resolved by requiring that together 

with eq. (5.10), the model satisfies some additional constraints related to the volume and structure 

of the dataset. These constraints can also be written in matrix form: 
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                                                                  =Bm c . (5.11) 

Different selections of matrix B and vector c allow implementing multiple derivations of standard 

models. Some of these selections are described in section 5.7 (for existing models) and subsection 

5.2.4 (for my model). 

The procedure for the least-squares inversion of linear eq. (5.10) while exactly satisfying 

the constraint eq. (5.11) is described in Appendix A. By using vector m (eq. (5.8)) obtained from 

this inversion, the predicted data for all earthquakes, stations, and frequencies can be calculated as 

ˆ =d Lm . Finally, data errors (misfits, or residuals) are obtained as 

                                                                ˆ= −ε d d . (5.12) 

5.2.4. Constraints on standard-model quality 

Figures 6 to 9 by Atkinson (2012) and my results for Rigan data in section 5.3 show that 

after conventional multi-step inversions of equations (5.10), site parameters lnRi and data errors 

exhibit intervals of systematic correlations with epicentral distances. Although hypothetically 

possible, such correlations are unlikely in real data and suggest that propagation of errors has 

occurred due to inaccurate weighting of the least-squares inverse. To remove such spurious 

correlations of lnRi with epicentral distances, I selected four distance ranges 

0 < xi  100 km, 100 < xi  150 km, 150 < xi  200 km, and xi > 200 km, where xi is the distance 

to the nearest earthquake for receiver i. For each of these ranges, I include in matrix B and vector 

c eight rows representing the following equations for lnRi: 

                                     
distance range

ln 0i

i

R


= ,     and     ( )
distance range

ln 0i i

i

x x R


− = , (5.13) 

where x  denotes the average of xi within this distance range. These constraints mean that no 

constant terms and no correlations with x are expected within each of these distance intervals. Note 

that the first of these equations also removes the general ln lni iR R c→ +  invariance described in 

the preceding subsection. 
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After including constraints (5.13), the rank of the matrix that needs inverting in order to 

obtain the constrained solution (this matrix is denoted K in Appendix A), was still strongly 

deficient for the present dataset. This rank deficiency arose because of almost all stations recording 

only a single earthquake. By experimenting with the inverse, I found that the correct rank could 

be obtained by adding constraints 0R =  for all receivers, or simply by removing variables R 

from the model vector m (eq. (5.8)). However, one of the uncertainties of R is fundamental and 

appears in any dataset. This common uncertainty relates to the invariance of eq. (5.2) with respect 

to shifting all kappas as  

                                                        R R  → +     and     S S  → − , (5.14) 

with an arbitrary  . After application of these constraints, only two parameters  remained. Thus, 

with the present dataset and because of the ambiguity (5.14), kappa values can be attributed to 

either the sources (as S) or to the corresponding receivers (as R), or shared among them (section 

5.3). By taking S  0, the conventional interpretation is obtained (Anderson and Hough, 1984). 

With the above constraints imposed, the linear system was still lacking one constraint, 

which was again due to the limited ray coverage causing trade-off between parameters S for the 

two earthquakes (or with R if considered). To remove this trade-off, I hypothesize that the two 

kappas are proportional to the characteristic times of the earthquakes 1c cf = , where fc is the 

corner frequency. This hypothesis appears to be reasonable if viewing S as a part of the source 

spectrum (Beresnev, 2019a) because in this case, c is the only time scale (or spatial dimension) 

of the source zone. Although the source-kappa interpretation is generally not favored (Frankel, 

2019), it is viable in many cases (Beresnev, 2019b) and cannot be excluded for the present data. 

For the two earthquakes, the proportionality S c   can be written as one equation in matrix B: 

                                                       1 1 2 2 0c S c Sf f − = . (5.15) 

Alternate forms of constraints on kappa values can also be imposed, such as 1 2S S = , or setting  

1 2 0S S = =  and using a common R for all receivers. These selections lead to only minor 
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differences in the results and are not shown here. 

The above constraints yielded matrix B (eq. (5.11)) with N = 9 rows, which allowed 

performing an initial inversion by the method in Appendix A. However, further examination of 

the resulting data errors at higher frequencies showed that the errors still contained correlations 

with source-receiver distances similar to those shown in subsection 5.7.1. To remove such spurious 

correlations, I added two more pairs of constraint equations in matrix B and vector c. These 

equations are similar to eq. (5.13) and require that data errors do not correlate with distances xi 

within ranges xi < 100 km and xi > 100 km: 

                       ( )
distance range

ˆ 0i i

i

d d


− = ,        and     ( )( )
distance range

ˆ 0i i i

i

x x d d


− − = . (5.16) 

As mentioned in the preceding subsection, these equations can be alternately implemented by 

carefully constructed data weights depending on distances xi. Finally, all of the above constraints 

allowed obtaining a good-quality solution described in the following section. 

5.3. Results 

By using all spectral amplitudes within the selected frequency ranges as vector d in 

eq. (5.10), the resulting best-fitting models m for the transverse, H2C, and 3C amplitudes are 

shown in Tables 5.1, 5.2, 5.3, and 5.4. In these tables, for each model parameter, I show the optimal 

values obtained by solving eqs. (5.10) and (5.11) and also their 90% confidence ranges. These 

confidence ranges were obtained by data bootstrapping described in 5.5.2.  

The principal objective of this chapter is in ensuring consistency of the path- and endpoint-

related standard model ij(t,f) (eq. (5.2)). In the following subsections, I therefore start from 

quality control and then describe the resulting time-frequency dependencies (t,f). Once the ij(t,f) 

model is determined and assuming that it extends to the entire observation frequency band, the 

source and receiver site spectra are estimated by solving another linear inverse problem for lnA 

data residuals, similar to Castro et al. (1990) and other authors. This inversion is relatively 

straightforward and given in subsection 5.3.3. 
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Table 5.1. Optimal values and 90% confidence ranges1 of source- and path-related model parameters for 

single-component S-wave amplitudes. 

 Transverse-component Radial-component Vertical-component 

parameter value range value range value range 

lnC1 3.27 3.19 – 3.35 3.28 3.20 – 3.35 2.91 2.85 – 2.98 

lnC2 2.06 1.92 – 2.22 1.93 1.79 – 2.06 1.39 1.26 – 1.51 

1 (s) 0.051 0.047 – 0.055 0.044 0.041 – 0.048 0.006 0.003 – 0.009 

2 (s) 0.032 0.030 – 0.035 0.028 0.026 – 0.030 0.004 0.002 – 0.006 

near 1.77 1.64 – 1.89 1.60 1.49 – 1.73 1.21 1.11 – 1.32 

far 2.52 2.21 – 2.83 2.38 2.08 – 2.67 1.99 1.99 – 2.51 

r 1.17 1.03 – 1.30 1.02 0.90 – 1.15 0.89 0.78 – 1.01 

q, 10-4 2.39 1.19 – 3.52 2.56 1.42 – 3.74 6.41 5.40 – 7.40 

b21 3.5 3.1 – 4.0 2.7 3.4 – 3.0 2.6 2.3 – 2.9 

b22 5.4 4.7 – 6.2 3.9 3.9 – 5.1 3.5 3.1 – 4.0 

1) Estimation of statistical confidence ranges is described in subsection 5.5.2. 

Table 5.2. Optimal values and 90% confidence ranges1 of estimated model parameters for receiver site 

coupling. 

 Transverse-component Radial-component Vertical-component 

parameter value range value range value range 

lnR1 0.22   -0.04 -   0.47 0.44    0.20 -   0.68 0.11   -0.13 -   0.33 

lnR2 -0.38   -0.65 -  -0.12 -0.68   -0.94 -  -0.43 -0.63   -0.87 -  -0.41 

lnR3 0.13   -0.07 -   0.32 0.21    0.01 -   0.40 0.23    0.07 -   0.40 

lnR4 0.4    0.21 -   0.58 0.29    0.11 -   0.46 0.37    0.21 -   0.52 

lnR5 -0.18   -0.41 -   0.05 -0.13   -0.37 -   0.09 -0.28   -0.48 -  -0.08 

lnR6 0.13   -0.03 -   0.29 0.09   -0.06 -   0.25 0.19    0.06 -   0.33 

lnR7 -0.05   -0.29 -   0.18 -0.06   -0.30 -   0.17 -0.32   -0.53 -  -0.11 

lnR8 0.28    0.03 -   0.52 0.33    0.09 -   0.56 0.42    0.21 -   0.63 

lnR9 0.54    0.30 -   0.76 0.45    0.24 -   0.66 0.47    0.27 -   0.66 

lnR10 -0.27   -0.48 -  -0.07 -0.31   -0.52 -  -0.10 -0.3   -0.49 -  -0.13 

lnR11 0.09   -0.15 -   0.33 -0.22   -0.45 -   0.00 0.2   -0.01 -   0.40 

lnR12 0.01   -0.28 -   0.29 0.2   -0.07 -   0.47 0.23   -0.03 -   0.47 
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lnR13 -0.17   -0.39 -   0.05 -0.07   -0.29 -   0.14 -0.28   -0.49 -  -0.08 

lnR14 -0.42   -0.65 -  -0.20 -0.29   -0.51 -  -0.09 -0.1   -0.29 -   0.09 

lnR15 -0.04   -0.21 -   0.14 -0.12   -0.29 -   0.04 0.29    0.13 -   0.44 

lnR16 0.05   -0.02 -   0.13 0.04   -0.03 -   0.11 0.08    0.02 -   0.15 

lnR17 0.03   -0.14 -   0.20 0.27    0.11 -   0.43 0.13   -0.02 -   0.27 

lnR18 1.03    0.83 -   1.22 1.3    1.11 -   1.50 0.83    0.66 -   1.00 

lnR19 0.12   -0.13 -   0.37 0.07   -0.17 -   0.30 0.21   -0.01 -   0.43 

lnR20 -0.04   -0.24 -   0.15 0.07   -0.12 -   0.25 -0.06   -0.23 -   0.11 

lnR21 -0.05   -0.29 -   0.18 -0.12   -0.35 -   0.10 -0.05   -0.26 -   0.15 

lnR22 -0.04   -0.28 -   0.19 -0.07   -0.31 -   0.17 -0.3   -0.52 -  -0.11 

lnR23 -0.45   -0.64 -  -0.25 -0.61   -0.79 -  -0.43 -0.56   -0.73 -  -0.39 

lnR24 0.2   -0.05 -   0.44 0.29    0.07 -   0.50 0.2   -0.00 -   0.39 

lnR25 -0.26   -0.43 -  -0.11 -0.2   -0.35 -  -0.05 -0.17   -0.31 -  -0.03 

lnR26 0.04   -0.19 -   0.27 -0.08   -0.31 -   0.14 0.05   -0.16 -   0.25 

lnR27 -0.9   -1.15 -  -0.65 -1.08   -1.32 -  -0.85 -0.96   -1.18 -  -0.76 

1) Estimation of statistical confidence ranges is described in subsection 5.5.2. 

Table 5.3. Optimal values and 90% confidence ranges1 of source- and path-related model parameters for 

multicomponent S-wave amplitudes. 

 H2C amplitudes 3C amplitudes 

parameter value range value range 

lnC1 2.62 2.55 – 2.70 3.82 3.76 – 3.89 

lnC2 2.37 2.24 – 2.51 2.49 2.37 – 2.61 

1 (s) 0.049 0.045 – 0.052 0.028 0.025 – 0.031 

2 (s) 0.031 0.028 – 0.033 0.018 0.016 – 0.020 

near 1.70 1.59 – 1.82 1.49 1.39 – 1.59 

far 2.44 2.16 – 2.73 2.22 1.97 – 2.48 

r 1.10 0.98 – 1.23 1.06 0.94 – 1.17 

q, 10-4 2.36 1.24 – 3.51 5.39 4.41 – 6.38 

b21 3.3 2.9 – 3.7 3.1 2.8 – 3.5 

b22 5.0 4.4 – 5.7 4.5 4.0 – 5.0 

1) Estimation of statistical confidence ranges is described in subsection 5.5.2. 
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Table 5.4. Optimal values and 90% confidence ranges1 of estimated model parameters for receiver site 

coupling. 

 H2C amplitudes 3C amplitudes 

parameter value range value range 

lnR1 0.36    0.11 -   0.59 0.28    0.06 -   0.50 

lnR2 -0.52   -0.78 -  -0.28 -0.6   -0.82 -  -0.38 

lnR3 0.13   -0.06 -   0.32 0.23    0.07 -   0.39 

lnR4 0.34    0.18 -   0.51 0.3    0.15 -   0.45 

lnR5 -0.18   -0.41 -   0.04 -0.18   -0.37 -   0.02 

lnR6 0.13   -0.03 -   0.29 0.12   -0.02 -   0.26 

lnR7 -0.05   -0.28 -   0.17 -0.13   -0.34 -   0.06 

lnR8 0.3    0.06 -   0.52 0.38    0.17 -   0.58 

lnR9 0.49    0.28 -   0.70 0.48    0.29 -   0.66 

lnR10 -0.22   -0.42 -  -0.02 -0.38   -0.55 -  -0.21 

lnR11 -0.04   -0.27 -   0.18 0   -0.20 -   0.19 

lnR12 0.09   -0.19 -   0.35 0.11   -0.13 -   0.35 

lnR13 -0.14   -0.36 -   0.06 -0.1   -0.29 -   0.08 

lnR14 -0.34   -0.55 -  -0.14 -0.34   -0.53 -  -0.17 

lnR15 -0.08   -0.25 -   0.08 0.04   -0.11 -   0.19 

lnR16 0.06   -0.01 -   0.12 0.05   -0.01 -   0.11 

lnR17 0.15   -0.01 -   0.30 0.13   -0.01 -   0.27 

lnR18 1.17    0.98 -   1.35 1.13    0.96 -   1.29 

lnR19 0.09   -0.15 -   0.32 0.16   -0.05 -   0.36 

lnR20 0   -0.19 -   0.17 -0.05   -0.22 -   0.11 

lnR21 -0.05   -0.27 -   0.17 0.02   -0.18 -   0.21 

lnR22 -0.1   -0.32 -   0.12 -0.15   -0.36 -   0.04 

lnR23 -0.53   -0.72 -  -0.35 -0.5   -0.67 -  -0.35 

lnR24 0.24    0.02 -   0.44 0.2    0.00 -   0.38 

lnR25 -0.22   -0.37 -  -0.07 -0.24   -0.37 -  -0.11 

lnR26 -0.04   -0.27 -   0.18 0.01   -0.20 -   0.20 

lnR27 -1   -1.23 -  -0.76 -0.95   -1.16 -  -0.76 

1) Estimation of statistical confidence ranges is described in subsection 5.5.2. 
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5.3.1. Quality control 

Data residuals (misfits) evaluated for the transverse-component optimal models 

(Tables 5.1 and 5.2) are shown in Figure 5.3. As described in section 5.2, such plots are critical for 

quality control and final formulation of the inversion procedure. The final data residuals should 

show correlation with neither distance (Figure 5.3a) nor frequency (Figure 5.3b). To obtain the 

results in Figure 5.3a and b, a preliminary inversion by using Brune’s (1970) spectra (with s(f) = 0 

for both sources in eq. (5.1)) was performed first (Figure 5.3c). The median data residuals resulting 

from this inversion show noticeable correlations with frequency, which are shown by gray 

diamonds in Figure 5.3c. By iterative adjustment of s(f) functions (eq. (5.1)), median data errors 

are corrected to near zero (Figure 5.3b). The resulting functions s(f) for the two sources are shown 

by lines in Figure 5.3c. Broadly, these functions can be interpreted as resonance peaks at 

frequencies 10 to 12 Hz in the receiver site spectra, or similar variations of source spectra.  

 

Figure 5.3. Data residuals (decimal log-amplitude misfits) for all records using transverse-
component amplitudes: a) dependence on source-receiver distances, b) final dependence on 

observation frequencies after correcting for the s(f) function; c) data residuals from preliminary 

inversion by using Brune’s (1970) spectrum. Lines in plots c) show the s(f) functions (eq. (5.1)) 

estimated for the two earthquakes.  

The adjustment of functions s(f) can be compared to iterative inversion for source and site 

spectra (Drouet et al., 2008) or to the procedure of deriving constrained site spectra and 0 by 

Klimasewski et al. (2019). However, Klimasewski et al. (2019) performed spectral corrections by 

adding Fourier amplitudes instead of their multiplication in eq. (5.1).  
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Another important standard-model quality criterion is the distribution of receiver-coupling 

values lnRi, shown by decimal logarithms in Figure 5.4. Due to the explicit constraint equations 

(eq. (5.13)), lnRi values show no trend with source-receiver distance (Figure 5.4). 

 

Figure 5.4. Station coupling terms lgRi for a) transverse component, b) H2C, and c) 3C amplitudes.  

Therefore, my evaluation of distance dependencies (geometrical-spreading and q-related 

factors) in eq. (5.2) should be reliable. Note that as an initial test of the algorithm, I performed 

inversion without explicit constraints on lnRi (eq. (5.13)). In that test, systematic (unacceptable) 

trends in lnRi were obtained. In a much larger dataset, similar trends can also be seen in attenuation-

corrected data by Atkinson (2012; Figure 3 in that paper). 

After estimating the detailed G(t), s(f),  and q, the total standard deviations of lgA residuals 

equal approximately 0.18 for the transverse-component amplitudes and H2C, and 0.15 for 3C 

amplitudes (error bars in Figure 5.5). This quantity indicates the degree of overall consistency of 

the observations with the selected model (eq. (5.2)). These variances are somewhat smaller than 

those from fitting conventional models and in comparable studies (e.g., Atkinson, 2004, 2012). 

These data variances can be further reduced by adding parameters to the model, such as including 

azimuth- or frequency-dependent geometrical spreading in eq. (5.2). More detailed models would 

also be less portable, and they would also be weaker constrained. For these reasons, more detailed 

models are not considered in this study. However, the most important observation from this quality 

control is that data errors alone do not uniquely characterize the accuracy of the model, and 

additional quality criteria need to be considered. 
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5.3.2. Time-frequency dependencies 

To extract from the predicted-data vector d̂  the distance and frequency dependencies that 

are of the most interest in this study, let us consider another forward-model matrix Ls, which is  

 

Figure 5.5. Distance dependencies of amplitudes at frequencies 17 Hz (red or gray in print) and 6 

Hz (black). Symbols are the data corrected for the source and receiver effects, and lines are the 
inverted standard models: a) Model for transverse-component amplitudes; b) for H2C amplitudes; 

c) for 3C amplitudes. Error bars in the upper-right corners of each plot show the total standard 

deviations of lnA misfits.  

obtained from L by retaining only the columns corresponding to variables lnRi and lnSj (eq. (5.8)) 

and zeroing out all other columns. The data predicted by this matrix ˆ
s s=d L m  are analogous to 

the travel-time “statics” (additive local effects) well-known in reflection seismology. Vector ˆ
sd

comprises all effects of source and receiver couplings in the data and omits all path effects. By 

subtracting these statics from the observed data ( ˆ
s

 = −d d d ) and from the predicted data (

ˆ ˆ ˆ
s

 = −d d d ), the path-related part of the standard model is isolated (Figure 5.5). 

As it is apparent from Figure 5.5, the data themselves (black and red/gray in print dots) 

clearly indicate an amplitude increase from about 90 to 115-km distances. This amplification 

justifies my use of two characteristic travel times t1 and t2 (Figure 5.1a). The resulting estimates 

of this amplitude amplification are 21 3.5b   and 22 5.4b   for transverse- component S-wave 

spectral amplitudes, 21 3.3b   and 22 5.0b   for H2C amplitudes, and 21 3.1b   and 22 4.5b   for 

3C amplitudes (eq. (5.7)). These values indicate significant contributions from near-critical 
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reflections (from the Moho and/or deep crust) entering the S-wave time windows at these 

distances.  

5.3.3. Source and receiver site spectra 

Estimation of the source and receiver site spectra was performed by the same algorithm as 

described in eqs. ( 5.10) and (5.11) with the following modifications: 1) parameters lnSj and lnRi 

replaced with AS(f) and AR(f) spectra sampled at 11 frequencies {fs} of data sampling, 2) model 

vector (eq. (5.8)) truncated to source and receiver parameters only, and 3) the input data modified 

by correcting for the path and kappa factors (eqs. (5.1), (5.2), and (5.5)): 

                                       ( )
( )

( )

( )
( ) ( ) ( ) ( ) *

0 0

2

2

1 ,
,

Sj Ri

c

ij f f f fs f ft

c

f f A t f
d t f

f f e G t e e e
  − − − −− −

+
=  .  (5.17)   

These Brune’s spectrum, path- and kappa-corrected amplitudes are modeled as products of source 

and receiver site spectra: 

                                        ( ) ( ) ( ),ij ij s Ri s Sj sd t f A f A f= . (5.18)   

After taking logarithms of this equation, linear system in eq. (5.10) is obtained and solved in the 

least squares sense, subject to the receiver-scaling constraint ( )ln 0
s

Ri s

f i

A f =  (Castro et 

al., 1990). Note that the conventional approach to solving eq. (5.18) independently at each 

frequency fs (e.g., Castro et al., 1990) is generally unsafe, because it does not guarantee satisfying 

conditions ln ln 0S Rd A df d A df= =  (eq. (5.4)). These conditions are required in order to 

consistently interpret the values of S and R as the high-frequency slopes of the source and 

receiver spectra, respectively. To ensure such consistent interpretation, I included the above 

equations as additional constraints on the inversion. 

The resulting spectra are shown in Figures 5.6 and 5.7 for four end-member cases, which 

attribute the spectral filtering functions ( )exp s f−    and ( )exp f−  to either sources or receivers 
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(see eqs. (5.1) and (5.2) and explanations in section 5.3). Line colors in these figures are 

complementary, so that the same color corresponds to AS(f) and AR(f) spectra that would be present 

simultaneously.  

The case of both  and s(f) attributed to site spectra (red lines in Figures 5.6 and 5.7) 

represents the conventional interpretation assuming all high-frequency effects being caused by site 

effects (Anderson and Hough, 1984). This interpretation is plausible, although the alternate 

interpretation with s(f) function belonging to the source (magenta in Figures 5.6 and 5.7) also 

appears likely. In this dataset, the trade-off between R and S cannot be excluded from 

consideration, and therefore, the alternate solutions shown by blue and cyan colors in Figures 5.6 

and 5.7 are also possible.  

 

Figure 5.6. Spectral responses AS(f) for two earthquake sources of this study. Line colors show 

different combinations of  and s(f) functions included in the source spectra (legend). The variation 

of the Q(f) effect by less than 0.3 (green line; P in eq. (5.19)) shows the low importance of the 

selection of a frequency dependent Q in this model. 

For interpreting the results of  and Q measurements, knowledge of near-surface receiver-

site conditions is most important. Unfortunately, this information is limited in the present study. 

Due to the complexity of geology and tectonics of the region, bedrock depths and thicknesses of 

sedimentary deposits vary for different sites. For example, in the vicinity of Bam station (#7 in 

Figure 2.3 in chapter 2), soil profiles show sandy clay within the upper part and silty sand at the 

lowest part.  
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Figure 5.7. Spectral responses AR(f) for all stations of this study. Line colors show different 

combinations of  and s(f) functions included in the spectra (legend).  
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Figure 5.7, continued. 

Due to this thick soil deposits, Bam station was classified as site class C (Rayhani et al., 

2008). According to Komak Panah et al. (2002), the Bam site is located on soft soil, Globaf station 

(#2 in Figure 2.3 in chapter 2) is on moderately soft soil, and Sirch site (#1) is on hard soil or weak 

rock (Table 5.5).However, the high-frequency slopes of the spectra (with overlying resonance 

peaks) shown by the red and magenta lines in Figures 5.7 appear to be expected for the soft-rock 
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sites of this survey. After the site spectra are estimated, parameters kappa can be measured from 

them for each site. Table 5.6 shows these kappa values for each site and for each of the single-

component and multicomponent amplitudes within the S-wave window. These values were 

measured between 10-Hz and 25-Hz frequencies in the conventional interpretation of kappa effects 

(red in Figures 5.6 and 5.7). Interestingly, the vertical-component kappas are systematically much 

lower, and in a few cases, they are negative. Among other factors, lower signal-to noise ratios in 

vertical-component records could be one potential reason for such values. 

Table 5.5. Available site classification data in the study area (Komak Panah et al., 2002). 

Soil description Geological conditions Sites 

soft soil Thick soft clay or silty sandy clay. Mostly alluvial 

plain. 

Bam (#7)1 

moderately soft 

soil 

Interbedded fine and coarse material, alluvium 

terraces with weak cementation. 

Golbaf (#2) 

1 

hard soil, weak 

rock 

Well cemented and compacted soil, old 

Quaternary outcrop. 

Sirch (#1) 1 

1) Numbers of sites adopted in Figure 2.3 in chapter 2. 

Table 5.6. Values of  (in seconds) measured from site spectra for single-component amplitudes 

(Figure 5.7). 

Site # Transverse Radial Vertical H2C 3C 

1 0.042 0.035 -0.003 0.057 0.035 

2 0.044 0.037 0.001 0.033 0.012 

3 0.032 0.025 -0.012 0.052 0.026 

4 0.019 0.013 -0.023 0.056 0.042 

5 0.041 0.034 -0.003 0.059 0.028 

6 0.031 0.023 -0.01 0.037 0.02 

7 0.019 0.014 -0.007 0.028 0.014 

8 0.016 0.01 -0.027 0.023 0.013 

9 0.035 0.029 -0.007 0.067 0.052 

10 0.027 0.02 -0.018 0.052 0.025 

11 0.033 0.024 -0.011 0.059 0.047 

12 0.05 0.044 0.007 0.037 0.023 

13 0.019 0.016 -0.004 0.049 0.035 
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14 0.056 0.051 0.012 0.017 -0.003 

15 0.046 0.04 0.004 0.056 0.032 

16 0.014 0.011 -0.005 0.031 0.021 

17 0.031 0.025 -0.009 0.018 -0.018 

18 0.02 0.017 0.002 0.043 0.033 

19 0.023 0.016 -0.02 0.049 0.035 

20 0.036 0.029 -0.007 0.069 0.061 

21 0.019 0.015 -0.021 0.04 0.017 

22 0.032 0.024 -0.011 0.058 0.04 

23 0.033 0.024 -0.008 0.043 0.015 

24 0.038 0.032 -0.005 0.05 0.041 

25 0.052 0.045 0.009 0.031 0.002 

26 0.032 0.024 -0.01 0.065 0.045 

27 0.049 0.044 0.007 0.061 0.028 

5.3.4. (Un)Importance of the frequency-dependent Q(f) 

Green line in the first plot in Figure 5.6 additionally demonstrates the general lack of 

significance of the frequency-dependent Q(f) in seismology, as discussed in this chapter and also 

by Morozov (2008b, 2010a, 2010b, 2011a). If we assume a frequency-dependent ( ) 0Q f Q f =  

for an S wave, then its effect within a limited frequency band (attenuation coefficient) can still be 

approximated by a frequency-independent Q-factor Qe (Morozov, 2008b, 2010a). For Q0 = 99 and 

  0.58 estimated for the study area by Safarshahi et al. (2013) and frequency range from 1 to 30 

Hz, this Qe  1025 (Morozov, 2008b). The ratio of the frequency-dependent and constant-Qe 

effects equals 

                                    ( )
( )

, exp exp
e

ft ft
P t f

Q f Q


    
= − −   

  

 (5.19) 

For t corresponding to 100-km distance, this function is shown by the green line in Figure 5.6 

(panel on the left). This line shows that the total variation of P across the measured frequency 

band is less than 0.3, which is much smaller than the variations and uncertainty of the source and 
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site responses (Figure 5.6). Therefore, even with this modest Qe (compared to values Q  4000 in 

Tables 5.1 and 5.3), and also by Atkinson (2004) and Palmer and Atkinson (2020), selection of the 

functional form of Q(f) is insignificant and hardly measurable. The effect of Q(f) is also within the 

error due to the under-parameterization of G(t) (next section; Morozov, 2008b, 2010a; Morozov 

et al., 2018). 

5.4. Interpretation 

Both conventional (frequency-dependent Q(f) based) and my new (q = const) models can 

be easily evaluated and fit to the observed seismic amplitudes with similar average errors. Both 

approaches can generally be used as empirical standard models (t,f), along with many selections 

for background geometrical spreading. However, from the viewpoints of its more detailed 

accuracy, independence of assumptions, and consistent physics, the model of this chapter is 

strongly preferable. Note that this model (section 5.3): 

1) Achieves a better data fit across the local to regional distance ranges (solid and 

dashed lines in Figure 5.5; also compare Figure 5.3a (for this model) to Figure 5.20b 

in subsection 5.7.1 and Figures 6 to 9 in  Atkinson (2012) (for conventional models); 

2)  Inverts for the source (Sj) and receiver site (Ri) factors in one step and eliminates 

their correlations with epicentral distance; 

3) Eliminates unexpected spurious correlations of data residuals with distances and 

frequency, which bias the results of conventional models; 

4) Uses a physically well-defined and more strongly constrained frequency-

independent parameter q  1/Q instead of the method-dependent apparent Q(f); 

5) Overall, simplifies and facilitates a detailed and quantitative analysis of the resulting 

model without unverified hypotheses about the natures of recorded waves and their 

characteristics such as geometrical spreading and Q(f). 

Compared to the conventional analysis of the same and similar datasets (subsection 5.7.1 

and Safarshahi et al. (2013)), several significant observations can be made. These observations 

appear to be general and should apply to other areas. First, the geometrical-spreading exponents  

are much larger than those often used for both the near and far distance ranges (Aki and Chouet, 



 

105 

 

1975; Atkinson, 2012; Safarshahi et al., 2013). For the transverse, H2C, and 3C spectral 

amplitudes, I estimate near  1.77, 1.70 and 1.49, respectively, with statistical confidence intervals 

shown in Tables 5.1 and 5.3. For far, I obtain values of 2.52, 2.44, and 2.22, respectively 

(Figure 5.5). The lower values of both near and far for 3C amplitudes correlate with their 

comparatively low values for vertical-component amplitudes (near  1.21 and far  1.99; 

Table 5.1). The values of far > 2.2 are in a particularly stark contrast with the usual assumption of 

far = 0.5 (e.g., Atkinson, 2004; Fisk and Phillips, 2013a, 2013b).  

Compared with  = 1 for body waves in a homogenous half-space (Aki and Chouet, 1975), 

increased values of near should be expected from crustal velocity gradients and layering. Velocity 

gradients and reflections cause curvatures of body-wave paths and reflections, which consequently 

increases the values of  or  (see the explanations of the forms of G(t) following eq. (5.2)). Large 

values of far show that propagation of regional S-waves beyond the critical reflection distance 

(~115 km in this area) is far from spreading of surface waves in a homogeneous half-space (e.g., 

Bowman and Kennett, 1991). Long propagation within the crustal waveguide encounters 

significant small-scale scattering, which principally occurs from surface topography and shallow 

subsurface (Jhajhria et al., 2017). This scattering should lead to  values much larger than in a 

homogenous half space (Morozov, 2010a, 2010b). 

The second major observation from the model in eq. (5.2) is that the “geometrical” G(t) for 

S waves is non-monotonous and contains an amplification between about 90 and 115 km. The 

amount of this increase is significant, which can be expressed by transverse-component 

amplification factors b21  3.5 and b22  4.4 (eq. (5.7), Table 5.1, and Figure 5.1a). This 

amplification can again be explained by reflections and anisotropic (upward and forward-directed) 

scattering from and near the base of the crust. This strong amplitude variation is present but appears 

smoothed over in models averaged over large areas in North America by Atkinson (2004, 2012). 

This amplification is clearly seen in the source/site corrected data (Figure 5.5), and it is also 

suggested by other data (Figure 5.3b). 

The third general observation from this inversion is that the frequency-

independent attenuation in southeastern Iran is much weaker than the one inferred by the 

conventional methods (Q0  99 by Safarshahi et al. (2013)). From my q estimates (Tables 5.1 and 
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5.3), the Q is about 1500 for the vertical component, about 4000 for horizontal components, and 

1800 for 3C. Even taking the largest q within the estimated confidence bounds for H2C (Table 5.3), 

the smallest Q for this area would be about 2800. This range of attenuation is consistent with the 

estimates by Atkinson (2012), and particularly with the recent study of the Q-corrected kappa in 

Canada (Palmer and Atkinson, 2020). This weak attenuation supports the premise of my model 

(eq. (5.5)) stating that seismic wave amplitudes are dominated by elastic effects. 

Fourth, owing to the clear functional separation between the effects of G(t), , and Q in eq. 

(5.2), parameters  are measured concurrently with Q. The inverted values of S  51 and 32 ms 

for transverse-component (for the two earthquakes or stations recording them), and 49 and 31 ms 

for H2C (Table 5.3) are close to those typically observed for soft-rock sites (Ktenidou et al., 2014). 

Interestingly, for vertical component, these values are much lower (6 and 4 ms; Table 5.1), and 

these low values contribute to the reduced   28 and 18 ms for 3C amplitudes (Table 5.3). For all 

components, the kappas likely include both source and site effects (subsection 5.3.3). If the source 

 is produced by the time signature of the rupture (Beresnev, 2019a, 2019b), then it might be 

common to all components and therefore limited by the smallest value measured above. Thus, S 

could be limited to 6 and 4 ms for the two earthquakes, although this conjecture still needs to be 

examined in modeling studies.  

The slower decay rates , smaller kappas, and larger q for vertical-component and 3C 

ground motions within S-wave records could be explained by several factors: a) dependencies of 

refractions and reflections within the crust on incidence angles, b) coupling between the 

horizontally and vertically-polarized S-waves within the crust, and c) S-wave coupling with P-

waves occurring during propagation through the layered and/or scattering crust. 

In summary of the interpretation, the new model shows that all data can be explained by 

much steeper frequency-independent geometrical spreading G(t), site effects, source spectra S(f) 

possibly different from Brune’s (1970), and only weak path-related attenuation (Q > 2000 with 

average of Q  4000 for horizontal ground motions). Considering that many studies such as by 

Atkinson (2004, 2012) and Safarshahi et al. (2013) fit similar wave-amplitude data by using much 

lower values of  and much lower but frequency-dependent Q, these results may appear disturbing. 

This uncertainty illustrates the difficulty of attenuation measurements and also the great 
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subjectivity embedded in conventional interpretations of wave attenuation. By contrast, the present 

results are based on a rigorous method with detailed error checking, and they are well supported 

by the available data. 

5.5. Model Uncertainty 

In the following subsections, I differentiate between two types of model uncertainties that 

are present both in preceding section and all other standard models. The first of these types is the 

most harmful and difficult uncertainty caused by a customary or subjective selection of 

mathematical parameterization, particularly with the use of an under-parameterized function G(t). 

The second type of model uncertainty is typical for all physical measurements and caused by 

random data measurement errors.  

5.5.1. Uncertainties due to model parameterizations 

Figure 5.8 illustrates the strong uncertainty of standard models arising from different 

approaches to their parameterization. In this figure, two models derived from my S-wave data are 

shown: (1) Figure 5.8a obtained by using simultaneous inversion for all 35 parameters describing  

the functional form of G(t), q, , Sj and Ri (eq. (5.2)), and (2) an alternate model (Figure 5.8b) 

derived by the conventional parameterization and multi-step inversion procedure by 

Atkinson (2004). In the first of these approaches, the parameterization of G(t) is based on 

summarizing the A(t,f) observations in the data and viewing q as a single constant. In the second 

approach, the shape of G(t) is under-parameterized (based on the fixed “trilinear” power-law 

model by Atkinson (2004, 2012)), but the Q (i.e., q) is allowed to freely vary with frequency. As 

one can see, the modeled (t,f) dependencies are strongly different, particularly at higher 

frequencies and local-distance ranges (solid lines in Figures 5.8a and 5.8b). In particular, regarding 

the amounts of amplitude amplification from 90 to 115 km and beyond 250 km, the wave-

amplitude predictions differ by about three times in these models. The models also strongly differ 

by the inferred Q factors (Figure 5.8c), which is partly because the model of Figure 1a also 

contains the high-frequency spectral decay parameters  (eq. (5.2)). Thus, from most user’s and 

interpreter’s perspectives, the models are significantly different. However, the root-mean square 

(RMS) average log-amplitude residuals for these models are nearly identical and equal 
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( )
RMS

ln , 0.42A t f   for the model in Figure 5.8a and 0.43 for Figure 5.8b. These close 

average errors can be seen from the similar ranges of data misfits (vertical axes in Figures 5.8d 

and 5.8e). 

 

Figure 5.8. Summaries of source-and receiver coupling corrected standard models derived using 

the conventional and my new estimation method: a) Modeled lg (t,f) dependencies (lines; 

eq. (5.2)) and source-receiver corrected data (symbols) on distance at frequencies 6 (black color) 
and 17 Hz (red, gray in print), obtained by joint inversion of section 5.3. Here and in plots b), d), 

and e), travel times t are converted to distances x = t, where  = 3.5 km/s is the average S-wave 

velocity. b) The same using the conventional method (Atkinson, 2004). c) Inverse Q-factors from 

the two methods. d) and e) lgA data misfits corresponding to the models in plots a) and b), 

respectively. f) and g) Corresponding receiver coupling terms lnRi (eq. (5.2)). Dashed gray lines in 

e) and g) indicate spurious correlations of data errors and receiver terms with distance.  

Therefore, the traditional total-RMS misfit of log-amplitude data provides practically no 

differentiation between these models, which means that both of them fall within the trade-off of 
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this model parameterization. Note that this RMS least-squares data fit is currently the only criterion 

used for model validation (e.g., Castro et al., 1990; Atkinson, 2004, 2012; Fisk and Phillips, 

2013b). 

Despite the insensitivity of the RMS criterion described in the preceding paragraph, the 

two models in Figures 5.8a and 5.8b are nevertheless clearly separable by the more detailed 

patterns of data misfits (plots d and e in Figure 5.8) and by the distributions of receiver coupling 

parameters lnRi vs. distance from the nearest earthquake (plots f and g). First, the model in 

Figure 5.8a fits the local-distance range much more accurately and does not overfit the regional 

distances. Such uniform fitting of both local and regional ranges is the key quality requirement for 

models of this kind (Atkinson, 2012). Second, to satisfy the model in Figure 5.8b, receiver terms 

lnRi must possess two systematic trends with distance from the nearest earthquake (gray dashed 

lines in Figure 5.8g). Note that these trends are very close to the distance trend of the “attenuation” 

model lnA(t,f) itself (Figure 5.8b). Third, the measurement errors of [lnA(t,f)] turn out to be non-

random, because they exhibit an increase with epicentral distance (dashed line in Figure 5.8e). 

This pattern of data errors is particularly clear (and therefore questionable) at regional distances, 

and it indicates a data overfitting at regional distances. This systematic bias of errors is also 

contrary to the key assumption of the least-squares inversion. Because of these spurious patterns, 

the model in Figure 5.8b is clearly unacceptable in general, although it might of course occur 

incidentally due to a “fortuitous” selection of receiver sites and behavior of seismic instruments. 

Such models assuming systematic trends in site and instrumental conditions can hardly be portable 

to other measurements and study areas. Rather than allowing such patterns of site terms, the trends 

shown in Figures 5.8e and 5.8g can be more naturally explained as deficiencies of the “over-under-

parameterized” model (Morozov, 2008b, 2010a).  

Although rarely examined in such detail, problems similar to those of Figures 5.8b, 5.8e, 

and 5.8g may be present in many existing “attenuation” models. For example, Atkinson (2012) 

pointed out that none of the existing models adequately matches the wave-amplitude data at both 

local and regional epicentral distances, and also across the transition between these distance 

ranges. Models are dominated (“pegged” in the terminology by Atkinson (2012)) by regional 

distances containing most data points and where the amplitude variation with distance is smoother 

(see Figure 5.8b). Amplitude decay rates at regional distances determine the frequency-dependent 
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Q(f) because within this range, a fixed ( ) 0.5G t t−  is always assumed (Atkinson 2004; Fisk and 

Phillips, 2013b).  

Clearly, a Q(f) dependence inferred for regional distances cannot be expected to also work 

at local ranges. Better data fitting can be achieved by considering distance- (time-) range dependent 

Q(t,f) (Bora et al., 2017; Graizer, 2017). However, this modification is practically equivalent to 

allowing a more flexible G(t), which is my approach in Figure 5.8a. With removed under-

parameterization of G(t), the entire distance range can be fit adequately and without artifacts with 

only a single, frequency-independent q value (eq. (5.2); Figures 5.8d and 5.8f). Finally, data 

residuals correlated with source-receiver distances similar to Figure 5.8b can be seen in published 

models, such as in Figures 6 to 9 by Atkinson (2012). 

Due to its allowing a frequency-dependent Q(f), the model in Figure 5.8b represents only 

one possible selection out of an infinite set of models producing identical A(t,f) dependencies. To 

characterize the whole set of such equivalent models, I can use simultaneous transformations  

                                             

( )

( )

, ,

,

exp ,

q q t f q c f d t

d

G G ct

 



→ = − −


→ +
 → −

 (5.20) 

with arbitrary constants c and d. Since parameters c and d do not affect eq. (5.2), they cannot be 

determined from distance and frequency dependencies of seismic amplitudes. Selections of certain 

values for c and d are usually made by either mathematical convention (such as preference of a 

power law for G(t)) or by certain construction of the inversion algorithm (such as taking a fixed 

G(t) and  = 0 when measuring Q(f); Aki and Chouet, 1975). In practical observations (e.g., 

Campbell (2009), this chapter, and most field studies in reflection seismology), time- and 

frequency-independent Q is often preferred, which means c = 0 and d = 0). In an opposite 

approach, by expecting both c > 0 and d > 0, Q-factors increasing with both t and f are often found 

in coda studies (e.g., Calvet and Margerin, 2013) and also for response spectra (Graizer, 2017). 

Another practical choice is d = 0 (distance-independent Q) and c  0 (usually c > 0). With this 

selection, the shapes of the “frequency-dependent Q” curves ( ) ( )1Q f q c f= −  are close to 
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( ) 0Q f Q f =  with 0 <   1, which are reported in many studies (Morozov, 2008b). Finally, Bora 

et al. (2017) used yet another selection of c = 0 and d  0, which gave a frequency-independent 

but distance-dependent Q close to ( ) ( )1Q t q d t= − . In a recent article, Haendel et al. (2020) 

utilize even broader trade-off relations than eq. (5.20) by considering the q as frequency-dependent 

( ( )
1

0q Q f 
−

= ) and transferring its effect into a travel-time (distance) and frequency-dependent 

kappa: 0q →   and 
0qt t f Q   −→ + = + . 

For the alternate (conventional) interpretation of this dataset in Figure 5.8b, the uncertainty 

related to varying parameter c is illustrated in Figure 5.9. In this figure, bold lines are the q(f) and 

G(t) for the model Figure 5.8b. Starting from this model, I applied transformations in eq. (5.20), 

with d = 0 and c varying from –0.01 to 0.01 Hz (thin lines in Figure 5.9). Each of these models is 

completely equivalent to all others in terms of the time/frequency dependencies of wave 

amplitudes (eq. (5.2)). Note that since the q at each frequency is derived from distance (time) 

dependencies that can be complex and non-monotonic, this apparent q should not be expected to 

be strictly non-negative. 

 

Figure 5.9. Ambiguity of models and the trade-off between G(t) and q(f) in the conventional 

interpretation of the dataset: a) variations of the frequency-dependent q  for various values of 

parameter c (eq. (5.20)); b) the corresponding variations of G(t) making identical (t,f) 

dependencies. Arrows indicate the increase of parameter c, with thick black lines corresponding to 

c = 0. Thick dashed line in a) shows the constant-q level used in the model in Figure 5.8a. 
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The ambiguity of “over-under-parameterized” standard models such as shown in 

Figure 5.8b and eq. (5.20) is not emphasized and often unnoticed in conventional approaches, 

because of certain construction of their multi-step inversion methodologies (e.g., Fisk and 

Phillips, 2013b). Specifically, during the first step of the inversion, factors Sj, Ri, and often  in 

eq. (5.2) are not considered when inverting for Q, which leads to omitting important constraints 

on the model. Based on an intuitive association with Q-factors of mechanical or electrical 

resonators, the inverted quantity is denoted “Q” and loosely interpreted as “anelastic attenuation” 

(e.g., Atkinson, 2004, 2012; Fisk and Phillips, 2013b; Bora et al., 2017). However, traveling 

seismic waves are not resonators, and this association is unfounded. The principal contributions to 

the seismic Q-factor come from the elastic earth’s structure such as layering and small-scale 

heterogeneity. Therefore, most of the effects of the Q are actually elastic and dependent on the 

travel time (distance) and not on the numbers of wave periods. These time-only dependent effects 

are indistinguishable from the similarly empirically defined geometrical spreading G(t). Note that 

the geometrical spreading within a layered earth is also frequency-dependent (Yang et al., 2007). 

Thus, the Q (or q) in eq. (5.2) is the “apparent” attenuation, which is only an empirical parameter 

used for approximating the amplitude data (Morozov and Baharvand Ahmadi, 2015; 

Graizer, 2017). The same apparent character applies to parameters  (eq. (5.2)), particularly when 

they are viewed as time- or epicentral-distance dependent (e.g., Ktenidou et al., 2014).  

5.5.2. Statistical data uncertainties  

In the model of Figure 5.8a, the uncertainties and trade-off caused by the “over-under-

parameterization” should be absent. The major uncertainty in eq. (5.20) is removed by requiring 

q = const (thick dashed line in Figure 5.9a). However, this model still contains smaller 

uncertainties and parameter trade-offs related to statistical data errors and possibly factors not 

accounted for in eq. (5.2), such as regional variations of q or the frequency-dependent geometrical 

spreading G(t,f). These remaining model uncertainties are measured in this subsection. 

The inverse of eq. (5.10) is obtained in the form of a generalized inverse (see Appendix A) 

                                                         
1

g g

−= +m L d m , (5.21) 
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where 
1

g

−
L  is a matrix and mg is a vector dependent on the structure of the dataset. By using this 

solution, lnij(t,f) data predicted for all earthquakes, stations, and frequencies are calculated by 

the matrix product 1ˆ
g g

−= = +d Lm LL d Lm . Finally, the data misfits (or residuals shown for two 

frequencies in Figure 5.8d) are mentioned as eq. (5.12). 

By using eqs. (5.8), (5.10), (5.12), and (5.21), model uncertainty analysis is performed by 

the following procedure of data bootstrapping with resampled residuals. By using the data d̂  and 

residuals  predicted by the optimal model, I construct a new data vector d* with kth element equal 

* ˆ
k k ld d = + , where index l is selected randomly from the list 1,…,Nd (where Nd is the total number 

of data points). This data vector d* represents the result of a hypothetical measurement in which 

the earth (i.e., the standard model) is the same but new measurement errors are randomly drawn 

from the distribution of data errors found in the present model. By using the randomized data d*, 

a new solution m* is found by eq. (5.21). The procedure is repeated 5000 times, giving a multi-

dimensional empirical distribution of model parameters lnRi, lnSj, S, near, far, and r (eq. (5.8)).  

Figures 5.10 to 5.13 show simple assessments of the model trade-off by cross-plotting pairs 

of model parameters m*. In each of these cross-plots, two measures of model uncertainty are 

shown. First, by taking 5% and 95% quantiles of the distribution of each model parameter 

regardless of the values of other parameters, total confidence ranges for each variable is quantified 

(dashed lines in Figures 5.10 to 5.13; Tables 5.1 to 5.4). These confidence ranges show the bounds 

on parameter values expected in the present dataset. The probabilities of model variables being 

below or above these ranges are close to 5%. Second, the shapes of these 2-D scatterplots indicate 

the mutual covariances, or trade-offs between the different model parameters. In particular, Figure 

5.10 shows that q negatively trades off with S (note the negative slopes of the clouds of 

bootstrapped models). Interestingly, both the q and S are distinctly different for time-frequency 

amplitude variation models inverted from the horizontal-component and three-component vector 

(3C) amplitude data (compare Figures 5.10a and 5.10b to 5.10c). This difference is due to the 

much smaller  and larger q for vertical-component amplitudes within the S-wave window. An 

important observation from Figures 5.10 to 5.12 is that although the median q values are small 

(corresponding to large Q  4170 for transverse component, Q  4230 in the H2C model, and 
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Q  1850 for 3C), they are distinctly different from the zero-attenuation level q = 0. In Figures 

5.11 and 5.12, negative correlations of q with parameters near (local geometrical spreading) 

and far (regional geometrical spreading) are seen, although these correlations are weaker than with 

S. 

 

Figure 5.10. Scatterplots of   (interpreted as S for earthquake #1) values versus 1000q = 1000/Q 
from 5000 randomized inversions: a) for transverse-component amplitudes, b) H2C amplitudes, c) 

3C amplitudes. Yellow (almost white in print) dots show the corresponding optimal model 

parameters, and lines indicate their 90% confidence intervals.  

 

Figure 5.11. Scatterplots of parameters near versus 1000q = 1000/Q from 5000 randomized 

inversions: a) for transverse-component amplitudes, b) H2C amplitudes, c) 3C amplitudes.  

Symbols and lines are as in Figure 5.10.  

The values of median near  are also different for the transverse-component (near   1.77), 

H2C (near   1.70), and 3C-amplitude models (near   1.49). Both of these values are much larger 
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than those used in existing standard models (Atkinson, 2004). For the median far, the difference 

between the different types of S-wave amplitudes is smaller, but the values are large and exceed 

about 2.21 (for transverse component), 2.16 (for H2C), or 1.97 (for 3C) with 95% confidence 

(Figure 5.12). Note that these values are consistent with the geometrical-spreading exponents 

measured for coda waves by Jhajhria et al. (2017), which ranged from 1 to 3 with an average 

of 1.93. Finally, parameter r (characterizing the change of G(t) across the transition from local to 

regional distances) positively correlates with far and is nearly the same for transverse-component, 

H2C, and 3C S-wave amplitudes (Figure 5.13). 

 

Figure 5.12. Scatterplots of parameters far versus 1000q = 1000/Q from the randomized inversions: 

a) for transverse-component amplitudes, b) H2C amplitudes, c) 3C amplitudes.  Symbols and lines 

are as in Figure 5.10.  

 

Figure 5.13. Scatterplots of parameters far versus r from randomized inversions: a) for transverse-

component amplitudes, b) H2C amplitudes, c) 3C amplitudes. Symbols and lines are as in 

Figure 5.10.  
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In addition to the single- and two-parameter variances, the complete model uncertainty can 

be characterized by the principal-component (PC) analysis. PC eigenvectors represent the 

directions of the strongest trade-offs (covariances) within the distribution of bootstrapped random 

models. These PC directions are obtained by calculating the covariance matrix for the ensemble 

of models m*: 

                                        ( )( )* * * *

1

N
n n

ij i j i i j j

n

M s s m m m m
=

= − − , (5.22) 

 where n is the model number, N is the total number of bootstrapped random models, 
*

im  

denotes the mean of all *n

im  and ( )
1 2

2
* *

1

N
n

i i i

n

s m m
−

=

 = −
  

  . The principal components of the 

distribution are given by normalized eigenvectors of this matrix sorted by decreasing eigenvalues.  

Figure 5.14 shows ten largest PC eigenvalues accounting for the strongest variances of 

combined model parameters. In this figure, note that PCs #2 and #3 contribute variances of about 

75% of that of the largest PC, and the rest of the PCs are below about 50% of the largest variance. 

The distribution of eigenvalues is nearly identical for all measures of wave amplitude 

(Figures 5.14a to c). Figure 5.15 shows how the two largest PCs are oriented among the parameters 

of the model. The leading PC principally consists of the coupling factor for the second source 

(lnS2), two kappa values (S1 and S2), the values of near and far, and the q (marked by asterisks in 

Figure 5.15a). These five parameters represent the principal trade-off within the model. To 

summarize this trade-off, I observe that the least-constrained model perturbation (largest-variance 

eigenvalue) consists of approximately equal positive shifts in S1, S2, near, a somewhat smaller 

shift in far, and simultaneous negative shifts in q and lnS2. Interestingly, within the PC #1, 

parameters lnRi show several correlated groups of 5–7 receivers (Figure 5.15a). These correlated 

groups could represent imperfectly constrained model-parameter trends as in Figure 5.8g (also 

seen in Figure 5.8f). In the PC #2, the trade-off mostly occurs between three site factors (asterisks 

in Figure 5.15b). To examine the interactions between only the earth-structure related parameters, 

I further extract from matrix M (eq. (5.22)) rows and columns corresponding to parameters S1, 
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near, far, r, and q. This extraction yields a simplified 55 covariance matrix in which the effects 

of all other variables are averaged. 

 

Figure 5.14. Eigenvalues corresponding to principal components of model uncertainty, relative to 

the largest eigenvalue: a) for the model based on transverse- component amplitudes; b) for model 

based on H2C amplitudes; c) for model based on 3C amplitudes. 

 

Figure 5.15. Two leading principal components of covariance matrix for the model of transverse- 

component amplitudes: a) and b) projections of the first and second largest principal components, 
respectively. Color/gray backgrounds and labels indicate groups of similar model variables, and 

asterisks indicate the most significant contributions to the principal-component vectors.  

For this matrix, results of PC analysis are shown in Figures 5.16 and 5.17. These results 

are similar to the observations from the leading PCs of the full matrix (Figures 5.14 and 5.15). The 

distribution of leading variances (Figures 5.16) and mutual relations of the uncertainties of 

parameters (Figure 5.17) can be interpreted as principally related to the earth’s crust and not to the 

distribution of sources and receivers. Thus, these five PCs represent an important part of the (t,f), 

together with eq. (5.2) and the inverted values of model parameters. As shown in Figure 5.17a, the 
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principal trade-off consists in a correlation between , near, and far, and an anti-correlation of 

these parameters with q. The second principal component contains a positive trade-off between 

parameters far and r (Figure 5.17b). 

 

Figure 5.16. Eigenvalues of the five-parameter covariance matrix, relative to the largest eigenvalue: 
a) for the model based on transverse- component amplitudes; b) for model based on H2C 

amplitudes; c) for model based on 3C amplitudes. 

 

Figure 5.17. Principal components of the five-component covariance matrix for transverse- 

component amplitudes (panels a) to e)). The backgrounds and labels are as in Figure 5.15.  

5.6. Optimal Parameterization 

The reduced 55 covariance matrix and its eigenvectors described at the end of section 5.5 

allow deriving a new parameterization of the model that can be called optimal, or “data-driven.” 

In contrast to eq. (5.2), this parameterization does not reduce to a product of elementary functions 

of t, f, and tf. Instead of this functional simplicity, the new parameterization consists of five factors 

that are statistically uncorrelated and do not mutually trade off.  
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To obtain the optimal parameterization, let us denote V a matrix combining the five 

normalized principal-component vectors (Figure 5.17) as columns. Next, let us present eq. (5.2) as  

                                    ( ) ( ) ( )( )ln , ln , ,ij ijt f t f t f =  − −ξ μ μ , (5.23) 

where  is a time-and frequency-dependent, five-element matrix row (basis function) specified in 

the next paragraph,  is the earth-related part of the model vector in eq. (5.8): 

                                       ( )0 near far 0

T

S r q q   μ , (5.24) 

μ  is its value for some average model in the study area, and ( ),ij t f  is the complete average 

standard model. For the average model, I can use the best-fit model derived in preceding sections 

or some “reference” model obtained, for example, from existing regional studies (e.g., 

Atkinson, 2012). In eq. (5.24), parameter 0 is introduced in order to make all elements of m

dimensionless. It is convenient to select its value as 0 0 0 0 0q t q x = = , where x0 is the 

characteristic distance at which the lnA(t,f) dependencies are compared (further in this section, I 

use x0 = 10 km), t0 is the corresponding characteristic time,  is the average (characteristic) S-wave 

velocity, and q0 is the characteristic attenuation, for which I take 4

0 10q −= .  

The matrix-row basis function  in eq. (5.23) consists of the elements of matrix L related 

to the selected five model parameters (eq. (5.9))  

                                    

( ) ( )

( ) ( )( )

( ) ( )( )

( ) ( )

( )

1 0 0

2 near 1

3 far 2

4 r

5 0

, ,

, ln ln ,

, ln ln ,

, ,

, .

t f f f

t f t t t

t f t t t

t f t

t f q ft

 

 

 

 

 

= −

= −

= −

= −

=

 (5.25) 

In these expressions, the reference frequency f0, the travel-time interval of amplitude amplification 

[t1,t2], and basis functions near, far, and r are defined in section 5.2.2 (where I also take 
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0 10 Hzf = ). Note that the selections of f0, x0, and q0 only affect the units and numerical values of 

the model parameters but not the functional dependencies of lnij(t,f). The deviation of model  

from μ  is a linear combination of the principal components, which can be written as matrix product  

                                                      opt− =μ μ Vμ . (5.26) 

In this notation, elements of vector opt represent contributions from the individual principal 

components. Substituting eqs. (5.23) and (5.26) into eq. (5.2), I obtain the desired optimal 

parameterization of ij(t,f): 

                                         ( ) ( ) ( ) opt,
, ,

t f

ij ijt f t f e
−

 = 
ξ Vμ

. (5.27) 

This expression can be interpreted in a very general sense of a perturbation- (scattering-) theory 

approximation (Morozov, 2010a). Equation (5.27) also reveals the origins of both the conventional 

Q and kappa models. For example, if ( ),ij t f  is adopted as a reference model (containing some 

form of geometrical spreading, Brune’s source spectra and hypothetical delta-function site 

responses), then factor 
( ) opt,t f

e
−ξ Vm

 represents the deviation from this reference model, or 

“perturbation.” Parameters opt in this equation represent both elastic and anelastic effects and 

include the conventional q  Q–1, , and also variations of  .  

As noted in section 5.5, parameters q, , and  trade off with each other, but parameters 

opt

k  (kth elements of vector opt) do not. Therefore, parameters 
opt

k and eq. (5.27) represent a 

unique and “natural” parameterization of the standard S-wave amplitude model independent of 

mathematical conventions and subjective theoretical assumptions. Analogously to the sine and 

cosine functions in the Fourier transform, these functions are “orthogonal” in the sense of 

representing mutually uncorrelated model parameters for the given earth structure and source-

receiver geometry. 

For comparison with conventional models, matrix products in eq. (5.27) can be written 

explicitly as 



 

121 

 

                
( ) ( ) ( ) ( ) ( )

( ) ( )

opt opt opt

1 1 2 2 3 3

opt opt

4 4 5 5

, , exp , , ,

                        , , .

ij ijt f t f p t f p t f p t f

p t f p t f

  

 

 =  − − − −

− − 

 (5.28) 

In this form, parameters 
opt

1  through 
opt

5  are analogous to parameters b1, b2, b3, and c4 by 

Atkinson (2004, 2012), and functions pk(t,f) replace the power-law functions within the 

corresponding distance intervals. Although these functions are not represented by simple 

mathematical expressions, they can be easily evaluated numerically as shown in Figure 5.18.  

 

Figure 5.18. Distance dependencies of the principal components of optimal parameterization (plots 
a) to e)) at different frequencies (line colors; legend). All dependences are normalized at epicentral 

distance 10 km. To aid in gray-scale viewing, on the right of each plot and legend, arrows labeled 

‘f’ indicate the directions of increasing frequency for the different curves.  

With all 
opt 0k = , the best-fit model ( ),ij t f is obtained (solid lines in Figure 5.8a), and nonzero 

opt

k  give independent variations of this model. As Figure 5.18 shows, the first and third principal 

components (parameters 
opt

1  and 
opt

3 ; plots a) and c)) dominate the local distance region 
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(x < 90 km), and the second component (
opt

2 ; Figure 5.18b)) is strong near the beginning of the 

regional-distance interval (x > 115 km).  

Frequency dependencies are combined with time dependencies in these functions. The 

strongest frequency dependencies are seen at the largest distances for the first and fifths principal 

components (Figure 5.18a and Figure 5.18e). This observation again shows that as mentioned in 

the Introduction section, the frequency-dependent amplitude decay rates are different at the local 

and regional distances, and therefore they cannot be described by a common Q(f). This assumption 

of a common Q(f) appears to be the principal difficulty of conventional parametrizations 

(Atkinson, 2012; Fisk and Phillips, 2013b). 

5.7. Discussion 

Following Morozov (2008b, 2010a, 2010b), the methodological recommendation from the 

above analysis for standard-model studies is to avoid under-parameterization of their frequency-

independent parts and to allow the elastic limit Q-1 = 0. Model parameterizations should be data-

driven and represent the observations from the dataset. “Feature-agnostic” parameterizations using 

no specific knowledge of the wave-propagation problem can be used, such as the “nonparametric” 

parameterizations of G(t) (eq. (5.2)). However, nonparametric models also consist of selections of 

sampling, regularization strategies, and smoothing parameters that may be difficult to select and 

verify (section 5.2). In this chapter, I used a five-parameter model for G(t) reflecting the shapes of 

the observed A(t,f) dependencies (Figure 5.1). Note that while being more economical than 

nonparametric sampling of the distance range (e.g., Castro et al., 1990; Oth et al., 2011), this 

parameterization considers more detailed forms of G(t) (Figure 5.2) and requires no smoothing.  

It is often assumed that “data-driven” inversion always requires large data volumes (e.g., 

Trugman and Shearer, 2018). However, the effect of data volume is not always so simple. For 

under-parameterized and underfitted models such as the G(t) part of eq. (5.2), using larger datasets 

may complicate identification of important features in the data and even make them 

unrecognizable. For example, if considering a large dataset such as in Figure 4 in Atkinson (2004), 

the short [t1,t2] amplitude-amplification interval may become difficult to recognize due to different 

locations of ray paths and variable source and receiver terms. Similarly, if numerous station 
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terms Ri are disregarded when inverting for G(t), the resulting data misfits are large and create a 

distribution of errors in which the [t1, t2] interval would again be smeared. Inversions of large 

datasets also contain implicit weighting of the contributions from different epicentral distance 

ranges. For example, most existing standard models for ground motion are dominated by regional 

distances (beyond 150 km, where the observations are abundant) and poorly match the A(t,f) at 

local distances (< 100 km). Atkinson (2012) also showed this regional dominance in Figure 4 in 

that paper. 

Thus, smaller and localized datasets with non-uniform source-receiver coverage are useful 

for designing model parameterizations, weighting, regularizations, constraints, and for testing 

inversion techniques. For a large dataset, it may also be useful to examine parts of it (such as 

common-receiver or common-source subsets) separately in order to recognize wavefield patterns 

and determine the optimal parameterizations and inverse methods. 

Another general recommendation from this chapter and also from Morozov (2008b, 2010a, 

2010b) is to use the frequency independent q and to combine its inversion with inverting for . 

The constraint q = const is key for deriving a robust solution. This constraint appears to be the only 

way to render uniqueness and a simple physical meaning to q as a measure of the frequency- and 

wave-path related part of (t,f). By contrast, if treating Q as frequency- and even travel-time 

dependent (Graizer, 2017; Calvet and Margerin, 2013), or  as distance-dependent 

(Anderson, 1991), almost any part of the observed (t,f) (eq. (5.2)) can be attributed to either 

( )lnQ f const= −   or lnconst = −  . As illustrated in the above discussion of the source 

and site spectra (5.3.3), the net effect of the frequency-dependent Q is smaller than the uncertainties 

inherent in the s(f) and kappa filters. The effect of the frequency-dependent Q on lnA is also close 

to data residuals (Figure 5.3). These comparisons show that the Q(f) in standard models generally 

represents an over-parametrization that can and should be avoided. 

The model of this chapter represents only the basic 1-D case and requires additional detail 

and extensions in other studies. In particular, in larger geographical areas, path effects (G and q) 

need to be replaced with tomographic models and may become anisotropic.  To account for the 

observations of frequency-dependent near-critical reflections appearing in (t,f) dependencies at 

about 100–120 km distances (Oth et al., 2011, and this chapter) frequency-dependent geometrical 
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spreading G(t,f) (Yang et al., 2007) may be needed in eq. (5.2). Such effects may be suggested by 

the increased lnA residuals from ~100 to 200-km distances in the present data (Figure 5.3a). Source 

and receiver site effects (S and R) may similarly become anisotropic, and path bending and 

multipathing may need to be included at longer source-receiver distances.  

Although illustrated on a single and relatively small dataset, key observations of this 

chapter is methodological and apply to the general approach to constructing standard model by 

factorization of recorded amplitude spectra (eq. (5.2)). Because of inverting many model 

parameters from a single least-squares measure of log-amplitude data fit, the values of the resulting 

parameters and their uncertainties and trade-offs depend on how the models are constructed. For 

an adequately parameterized model, its uncertainties are of statistical nature, similar to any other 

physical measurement. This type of uncertainties can be used to produce a model-independent 

parameterization determined by the structure of the available dataset (eqs. (5.27) and (5.28)). 

Estimates of statistical uncertainties can also be used for designing seismic experiments. However, 

for under-parameterized and “over-under-parameterized” models, strong trade-offs occur with 

parameters fixed by convention, such as the geometrical-spreading exponent b3 = 0.5 at regional 

distances by Atkinson (2004, 2012). Allowing a frequency-dependent Q(f) reduces but does not 

completely remove the effects of such under-parameterization and leads to models with hidden 

biases and “footprints,” such as shown by the distance-correlated site coupling (amplification) 

terms and data errors (Figures 5.8e and 5.8g). For practical applications, the most important 

detrimental effect of such under-parameterization is in inaccurate data fitting at local distances 

(Atkinson, 2012). To remove these biases and inaccuracies, more flexible parameterizations 

should be used. 

Unfortunately, the problematic “over-under-parameterization” feature can be seen in most 

current models for wave amplitudes. Parametric models (e.g., Aki and Chouet, 1975; 

Atkinson, 2004, 2012; Fisk and Phillips, 2013a, 2013b) postulate stringent forms of geometrical 

spreading, and consequently they suffer from parameter trade-offs most. The “nonparametric” 

approaches (e.g., Castro et al., 1990; Drouet et al., 2008; Oth et al., 2011) also contain an aspect 

of under-parameterization in the form of selected smoothing operators (see detailed discussion of 

this point and of the general model-constraining methodology in section 5.2). Another limitation 

of most existing models is in attaining the solution by minimizing only a single number, which is 
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the least squared data error, sometimes modified by smoothing or proximity to “prior” models. 

Nevertheless, seismic data are complex and usually require multiple data-fit and model-quality 

criteria. 

Thus, my general recommendation for many types of studies in various areas around the 

world is to: 1) start from a parameterization of G(t) (eq. (5.2)) that would allow a near-elastic (with 

small Q-1) interpretation of the data, and then 2) improve the data fit by using a constant Q and 

employing additional model-quality criteria. Inferences of a frequency-dependent Q(f) can often 

be viewed as indicators of uncontrolled trade-offs in model parameterization and insufficiently 

detailed data fitting (Morozov, 2008b, 2010a). Models with constant Q have well-defined physical 

meanings supported by perturbation-theory rationale (Morozov, 2010a), and they often yield more 

accurate and detailed data fitting than Q(f) models. For example, as shown in Figure 5.8, the same 

data are fit more closely (and across the entire epicentral-distance range) by the constant-Q (q) 

model (Figure 5.8a) than by a model with a frequency-dependent Q (Figures 5.8b and 5.8c). This 

comparison means that the entire frequency dependence of Q lies within the unconstrained 

statistical parameter trade-off. For example, assume that I create an analog of Figure 5.11 for q 

taken at a fixed frequency, such as for Q(1 Hz) = Q0  99 derived from these data by conventional 

methods (Safarshahi et al., 2013). Because both models satisfy the least-squares criterion for 

lnA(t,f) data, parameter trade-off extends from this Q0 and its assumed counterpart of  = 1 all the 

way to the point (Q = 4000,  = 1.77) in Figure 5.11. In a different way, the unconstrained 

character of Q(f) for these data is illustrated in subsections 5.3.4.  

5.7.1. Multi-step procedures and constraint equations 

In this subsection, I show that although rarely examined explicitly, certain forms of 

constraints (eq. (5.11)) determine the forms of most existing attenuation models (e.g., Castro et 

al., 1990; Atkinson, 2004, 2012; Fisk and Phillips, 2013a, 2013b; Graizer, 2017). These 

constraints are also responsible for insufficient accuracy of many existing models across the local 

to regional distance ranges, which was noted by Atkinson (2012).  

All of the conventional approaches can be reproduced by the general eqs. (5.10) and (5.11). 

The implicit constraints are often implemented by multi-step procedures, in which only a subset 

of model parameters is varied during each step. For a specific example, let us consider 
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“parametric” standard models with frequency-dependent Q(f), such as by Castro et al. (1990), 

Atkinson (2004), Fisk and Phillips (2013a, 2013b), or Graizer (2017). In the notation by 

Atkinson (2004), during the first two inversion steps, the source factors Sj are related to earthquake 

magnitudes M as ( ) ( )
2

1 2 3lg 4 4jS c c M c M= + − + − , and receiver factors Ri and factors 

containing kappas are disregarded. These assumptions mean that constraints lnRi = 0 and 

S = R = 0 are imposed on the inverse, and eq. (5.8) reduces (in terms of decimal logarithms) to 

                                               4lg lg lgij jS b x c x = − − . (5.29) 

In this equation, x = t is the source-receiver distance,  is the average S-wave velocity, and b = 1, 

2, and 3 within each of the three selected distance ranges x < X1, X1 < x < X2  1 2,x X X , and 

x >X2, and c4 is an additional model parameter. Parameters b are interpreted as properties of the 

geometrical spreading G(t) (eq. (5.9)), but c4 is (by convention) attributed to the Q-factor as: 

( ) ( )4 lgb bc q f f e = , where fb is the fixed measurement frequency. Note that due to such 

definition, the Q obtains a built-in increase with frequency ( )b bQ f f : 

                                              ( ) ( )1

4

lg
b b b

e
Q f q f f

c





− = . (5.30) 

In the first step of the inversion by Atkinson (2004), parameters b1 and b2 are estimated by 

using only the data at frequencies below 10 Hz, keeping c4 = 0, and fixing the value of b3 = 0.5 at 

distances x > 150 km. To implement this step with the current dataset, I similarly set 3 = 0.5 and 

minimize the data error by grid search varying v1 between 1.0 and 1.6, 2 between –0.5 and 0.5, X1 

between 50 and 100 km, and X2 between 100 and 200 km (Atkinson, 2004). For each amplitude 

type, an optimal combination of these parameters is found by minimizing the following misfit 

function: 

                                   
0 0i i iF w median median

 
  

 
=  + , (5.31) 
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where
data modelln lni i iA A  −  is the fitting error of ith data point. The use of statistical (median) 

measures reduces the sensitivity of F to data outliers and anomalous values of receiver site effects. 

Weight w in eq. (5.31) causes this optimization procedure to prefer models close to the upper 

bound of 
dataln iA  (Figure 5.19a). Such fitting along the upper limit of dataln iA  is usually achieved 

by using larger (more uniformly distributed) datasets with fixed 3 = 0.5 (b3 in Atkinson (2004)). 

By using weight w = 2 (eq. (5.31)), I obtain a G(t) dependence similar to Atkinson’s (2004) 

(Table 5.7). However, as Figure 5.19a clearly shows, the constraint 3 = 0.5 is ad hoc and not well 

justified beyond 100-km epicentral distances.  

 

Figure 5.19. Inversion of A(t,f) data for transverse-component amplitudes using the method by 

Atkinson (2004): a) Geometrical-spreading model (line) obtained by fitting lnA data at frequencies 
below 10 Hz (circles); b) q = 1/Q (diamonds) and Q (squares) obtained by inversion for q at 

individual frequencies.  

Table 5.7. Parameters of optimal geometrical-spreading models for S waves of this study. 

Amplitude type X1 X2 b1 b2 b3 

Transverse-component 50 110 1.2 -0.5 0.5 

H2C 50 110 1.0 -0.1 0.5 

3C 80 150 1.2 -0.3 0.5 

      

The second and key step of conventional inversion consists in: 1) considering each 

individual frequency fb separately, 2) subtracting the interpreted geometrical spreading from the 

data (eq. (5.9)) as ( )ln ln lnij ij ija a G t  − , 3) constraining lnRi = 0, near = far = 0, and R = S = 0 

in eqs. (5.8) and (5.9), and 4) inverting for only lnSj and q (i.e., c4 in eq. (5.29)). By implementing 
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these constraints in eq. (5.11), the values of q and Q  q–1 values are obtained, as shown in 

Figure 5.19b. Similar to Atkinson (2004) and Safarshahi et al. (2013), the resulting Q(fb) steeply 

increases with fb. 

Lines in Figure 5.20a show the variations of lnA(t,fb) predicted by this model. These lines 

are closer to the data than lnG(t) in Figure 5.19a, which is usually viewed as an effect of Q 

(Atkinson, 2004). However, a plot of lnA data errors versus source-receiver distance and frequency 

(Figure 5.20b) reveals problems with this two-step, “over-under-parameterized” inverse. The data 

residuals correlate with both distance (gray line in Figure 5.20b) and frequency (symbols). The 

effect of the Q (vertical span of model lines in Figure 5.20a) is comparable to the correlated data 

errors (line in Figure 5.20b), which shows that the Q may represent a remapping of errors in the 

under-parameterized part of the model. Note that similar correlations of data residuals with source-

receiver distances are present in published models, for example in Figures 6 to 9 by 

Atkinson (2012).  

 

Figure 5.20. Inversions of transverse-component S-wave amplitudes with fixed G(t) (Figure 5.19a) 

and frequency values fb: a) Distance dependencies at several fb (labeled lines). Symbols are the lgA 
data with source terms subtracted. Standard deviation of data residuals are shown by error bars in 

the upper-right corner.  b) Data residuals vs. source-receiver distance. Thick gray line in b) 

indicates a trend of the lgA data residual with distance. Frequencies fb and Q values (Figure 5.19b) 

are given in the legend.  

Oth et al. (2008) gave another interesting example of real and synthetic data showing how 

nonparametric inversion for a frequency-dependent Q produces unstable results in cases of non-

uniform source-receiver distributions. By separating the attenuation laws at closer and farther 
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distances (i.e., effectively increasing the parameterization of lnG(t)), Oth et al. (2008) achieved 

stability and obtained reasonable (from their point of view) results of 0.96( ) 114Q f f  and 

1.12( ) 72Q f f for S waves in a region of Romania.  

The observations in the preceding two paragraphs suggest the general meaning of the 

widespread frequency dependence of Q(f) – it represents a correction for under-parameterized 

elastic-wave (geometrical) spreading (Morozov, 2008b, 2010a). For example, the mentioned Q(f) 

by Oth et al. (2008) are nearly proportional to f, which means (combined with  = 0 assumed 

during this step) that the source-receiver response corrected wave amplitudes (t,f) are practically 

frequency-independent (eq. (5.2)). Therefore, wave propagation within this region is nearly elastic, 

and the “physical” Q for the crust should be much larger than Q0 = 114 and 72 above. The 

contribution of the “true” q of the Earth’s crust is still unclear in these results. 

In kappa studies, the second step of inversion is performed differently, by normalizing the 

amplitude spectra, setting q = 0, but allowing a distance-dependent R instead of the frequency-

dependent Q (Anderson, 1991). Nevertheless, the fundamental structure of the model (eqs. (5.8) 

and (5.9)) remains the same. Distance dependences of R are still explained by Q along crustal 

wave paths (Anderson, 1991; Ktenidou et al., 2014).  

In the third common step of conventional approaches to wave-amplitude models (eq. (5.2)), 

parameters Si and Ri, source spectra, corner frequencies, and kappas are inverted from data 

residuals (Castro et al., 1990; Atkinson, 2004; Oth et al., 2011; Fisk and Phillips, 2013a, 2013b). 

However, due to coupling between most of the parameters S, R, , , q, and spectra AS(f) (eqs. (5.1) 

and (5.2)), results of these procedures again contain intricate remappings of data errors, such as 

shown in Figure 5.20b. Strong algorithm dependencies of multi-step inversion procedures were 

also noted by Oth et al. (2008), who combined the second and third steps above. 

Thus, the outcomes of conventional multi-step inversions depend on the sequences of 

operations, theoretical assumptions, selection of weighs, and other details of algorithms. Because 

of the uniqueness of each dataset, it seems hardly possible to rigorously compare different 

inversions or to propose a universal recipe for such multi-step inversion. It appears that the only 

way to achieve a simple and consistent procedure is to utilize joint inversion for all 

parameters Sj, Ri, , , q, and source functions AS(f) simultaneously. In addition, we should not 
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only rely on simple data averaging and least-squares inversion but need to consider explicit criteria 

of model quality, as done in this chapter. 

5.8. Conclusions 

By using a flexible and assumption-free time/frequency parameterization, rigorous 

inversion method, and taking measures to control the spurious biases within the model, empirical 

time/frequency dependencies of S-wave amplitudes are measured from a dataset in southeastern 

Iran. The resulting model predicts the amplitude data with better or similar accuracy compared to 

the conventional models, and it also shows a better distribution of data residuals uncorrelated with 

distance and frequency. The model also exhibits significant differences from a previous model for 

the same area. These general observations may likely apply to other areas around the world.  

Specifically, the frequency-independent and frequency-dependent (kappa and Q-type) 

attenuation for orientation-independent horizontal (H2C) and three-component (3C) S-wave 

amplitudes is somewhat weaker than for transverse-component amplitudes. The geometrical 

(frequency-independent) spreading of S waves is much faster than usually assumed and depends 

on the travel time t (for orientation-independent horizontal component of ground motion) as about 

t–1.7 at distances less than 90 km and   t–2.45 at greater than 115 km. Between these distances, the 

amplitude increases by a factor of about three, which is interpreted as an effect of reflections from 

the deep crust and/or the Moho. High-frequency spectral parameters kappa range within 

approximately 30–50 ms. The kappa may be associated with either receiver site responses or 

source spectra. With accurate geometrical-spreading, kappa, and source-spectral models, the 

apparent Q-factor is nearly frequency independent and exceeds 2000, with the maximum-

likelihood value of about 4000. For vertical-component ground motions within the S-wave 

window, the Q is lower (about 1500) and kappas are much lower (4 – 6 ms). 

Extending the results of the model, I argue that in order to obtain a robust model for time-

and frequency dependent seismic-wave amplitudes, the frequency-independent part of the model 

(effective geometrical spreading) should be parameterized more flexibly. In particular, the 

transition between local and regional distance ranges may contain a relative amplification and a 

change in the geometrical-spreading decay rate. With sufficiently flexible geometrical spreading, 
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data fitting is improved at both local and regional distances. Only a frequency-independent Q is 

needed to explain the amplitudes across the entire epicentral-distance range. 

In section 5.5, two types of model parameter trade-offs are evaluated for the model. The 

first type of trade-off is related to the common practice adopted in most current studies, in which 

an under-parameterized model for geometrical spreading is combined with a frequency-

dependent Q-factor. In this case, strong parameter trade-offs are always inherent in the resulting 

model. These trade-offs involve parameters that are rarely analyzed, such as correlations of 

receiver coupling with epicentral distance and biases in median data residuals. To control these 

unacceptable trade-offs, additional constraints can be imposed on the model.  

The second type of model-parameter trade-off occurs with sufficient parameterizations and 

is due to the usual random measurement errors in the data. This trade-off is clearly seen in the 

model but moderate in magnitude. Detailed statistical analysis shows that all inverted properties 

are adequately resolved. By using the principal-component analysis, an optimal (trade-off free) 

parameterization of the time- and frequency dependent seismic amplitudes is derived.
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CHAPTER 6     

ANALYSIS OF SEISMIC CODA I: EAST INDIAN SHIELD 

In this chapter and the following chapter 7, I describe two cases of detailed analysis of 

seismic coda in Iran and India. Coda waves form long, slowly decaying tails of seismic records 

which are often used for characterizing the physical properties of the crust beneath the receiver 

(chapter 2). Because coda measurements require only a single station and not many earthquakes, 

they represent one of the most common seismic observations. However, as noted by 

Morozov (2008b, 2010a), a significant controversy exists about the key property used in coda 

interpretation, which is called the “frequency-dependent coda Q”, or Qc. This controversy of the 

concept of the Q-factor extends far beyond the coda research area. For example, frequency 

dependencies of seismic Q are important for the analysis of body waves (chapter 5), measurements 

of the high-frequency parameter kappa, attenuation corrections in reflection seismic imaging, and 

even for laboratory measurements of seismic Q in rock samples. 

In this chapter, I describe the current methodology of coda measurements, explain its 

controversy and problems, and present an alternate approach using the concept of temporal 

attenuation coefficients (Morozov, 2008b). This approach was also the basis of the data analysis 

in chapter 3. Using this approach, I re-interpret the results of a single-station study from eastern 

India, recently published by Singh et al. (2019). The new interpretation is drastically different from 

the one proposed by Singh et al. (2019), and it reveals a nearly elastic (low-attenuation) character 

of wave seismic propagation within the Indian Craton. Similar observations for the tectonically 

active area of Zagros will be made in chapter 7. The near-elastic character of codas is a novel and 

most important observation which has still not been recognized in earthquake studies.  

The results of this chapter were published in the following paper:  

• Morozov, I. B, and Safarshahi, M. (2020). Elastic character of seismic coda 

envelopes within east Indian shield. Pure and Applied Geophysics, 177, 5799–5818, 

DOI: 10.1007/s00024-020-02600-2 
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The copyright for this paper belongs to Springer Nature Switzerland AG, which allows 

authors to use their papers in their dissertations. My contributions to the paper consisted in 

preparing the data, modeling, and participation in interpretation and writing. The text of the above 

paper was expanded, modified, and reformatted for inclusion in this dissertation. 

6.1. Introduction: Meaning of the Seismic Q-factor 

In a continuously growing number of studies of seismic codas from local and regional 

earthquakes, frequency-dependent coda Q (denoted Qc(f) here) is measured for numerous areas. 

The observed Qc is usually explained by a similar “quality-factor” property of the Earth, which is 

further subdivided into S-wave and P-wave, intrinsic, scattering, and other types of Q. However, 

despite the long history and routine use of seismic quality factors, their physical meanings and 

particularly frequency dependencies are still poorly understood. Apart from the general trust in the 

“Q” notation, physical interpretations of Qc are only supported by theoretical models of scattering 

on small random heterogeneities in macroscopically-homogenous media (e.g., Fehler and 

Sato, 2003). Application of these models to practical Qc measurements always involve a major 

approximation, which consists in disregarding the key elastic structures of the study areas, such as 

the crust-mantle boundary, crustal layering, and velocity gradients. The impact of this 

approximation on Qc measurements is rarely examined. Nevertheless, in cases where such 

assessment was performed (Morozov, 2008b, 2010a), selections of the elastic-structure model and 

other processing parameters were shown to dominate the resulting Qc(f) dependencies. With more 

accurate elastic structure, the values of Qc(f) at f = 1 Hz often increase by 20–30 times, and its 

frequency dependence changes from nearly proportional to f to a constant (Morozov, 2008b). 

Unraveling the physical meanings and frequency dependencies of seismological Q-factors 

is a difficult task that is far from completion. Eleven years ago, Pure and Applied Geophysics 

initiated a discussion of this topic (Mitchell, 2010), and the present study (Morozov and Safarshahi, 

2020) is a continuation of this discussion inspired by a recent paper in the same journal (Singh et 

al., 2019). As a careful implementation of the current coda Q methodology, the results by Singh et 

al. (2019) clearly highlight its problems, even though these authors did not point these problems 

out. The paper by Singh et al. (2019) was notable for its detail of model presentation and for 

attempting tomographic inversion to constrain the spatial variations of the frequency-dependent 
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Qc. Similar to most researchers, Singh et al. (2019) summarized their frequency-dependent Qc(f) 

by an empirical scaling relation, 
0( )Q f Q f =  where f is the observation frequency in Hertz, 

0 (1 Hz)Q Q= , and exponent  is close to one. Therefore, revisiting these results should also help 

understanding the causes of such commonly found behavior of the Q-factor. 

The notation ‘Q’ and the common usage of the term “attenuation” in physics usually refer 

to amplitude decays A(f,t) in some oscillatory processes in which the relative mechanical-energy 

loss is proportional to the number of oscillation cycles. This proportionality is represented by 

defining the inverse Q-factor as (chapter 7; Aki and Richards, 2002)  

                                                             
1 1

2

E
Q

E

− 
= , (6.1)

 
                                                  

where E is some measure of average mechanical energy of a rock volume (specifically, Aki and 

Richards (2002) use the peak elastic energy), and E is its reduction after one loading/unloading 

cycle T = 1/f. In practice, quantities E and E are difficult to measure and even to evaluate 

theoretically, but Q-1 is nevertheless recognized by the characteristic dependence of wave 

amplitude on the travel time t and frequency f:  ( ) ( )1

0, expA f t A Q ft −= − . In this dissertation, I 

refer to such amplitude decays as “Q-type” attenuation, and call “non-Q” any other variations of 

A(f,t) depending on f or t separately.  

Seismic coda is clearly produced by waves reflected and scattered within the crust or 

mantle, but is it due to some “scattering Q” property of the Earth? The key difficulty of using 

scattering-theory models for coda (e.g., Aki and Chouet, 1975; Aki, 1980; Singh et al., 2019) 

consists in assuming that the measured Qc must also be caused by a Q of the medium. In other 

words, within an elastic medium ( 1 0Q− =  in eq. (6.1)), the coda is expected to be infinite ( 1 0cQ − =

). Nevertheless, this premise is clearly not true in even the simplest real cases. For example, a 

single-layer crust overlaying a uniform half-space mantle produces a coda consisting of 

reverberations within the layer (Bouchon, 1982). The amplitude decay rate within this coda is 

determined by the reflectivity and two-way reflection time within the layer (Figure 6.1): 
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                                                                       ( ) 2
0

Vt

LA t A t r−= , (6.2) 

where t is the time after the primary-wave onset at the station, L is the one-way distance between 

successive reflections, V is the wave velocity, r (with r <1) is the average absolute value of the 

reflection coefficient at the bottom of the layer, and t– is the average geometrical spreading for 

waves reflected (scattered) within the layer. The amplitude decay in Figure 6.1 and eq. (6.2) is 

frequency-independent, and it is hardly useful to attribute a “Q-factor” to it by using eq. (6.1). This 

amplitude decreases with time only, which is analogous to geometrical spreading and unrelated to 

the product ft. 

 

Figure 6.1. Schematic frequency-independent coda envelope A(t) (eq. (6.2)) produced by 

reflections within a single-layer crust or sedimentary basin. Triangle is the seismic station, star is 

the source, near-surface scatterers for different orders of multiple reflections are labeled ‘S’. Source 
waveforms are schematically modeled by Gabor wavelets. Note that the scattering points are not 

necessarily located on a straight line.  

However, if interpreting this A(t) by the method of Aki and Chouet (1975), the derivative of the 

logarithms of the normalized and corrected amplitudes 
0

1
ln ln

2

A V
t r

t A L t

  −
= − 

  
   is 

approximated as ( )cf Q−  taken at the average observation time t . Consequently, the resulting 

apparent Qc equals  
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                                  ( )
1

, 1
1c

r r
r

f f
Q f t

f f t
f

t

 

 

 −
=  −  −

 +

, (6.3) 

where the approximate relation is for larger observation times ( )1 rt f − , and the 

characteristic frequency is  

                                                      ln
2

r

V
f r

L
   ,    (6.4) 

(because 1r   , ln lnr r= −  ). Thus, the purely elastic coda yields ( ),cQ f t  proportional to f, 

i.e.  = 1 in the power law ( ) 0Q f Q f = . Since  > 1 at local distances (approximately 1.3 to 1.6; 

e.g., Atkinson, 2004), the empirical Qc also increases with t  (second relation in eq. (6.3)). Such 

increases of Qc with both f and t  are often reported for seismic coda (Singh et al. (2019) and 

many references in Morozov (2008b) and Morozov et al. (2018)). The increase of Qc with 

frequency is usually attributed to the “scattering Q” (Dainty 1981), and larger t  are associated 

with greater depths of scattering (Singh et al. 2019). However, these interpretations are clearly 

invalid for the example in Figure 6.1. The measured ( )0 1 Hz rQ f  principally represents the 

elastic structure: thickness of the crust (parameter L in eq. (6.4)) and average velocity of wave 

modes dominant within the coda (V). The factor |lnr| in eq. (6.4) may be viewed as a justification 

for interpreting eq. (6.3) as a “scattering” (more precisely, “multiple-reflection”) Q. However, this 

Qc relates to the whole crust and cannot be attributed to the medium at any locations or depths 

within it. This Qc cannot be used at all without knowledge of the specific elastic structure (Figure 

6.1). 

The assumption that 1

cQ−  is caused by an “in-situ” Q-1 (which is also dominated by the S-

wave 1

SQ− ) was introduced by Aki (1980) from earlier observations by Tsujiura (1978). These 

observations showed that site amplification for coda waves correlated with S-wave amplification 

factors. Nevertheless, this observation only means that shear waves are dominant within the coda 
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(Figure 6.1), but their contribution into 1

cQ−   is not necessarily due to a 1

SQ− . Shear waves dominate 

the “elastic” coda by virtue of large reflection and mode-conversion amplitudes r near critical 

angles (eq. (6.2)), existence of two S-wave polarizations (versus one for P waves), and also because 

of their coupling with surface waves. For near-vertically propagating crustal S waves (L equal the 

crustal thickness H= 35 km, V = 3.5 km/s, r = 0.1, and 100 st = ), the first term in eq. (6.3) 

gives fr  0.037 Hz and Qc  30f. For near-critical S waves comprising the Lg phase, L  1.1H, and 

eq. (6.2) can be approximated by the power-law ( ) 0.83A t t− (Campillo, 1987), from which the 

average reflection coefficient can be estimated as r  0.5 to 0.8. With such r, Qc in eq. (6.3) varies 

within a broad range from about 120f to 3000f, which covers the range of typical Qc values 

including the results by Singh et al. (2019). 

Seismic scattering theories (Aki, 1969; Sato, 1977) refer to an idealized case of a boundless 

homogenous half-space with random, subwavelength-scale heterogeneities statistically uniformly 

distributed in space. In this case, the geometrical spreading can be determined theoretically, and 

the coda would indeed have infinite length if 1 0Q− →  (although also of infinitesimal amplitude; 

Frankel and Wennerberg, 1987). However, this case of homogeneous media is far from reality, 

and adopting this model as a background produces the characteristic behavior of Qc(f) nearly 

proportional to f. Morozov (2008b, 2010a) and Morozov et al. (2018) reviewed many 

observational studies based on Aki and Chouet’s (1975) approach and showed that the frequency-

dependent Q and particularly Qc can often be explained as artifacts of this inaccurate background 

model. As in eq. (6.3), the frequency-dependent Qc typically represents not a Q-type “attenuation” 

in the sense of statistical scattering models (Aki 1969; Sato 1977) but the deterministic elastic 

structure of the Earth: crustal thickness, velocity gradients, layering, major reflectors within the 

crust and mantle, and velocity contrasts near the surface, coastlines and sedimentary basins 

(Morozov, 2010a; Jhajhria et al., 2017; Morozov et al., 2018).  

To make the assumption-sensitive Qc(f) dependencies comparable for different geographic 

areas, standardized selections of processing parameters have been recommended (Havskov et 

al., 2016). However, comparisons of standardized Qc(f) dependencies are hardly more informative 

than comparing the temporal decay rates of amplitudes ( ) ( ), ln ,a f t A f t t    themselves. 

Functions Qc(f) derived by the procedure of Aki and Chouet (1975) can be viewed as mathematical 
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transformations of time dependencies predominant in a(f,t). This transformation includes 

multiplication by f, which causes the leading frequency dependence shown in eq. (6.3) 

(Morozov, 2008b). Moreover, transforming a(f,t) into a Qc(f) obscures the most valuable 

observation from coda envelopes – namely that a(f,t) is usually nearly frequency-independent (as 

in eq. (6.2)). 

If we are interested not merely in documenting Qc(f) curves for a geographic region but 

also in revealing its physical properties, then a more empirical and assumption-free model is 

needed. As shown in this chapter, the codas observed in the study by Singh et al. (2019) are nearly 

elastic, and they can be more reliably described not by the delicate concept of Qc(f) but by an 

alternative, frequency-independent property of the subsurface that I denote  and call effective 

geometrical attenuation (Morozov, 2008b). This property corresponds to the limit 1 0Q− →  and 

therefore represents the elastic structure. As illustrated by eq. (6.2), this elastic structure is likely 

dominated by large-scale crustal features, but it may also contain subwavelength-scale layers and 

scatterers (Morozov 2010a, 2011a). 

In the following sections, I show how the  and effective (model- and frequency-

independent) Qc can be approximately obtained from published Qc(f) results without redoing the 

complete data analysis. In section 6.2, I review the conventional Qc(f) coda model and highlight 

some of its theoretical and observational problems. In section 6.3, I re-interpret the Qc model by 

Singh et al. (2019) by using the attenuation-coefficient approach by Morozov (2008b, 2010a, 

2010b, 2011a, 2013). The regionalized Qc(f) model by Singh et al. (2019) gives a unique 

opportunity to examine the spatial patterns of geometrical attenuation  and to recognize the 

“footprint” of the conventional Qc(f) method. One of the most interesting results of sections 6.2 

and 6.3 is that the effective Qc within the eastern Indian Shield turns out to be extremely high, in 

contrast to the Qc(f) found by Singh et al. (2019) and many similar studies, which is low at 1 Hz 

and steeply increases with frequency.  The high effective Q it can be explained by the Earth’s crust 

being principally elastic (section 6.4). In section 6.5, I describe a preliminary empirical model for 

geometrical spreading for coda, also inspired by the mapping procedure by Singh et al. (2019). In 

section 6.6, I discuss the resulting model, compare it to tectonic features of the study area, and also 

discuss some limitations and possible extensions of the approach. In section 6.7, I give the 

conclusions of this chapter.  
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6.2. Conventional Approach to Qc 

The model by Aki and Chouet (1975) inverts for a frequency-dependent coda Q-

factor Qc(fb) by approximating the recorded coda envelopes A(fb,t) as functions of time t at each of 

the selected band-pass frequencies fb:  

                                     ( ) ( ) ( ) ( )
( )c

, exp b
b b b

b

f t
A f t S f R f G t

Q f

 
= − 

 
,  (6.5) 

In this relation, S(f) is the source amplitude spectrum, R(f) is the receiver response, G(t) is the 

geometrical spreading selected in the form ( )G t t −= , and  is the geometrical spreading 

parameter (notation as in Singh et al. (2019)). Singh et al. (2019) specify the assumptions of this 

model, which are standard in local-coda studies: 

1) Spherical direct- and scattered-wave wavefronts,  

2) Single, weak, isotropic scattering on a homogenous statistical distribution of small-

scale, random heterogeneities,  

3) Constant scattering amplitude (absence of factors related to the scattering point in eq. 

(6.5)), and 

4) Both forward-traveling and scattered waves within the coda dominated by body S 

waves.  

This combination of assumptions leads to selecting  = 1, which is also similar to many multiple-

scattering and radiative transfer models (e.g., Frankel and Wennerberg 1987; Zeng et al. 1991). 

However, because this  = 1 underestimates the actual geometrical spreading in an inhomogeneous 

crust and this error increases with t, the resulting Qc(fb) increases with fb, t, and consequently with 

the source-receiver distance. These increases are seen in the single-station Qc(fb) values by Singh 

et al. (2019) (Figure 6.2). 

In the following subsections, I use the Qc(fb) results by Singh et al. (2019) (Figure 6.2) to 

explain the observational and theoretical problems with the above model (eq. (6.5)). For readers 

only interested in the alternative approach that is free from these problems (section 6.3), these 

subsections can be skipped. 
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6.2.1. Problems with Qc(f) interpretations 

A key observation from the model by Singh et al. (2019) is that their Qc increases not only 

with frequency and lapse time but also radially, away from the seismic station (Figure 6.2). 

Because of the use of only one seismic station, this observation is particularly clear in this study. 

 

Figure 6.2. Maps of Qc by Singh et al. (2019; their Figure 6) within eight frequency bands (labels). 

Triangle indicates the Dhanbad seismic station used for deriving this model, and dots in the first 

plot are the locations of 112 earthquakes. Major rivers and coastline are shown for geographical 
reference. Note the systematic increases of Qc with distance from the station, and also near 

proportional increase with frequency. 

Although this spatial pattern may be due to a fortuitous selection of station location, it is 

far more likely that it represents an “acquisition footprint” due to direct correlation of Aki and 

Chouet’s (1975) Qc with the source-receiver distance. Although weaker, similar increases of Qc 

with distances were also shown by Blanke et al. (2019). The strong and symmetric increase of Qc 

both into the Indian craton (west and south-west of the station in Figure 6.2) and into the 

continental collision zone (northeast) shows that this increase should not be interpreted 
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geologically. At lower frequencies, the conical pattern of Qc is slightly shifted west of the station 

(Figure 6.2), which suggests a relative decrease of Qc into the craton. This trend is again contrary 

to the expected higher Q for stable, older, and colder tectonic structures. 

Also similar to many other studies, Qc values by Singh et al. (2019) increase near linearly 

with the length of coda windows (Figure 9 in that paper). Lapse-time (tlapse) dependencies of Qc 

are usually attributed to the depths of scattering increasing with tlapse in Aki and Chouet’s (1975) 

model. Nevertheless, the schematic example in Figure 6.1 again contradicts this assumption – 

scattering times (even if viewing Moho reflections as “scattering”) may generally be unrelated to 

the depths of scattering. The largest velocity contrasts are located near the free surface, and this is 

likely the zone of strongest wave scattering for all lapse times. 

Another conspicuous difficulty with the model by Singh et al. (2019) is that their Qc(f) is 

almost proportional to frequency f (the power-law exponent  between 0.9 and 1.02; Figure 6.3). 

This behavior is often found in the literature (with  sometimes as high as 1.7) and unfortunately, 

most authors do not view frequency dependence as problematic. Nevertheless, if understanding 

the Qc(f) according to the original scattering theories, as a “quality factor” of some effective 

medium (Aki 1969; Sato 1977), then cases of  ≥ 1 present major difficulties for physical 

interpretation. With  > 1, dependencies ( ) 0Q f Q f =  mean a relative increase of high-frequency 

amplitudes with distance, they cannot be implemented by reasonable equations of continuum 

mechanics, and imply peculiar causality properties (Morozov et al., 2018). As in eqs. (6.2) 

and (6.3), the case  = 1 represents an amplitude decrease with time only, which means that this 

is not Q-type attenuation at all. Thus, the part of the model shaded gray in Figure 6.3 is nonphysical 

or is at least dominated by non-Q type attenuation. The rest of this model with  > 0.9 is also close 

to these conditions, which means that the Q-type attenuation in the study area is actually much 

weaker than suggested by the low values of Q0 (Morozov, 2008b).  

The fourth striking observation from the results by Singh et al. (2019) is in the very strong 

anti-correlation between the values of Q0 and  (arrow in Figure 6.3). The scatter of the 

inverted (Q0, ) points across this trend direction suggests an estimate of measurement errors, 

which are minor compared to the trend. The anti-correlation between Q0 and  means that only 

one of these parameters is significant, so that, for example, Q0 can be inferred from  at any point 
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within the study area. More likely, both of these parameters represent a single physical factor 

within the Earth’s crust, and I need to investigate what this underlying factor may be. As suggested 

by eq. (6.3) and the results in section 6.3, these controlling factors are the large-scale elastic 

structure of the crust and the acquisition footprint. Thus, the variations of Q0 and  along the arrow 

in Figure 6.3 represent, for example, variable crustal thickness and not what is traditionally 

understood as “attenuation” of the subsurface.  

 

Figure 6.3. Trade-off between parameters Q0 and  (diamonds) for 30-s coda window in the model 

by Singh et al. (2019; part of their Figure 13). Nonphysical range of parameter  > 1 is shown by 

gray background. 

In the following subsection, I show that all four of the correlated trends in Qc values (with 

frequency, distance, lapse time, and coda window length) represent a common effect of an 

inaccurate background model assumed during data analysis (represented by fixed parameter  = 1 

in eq. (6.5)). This spurious effect is again seen particularly clearly in the results by Singh et 

al. (2019) because of their use of long source-receiver distances (up to about 350 km). 
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6.2.2. Theoretical shortcomings of the conventional coda model  

The theoretical models by Aki (1969) and Sato (1977) with many extensions to multiple-

scattering regimes represent applications of the scattering theory to traveling waves. Generally, 

these models show that in a macroscopically-homogenous medium with sub-wavelength scale 

heterogeneities, the amplitude decay of a harmonic wave can be described by a frequency-

dependent Q-factor (Dainty 1981). However, application of these models to practical observations 

of seismic coda (e.g., Aki and Chouet, 1975; Aki, 1980) contains a subtle but important fallacy, 

which explains the observational anomalies described in the preceding subsection. This fallacy can 

be seen by comparing the standard use of the scattering theory in physics with its application to 

seismic coda (Figure 6.4).  

 

Figure 6.4. Uses of scattering theory: a) conventional in physics, comparing two wavefields within 

the same volume; b) in coda Q measurements, comparing two different parts of the wavefield (Aki 

and Chouet 1975). Gray rectangles indicate the volumes considered, block arrows labeled “In” and 

“Out” are the incident and resulting wavefields, solid arrows labeled Eintr and Escatt, denote the 

mechanical-energy loss due to intrinsic and scattering attenuation. In plot b), E2-1 denotes the 

relative energy difference between wavefield states 1 and 2, and the dotted arrow represents the 

assumed theoretical model connecting the two states. 

In the conventional scattering-theory problem, some “incident” wavefield interacts with a 

volume of the medium and produces an “outgoing” wavefield (Figure 6.4a). During this 

interaction, mechanical energy may be lost either in the form of heat (“intrinsic” attenuation, 

denoted Eintr in Figure 6.4a) or in the form of scattered waves that are not counted in the 

“outgoing” wavefield. The portion of energy of these secondary waves is called the “scattering” 
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attenuation (eq. (6.1); Escatt in Figure 6.4a). Note that the identification of scattered waves is 

subjective and depends on the detail of the model for the outgoing field. For example, the outgoing 

and scattered waves may or may not include reflections, mode conversions, and scattering on 

certain structures. Since the models in Figure 6.4a are considered for harmonic waves in a 

macroscopically-homogenous effective medium (Aki, 1969), the average energy dissipation rates 

are constant, and the time-average decrements Eintr and Escatt can be attributed to any point and 

any wave period. This formal definition gives the inverse Q-factors 1

totalQ− , 1

intrQ− , and 1

scattQ− by 

eq. (6.1). From the energy balance ( total intr scattE E E =  +  ), these Q-factors are related as 

                                                1 1 1

total intr scattQ Q Q− − −= + . (6.6) 

However, it is rarely noted that the definitions of the various Q-factors by eqs. (6.1) and 

(6.6) only rigorously apply to cases in which the “in” and “out” states refer to the same volume, 

so that Etotal represents the energy loss from it. This case is only achieved for free oscillations, 

laboratory measurements with rock samples, or in theoretical models of effective media. By 

contrast, in most field seismic-Q measurements, the observational environment is different, as 

schematically shown in Figure 6.4b. The two compared states refer to different parts of the 

wavefield, which are, for example, coda waves recorded at different times t1 and t2 or body waves 

recorded at different points x1 and x2. For the two states, the “in” waves are different, such as waves 

arriving along different raypaths or traveling different distances from the source. When evaluating 

the energy difference between these states, we need to include not only Eintr and Escatt but also 

the energy difference E2-1 occurring in the absence of any attenuation (Figure 6.4b). For 

example, E2-1 contains the difference of wave amplitudes at different distances from the source 

or scattering points (Morozov, 2008b, 2010a). For coda, this energy also contains contributions of 

the form ( )2 1 2 1E E s s− = − , where s1 and s2 are the strengths of scattering at points producing coda 

states 1 and 2 (Figure 6.4b; Nishigami (1997)). Consequently, the inverse Q-factor inferred from 

coda and body-wave measurements based on Aki and Chouet’s (1975) procedure is 

                                               
1 1 1 1

total 2-1 intr scattQ Q Q Q− − − −= + + . (6.7) 
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Thus, the conceptual problem with Aki and Chouet’s (1975) approach consists in omitting 

the elastic-limit term 1

2-1Q−  in eq. (6.7) and interpreting 
1

intrQ−
 and 

1

scattQ−
 as properties of  the medium. 

As shown by Morozov (2008b, 2010a, 2010b) and in section 6.3, 1

2-1Q−  often dominates the resulting 

( )1

cQ f−
 images (Figures 6.2 and 6.3). This term absorbs all (inevitable) errors of the theoretical 

model relating the two states being compared (dotted arrow in Figure 6.4b). 

Finally, the name “quality factor” and notation ‘Q’ for the ratio in the right-hand side of 

eq. (6.1) is inspired by analogy with quality factors of electrical or mechanical resonators. 

However, this analogy is somewhat misplaced for boundless wave-propagating media, because 

they lack the principal property of a resonator, which is the resonant frequency. The Q-factors in 

eqs. (6.1) and (6.6) are meaningful only for finite structures with resonant frequencies, such as the 

whole of the Earth, crustal column, or a group of sedimentary layers. For a region within a nearly 

homogenous crust (as in Aki and Chouet’s (1975) model), the energy ratio in eq. (6.1) is not a 

material property and depends on the specific wave-mode content. To avoid such imprecise 

associations with resonators, it would be best to avoid notation ‘Q’ for this ratio, as done in 

section 6.3. 

6.3. Attenuation-Coefficient Approach to Coda 

In contrast to the model by Aki and Chouet (1975), the coda amplitude model of this 

chapter does not assume any specific structure of the crust, observation geometry, distribution of 

scatterers, or scattered wavefield dominated by body or surface waves. Instead of these theoretical 

hypotheses, the model is purely empirical and only focuses on a sufficient parameterization of the 

observed coda envelopes A(f,t). This parameterization is based on three general requirements:  

1) Both time-dependent (G(t)) and frequency-dependent factors in coda envelopes (

( )1

cexp Q ft −− ; eq. (6.5)) should be measured without assuming a known elastic 

background, i. e. some fixed form for G(t). The parameterization should also be not 

preferential in favor of the Q model of wave attenuation (eq. (6.1)). 

2) The parameterization should be able to explain the baseline case of zero attenuation 

( 1 0Q− = ) within the crust and mantle. As coda envelopes (Figures  6.5 and 6.6) and 
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many other seismic observations suggest, Q-type attenuation is a secondary effect 

compared to the effects of the Earth’s elastic structure (geometrical spreading, 

refractions, reflections).  

3) In contrast to eq. (6.5) using each fb independently, I look for a common frequency 

dependence within the model. This principle allows obtaining a tightly constrained 

and unambiguous measure of Q-type attenuation. 

A rigorous model satisfying these requirements should predict absolute coda 

envelopes A(f,t) by considering variable geometrical spreading, Q-type attenuation within the 

medium, and variable distribution of scatterers. With regard to spatially-variable strengths of wave 

scattering, such models for coda envelopes were developed by Nishigami (1997, 2006). At the end 

of section 6.5, I propose a model which could provide such a general and useful alternative to 

eq. (6.5) in coda studies. However, in the absence of sufficient field data from east Indian shield, 

inversion of complete coda amplitudes is unfeasible. Instead of this detailed inversion and 

similarly to existing studies (Aki and Chouet 1975, Singh et al. 2019, and many other), I utilize 

coda parameters derived from individual coda envelopes A(f,t) by using eq. (6.5). However, two 

important modifications are made in this parameterization (Morozov, 2008b): 1) a more general 

form of geometrical spreading 

                                                      
( ) tG t t e − −=

, (6.8) 

with variable “geometrical attenuation” parameter  , and 2) parameter 
1

cQ−
 treated as frequency-

independent and expected to be small. After deriving parameters  and 
1

cQ−
 from each record, they 

are empirically regionalized as in Singh et al., (2019). 

Also as in most inversions for coda Q (Aki and Chouet, 1975), I eliminate the source and 

receiver factors in eq. (6.5) (S(fb) and R(fb)) by using normalized coda amplitudes ( ),A f t const , 

so that the results are insensitive to this const. This normalization is achieved by using the window-

averaged temporal decay rates ln A t   as data when inverting eqs. (6.5) and (6.8) for  and 

1

c .Q−
These decay rates should normally be measured from field data (e.g., Jhajhria et al., 2017). 
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However, in this chapter, field records are unavailable, and I extract ln A t   values from the 

apparent Qc(fb) values reported by Singh et al. (2019) (Figure 6.2). This data preparation procedure 

is described in subsection 6.3.1. 

In subsection 6.3.2, instead of the conventional parameters Q0 and , I show how an 

alternate pair of in-situ  and effective-
1

cQ−
 properties can be attributed to the Earth’s subsurface. 

In subsection 6.3.3, I show how these properties are derived from ln A t   data and interpret 

the results. In sections 6.4 and 6.5, I further discuss the intricate question of geometrical spreading 

for coda envelopes and suggest a more rigorous alternative for the empirical relation (eq. (6.8)). 

Finally, also in section 6.5, I give a more complete model of coda envelopes that could be useful 

in future studies. 

6.3.1. Measured coda attributes 

As noted in section 6.2, within each of the eight frequency bands fb considered by Singh et 

al. (2019), spatial distributions of Qc are dominated by “conical” patterns centered on the seismic 

station (Figure 6.2). These patterns are hardly geological but likely caused by the selected form of 

the model (eq. (6.5)) applied to data from a single station (Figure 6.2). To reduce this “footprint” 

of the transformation ( ) ( )c,bA f t Q f→  (eq. (6.5)), I need to return to the raw quantity actually 

measured from coda envelopes. As I show below, this quantity is the frequency-dependent 

temporal attenuation coefficient, which was denoted (f) by Morozov (2008b, 2010a).  

In the classic Aki and Chouet’s (1975) method of coda analysis, the A(fb,t) data are first 

transformed into the derivatives of lnA with respect to time: 

                                               1 1ln
c b

A
t Q f

t
 − −

− = +


,  (6.9) 

where  denotes averaging over the coda time window and frequency band centered at 

frequency fb. This time derivative can be written as a combination of some reference (or 

“background”) model of geometrical spreading with a “temporal attenuation coefficient” (fb) 

(Morozov, 2010a). The temporal attenuation coefficient for coda is analogous to the spatial 
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attenuation coefficient  commonly used for traveling waves (Aki and Richards 2002; sometimes 

denoted  as by Zeng et al. 1991). By taking the reference geometrical spreading in the 

form ( ) 0G t t
−

 , we have 

                                           ( )1

0

ln
b

A
t f

t
 −

−  +


,  (6.10) 

 where the temporal attenuation coefficient is 

                                               ( ) 1

cb bf Q f   −= + ,  (6.11) 

and its frequency-independent term is denoted by 

                                                  ( ) 1

0 t   − − . (6.12) 

This  is the “geometrical attenuation” in eq. (6.8). By measuring this parameter (subsection 6.3.2), 

the power-law exponent  can be estimated as 

                                                   
1

0 t   −= + . (6.13) 

With the conventional selection of 0 = 1 (Aki and Chouet, 1975), the logarithms of 

amplitudes decrease approximately linearly with time t, as ( ) ( )0ln , bA f t t const f t
    −  . For 

a single seismic event, (fb) derived from Figure 3 in Singh et al. (2019) is shown in Figure 6.5. 

As this figure shows, the negative slopes ( ( )bf− ) are almost equal for all fb, which means that 

ln A t   is nearly frequency-independent (similar to Figure 6.1). Although such plots are rarely 

presented, all of them that we have seen to date (Parvez et al., 2008; Morozov, 2010a; 

Langston, personal communication, 2012; Escudero et al., 2016; Jhajhria et al., 2017) show weak 

frequency dependencies of the temporal amplitude decay rates ln A t   . Thus, near frequency 

independence of temporal decay rates appears to be a common observation with seismic coda.  
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Figure 6.5. Spherical geometrical-spreading corrected logarithms of coda amplitudes 

( ) ( ) 0ln ,a t A f t t C
 = +   (with 0 = 1) for one event (solid lines; derived from Figure 3 in 

Singh et al. (2019). Arbitrary constants C are added in order to display all frequency bands in one 
plot. Gray dashed lines show linear regressions of a(t) by using least-squares regressions. 

Frequency bands and the values of  (slopes of regression lines) are listed on the right.  

Figure 6.6 shows that the principal contribution to ( )bf  comes from the frequency-

independent term   0.018 s-1, and therefore, by taking t  230 s (Figure 6.5), eq. (6.13) gives 

  5.1. The causes of such large  are discussed in subsection 6.3.3. 

The slope of the linear trend in (fb) (black dashed line in Figure 6.6) corresponds to an 

extremely high Qc  30500. Without formal analysis of its uncertainty, it is clear from Figure 6.6 

that this Qc is indistinguishable from a complete absence of Q-type attenuation. The dominant 

contribution to (f) comes from , and the total effect of Qc at 14 Hz is only about 8% of . Much 

stronger variations of (fb) come from the attenuation peaks at about 2 Hz and 11 Hz and a trough 

near 5 Hz (gray dashed line in Figure 6.6). These variations may be due to near-surface resonances 

beneath the seismic station. These resonances can be included in the receiver site response R(f) in 

eq. (6.5). 
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Figure 6.6. Frequency dependence of the temporal attenuation coefficient for coda. Diamonds are 

the values  at eight frequencies listed in Figure 6.5, and thick gray dashed line is the interpreted 

(f) with two peaks. Black dashed is shows a linear approximation (eq. (6.11)), with intercept 

  0.018 s-1 and inverse slope Q  30500 labeled. Dotted lines with labels Qc show the slopes 

(assuming  = 0) used by Singh et al. (2019) to estimate the frequency-dependent Qc values (labels). 

By contrast to the detailed interpretation above, in a conventional approach to the same 

data, the (fb) trend with resonances is disregarded,  is assumed to equal 0 = 1, and  is set equal 

zero (Singh et al. 2019). The resulting Qc absorbs all of these arbitrary selections, and 

consequently, it is found to strongly increase with frequency, source-receiver distance, and lapse 

time. Graphically, the conventional (apparent) 
1

cQ−
values are shown by the slopes of dotted lines 

in Figure 6.6. From these slopes, we can see that 
1

cQ−
 actually represents  divided by the arbitrarily 

selected filtering frequency: ( ) ( )1

c b bQ f f −  . Therefore, this Qc contains a built-in 

proportionality to fb (  1 in Figure 6.3; eq. (6.3)). Clearly, since all information extracted from 

coda-envelope data consists in the (fb) dependence (thick dashed line in Figure 6.6, deriving a Qc 

by connecting each point to the coordinate origin (dotted lines) is only a mathematical 

transformation of this (fb). The physical meaning of this apparent ( )1

c bQ f−
 is clearer and more 

directly expressed by relation   const. 

6.3.2. Earth’s attenuation coefficient and Qc 

Despite similar notations, the spatially distributed (regionalized) Qc in Figure 6.2 is a 

physical quantity different from the measured Qc discussed in the preceding subsection. This 
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important question is complicated and will be extensively discussed in chapter 7. Here, I only 

briefly outline the basic relation between the “measured” (i.e. inferred from the attenuation 

coefficient) and the “in situ” (assumed to be present with in the subsurface) Qc’s.  

The regionalized Qc (Figure 6.2) was obtained by Singh et al. (2019) using the back-

projection method by Xie and Mitchell (1990) independently at each frequency fb. This back-

projection was originally formulated for Lg coda Q (Xie and Mitchel, l990), and it represents a 

tomographic inverse for a forward model assuming that the 1

cQ−  measured  for a source-receiver 

pair is an areal average of a similar in-situ property of the Earth, which I denote 
1

,EarthcQ−
: 

                                        ( ) ( )1 1

Earth

1
, ,c

W S

Q dxdyW x y Q x y
S

− −=  .  (6.14)  

In this equation, the integrals are evaluated over an elliptical area S containing all scattering points 

with travel times smaller than the maximum time considered within the coda window, weights 

W(x,y) = 1 and ( ),W

S

S dxdyW x y=  . The inverse of eq. (6.14) similarly represents 
1

,EarthcQ−
 at any 

point (x,y) as a linear combination of 1

cQ−  for source-receiver ellipses covering that point (Xie and 

Mitchell 1990): 

                                        ( ) ( )1 1

,Earth ,, ,c n c n

n

Q x y K x y Q− −=  ,  (6.15) 

where n is the number of coda observation and Kn(x,y) is the pseudo-inverse kernel for the nth 

observation. 

Eq. (6.14) with W(x,y) = const within the scattering ellipse represents only an ad hoc areal 

averaging formula, and eq. (6.15) is one of its generalized inverses. Several forms of integration 

weights W(x,y) in eq. (6.14) were proposed, such as by Del Pezzo et al. (2016) and Giampiccolo 

and Tuvèt (2018). These approaches also start by assuming that scattering and intrinsic Q-factors 

exist within the subsurface, and that the observed 1

cQ−  is obtained by their averaging across 

distributions of single or multiple scattering points within a homogenous half-space. However, a 
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correct forward model should not consist of only Q-factors because it should be able to explain the 

case of 1

Earth 0Q− =  and consider multiple scattered-wave types. The model should also differentiate 

between site and propagation-path effects, frequency dependences of scattering amplitudes, and 

spatial distributions of scatterers (Nishigami, 1997) without mixing all of these properties into a Q 

(Jhahria et al. 2017). In this chapter, I do not explore any possible alternatives to eq. (6.14) but 

assume instead that eq. (6.15) and the images in Figure 6.2 represent some useful in-situ 

quantity 
0

1

,EarthcQ
 

−

=
, which determines the frequency-dependent part of coda envelope decays. By 

this notation, I indicate that this quantity is obtained from eq. (6.5) by using (an inaccurate) 

assumption  = 0 = 1. In the following subsection, I try estimating a similar quantity 
1

,EarthcQ−
 

independently of this assumption. 

6.3.3. Data processing for attenuation coefficient 

Existing Qc(fb) estimates at multiple frequencies fb such as provided by Singh et al (2019) 

can be inverted for the effective geometrical attenuation 
c,Earth

 and Q-type attenuation 
1

,EarthcQ−
of 

the study area by using the following processing sequence:  

1) “Reverse-processing” of Qc(fb) into (fb) in each record, in a way similar to other 

types of Q(f) data (Morozov, 2008b, 2010a, 2010b, 2011a, 2013). 

2) Correction of the dependencies of the resulting (fb,x,y) on observation time t at each 

point (x,y) within the image. This correction is specific to the regionalized coda Q 

problem and is related to spurious increases of Qc with distance from the station 

(Figure 6.2). 

3) Inversion of (fb,x,y) for ( ),Earth ,c x y  and ( )1

,Earth ,cQ x y−
 for every point (x,y) within 

the final image. 

4) In addition, estimation of the frequency-dependent residual in the temporal 

attenuation coefficient ( ), ,bf x y  representing local coda-attenuation effects. 
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 Details of these operations are as follows. Step 1) is performed by noting that since the 

reported 1

cQ−  (Figure 6.2) was obtained from (fb) (eq. (6.11)) by assuming  = 0 (i.e.,  = 0), the 

attenuation coefficient for a given record can be reproduced by an inverse transformation: 

                                                   ( ) ( )1

b b bcf Q f f  −= .  (6.16) 

Ideally, if field records were available, these (fb) obtained for each source-receiver pair could be 

interpolated and regionalized to obtain a spatially-distributed (fb,x,y). This approach is taken in 

chapter 7. However, for Singh’s et al. (2019) data, only the regionalized Qc(fb,x,y) is available 

(Figure 6.2). Therefore, I simply estimate the regionalized (fb,x,y) at each point (x,y) by the same 

transformation 

                                         ( ) ( )
0

1

b ,Earth b b, , , ,cf x y Q f x y f
 

  −

=
= .  (6.17) 

To justify step 2) above, note that the values of Qc(fb,x,y) by Singh et al. (2019) contain spurious  

increases with t, which look like a “conical” footprint in the spatial image (Figure 6.2). In the 

single-station transformation (6.16), the actual (fb,t) of the record would be recovered, but when 

using  the regionalized ( )1 ,cQ x y−
 (eq. (6.17)), the footprint is averaged over multiple records and 

is impossible to undo. However, for geologic interpretation, (fb,x,y) is expected to have no trend 

with t, and therefore this arbitrary drift should be removed. For simplicity, I estimate this drift by 

the coefficients 0 and 0   of linear regression 

                                                   
( ) ( )b 0 0, , ,f x y r x y    +

,  (6.18) 

where r(x,y) is the distance from point (x,y) to the seismic station. By fitting eq. (6.18) in the least-

squared sense for the entire area, we obtain 0   and de-trend the values of  as 

                                         ( ) ( ) ( )detrend b b 0, , , , ,f x y f x y r x y   = − .  (6.19) 
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Note that this assumption of coda properties being independent of the source-receiver 

distance is also made (although not specially enforced or verified) in the model by Aki and Chouet 

(1975). Safarshahi and Morozov (2021a) also showed that similar constraints are important to 

include in the inversion procedure for measuring  and body-wave Q-1. 

As shown in Figure 6.7, the spatially de-trended attenuation coefficients (6.19) lie between 

about 0.01 to 0.02 s-1 and oscillate with frequency fb. At each fb, most of these variations occur in 

the vicinity of the seismic station, showing that the footprint of the source-receiver distribution has 

not been completely removed. However, spatial variations of detrend at each fb are below 20% 

(Figure 6.7), compared to ~100% variation of the apparent Qc at 1 Hz (Figure 6.2). This footprint 

could be significantly reduced by 2-D wavenumber filtering; however, it has minor impact on the 

final result, and I perform no such filtering in this study. Ideally, the footprint should not occur 

when directly deriving the (fb,x,y) (eq. (6.17)) from raw data. 

 

Figure 6.7. Attenuation coefficients detrend within eight frequency bands (labels) with regional trend 

with distance removed. Triangles show the seismic station used in this study. Note that the values 

and spatial patterns of  are close at all frequencies, indicating frequency-independent coda-

envelope decays. 
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Step 3) in the processing procedure above is performed by approximating detrend(fb,x,y) at 

each point (x,y) by a linear regression model with respect to fb:   

                                                 ( ) ( )detrend b linear b, , , ,f x y f x y  , (6.20)  

where 

                                       ( ) ( ) ( )1

linear ,Earth ,Earth, , , ,c cf x y x y Q x y f   − + .  (6.21) 

In this relation, c,Earth  and 
1

c,EarthQ−
 are regression coefficients with meanings of geometrical 

attenuation and in-situ coda 1

cQ−  at point (x,y), respectively. These quantities have consistent and 

mutually complementary physical meanings representing the frequency-independent and 

dependent parts of coda amplitude decays, i.e., the non-Q and Q-type attenuations defined in 

section 6.1. Subscripts ‘c’ in these notations indicate that these medium properties refer to the 

seismic coda, and they may differ from analogous quantities for body or surface waves. In 

particular, the “coda” properties ,Earthc  and 
1

,EarthcQ−
 should be highly sensitive to the magnitudes 

and spatial distributions of wave reflectors and scatterers in the study area.  

Thus, instead of eight independent models for apparent Qc at each fb (Figure 6.2) loosely 

related by scaling law ( )b 0 bQ f Q f = , I obtain two frequency-independent quantities ,Earthc  

and 
1

,EarthcQ−
 (Figure 6.8). Although these quantities are still empirical, they are better constrained 

(utilize all ( )detrend b , ,f x y  data), independent of the selection of G(t) in eq. (6.5), and therefore 

much more physical than Q0 or , or than the original Qc(f) (Figure 6.2). In particular, in contrast 

to the original 
1

cQ−
 controlled by the assumed value of 0 in Aki’s (1969) model, 

1

,EarthcQ−
 can be 

unambiguously viewed as a coefficient in the Taylor series for (fb,x,y) with respect to fb 

(eq. (6.21); Morozov, 2010a). In the final step 4) of the above procedure, data residuals are 

evaluated for regression (6.20):  

                                   
( ) ( ) ( )b detrend b linear b, , , , , ,f x y f x y f x y   = −

. (6.22) 
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These quantities can be interpreted as frequency-dependent coda attenuation (deamplification) 

factors for locations (x,y) (Figure 6.9). As discussed in section 6.6, these quantities may be useful 

for seismic site characterization. 

 

Figure 6.8. Coda envelope model derived from  maps in Figure 6.7: a) geometrical (frequency-

independent) attenuation; b) inverse effective Qc,Earth. Triangles show the seismic station. 

 

Figure 6.9. Coda deamplification factors  at eight frequencies used in Qc measurements (labels). 
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6.4. Near-Elastic Character of Coda Envelopes 

The above analysis allows making an important general observation about the seismic 

codas in the East Indian Shield:  most of the observed coda behavior can be explained by wave 

propagation within an elastic Earth’s crust. Despite the usual understanding of the seismic Q as an 

indicator of wave “attenuation” caused by fluids, elevated temperatures, and zones of small-scale 

scatterers within the crust (Aki, 1969), the observed Qc(f) dependencies are readily explained by 

time-only (or travel-distance only) dependent wave amplitude decays. Such time-only 

dependencies can be caused by the effects of varying velocities, layering, and reflections and mode 

conversions on major discontinuities, such as the base of the sedimentary deposits and the crust. 

This observation also applies to numerous studies in many areas around the world, in which the 

Q-factor steeply increases with frequency (Morozov, 2008b, 2010a; Morozov et al., 2018). The 

observation of near-elastic S-wave propagation within the crust is also supported by other results 

of this dissertation (chapters 5 and 7). 

With regard to the proposed elastic character of seismic coda, two types of evidence were 

given in this chapter. First, the simple theoretical model in Figure 6.1 shows that even a one-layer, 

purely elastic crust will produce a Qc(f) that is quantitatively close to the observed dependencies. 

In numerous publications (e.g., Aki and Chouet, 1975) it is stated that parameter Q0 in the 

empirical law ( ) 0cQ f Q f  represents “seismic attenuation”, and the low value of 
0 100Q   is 

thought of representing a significant attenuation at seismic frequencies. However, the model in 

Figure 6.1 shows that the value of Q0 can be naturally explained by the thickness of the crust (or 

layer) and reflection coefficient at its base. This model may explain, for example, why Q0 is usually 

larger for older and colder crust within stable cratons – in these areas, the crust and sediments are 

thicker and reflectivity is lower. 

 The second key argument for the elastic character of coda is observational. As shown by 

the attenuation-coefficient approach (section 6.3; Figures 6.5 and 6.6), the decays of the 

normalized coda amplitudes with time are nearly frequency-independent. Therefore, there appears 

to be little contribution from frictional processes within the medium. Frictional mechanisms such 

as viscosity or pore-fluid friction would cause the phenomenon of mechanical hysteresis, in which 

certain fraction of mechanical energy would be lost during every wave cycle. Such phenomena are 
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characterized by mechanical-energy loss increasing with frequency, which is not seen in the data 

(Figures 6.5 and 6.6). 

The origin of the observed Qc(f) in the near-elastic mechanisms explains why steeply 

increasing Q(f) dependencies are so commonly reported. As Morozov (2008b, 2010a, 2010b, 

2011a) illustrated for many types of waves, the increase of Q with frequency is explained by the 

fact that the actual ray paths bend upward or reflect (like in  Figure 6.1), which causes the 

amplitude decay with distance to occur faster than in radial waves assumed in the standard model 

by Aki and Chouet (1975). These phenomena are known as wave defocusing, and they cause 

geometrical attenuation  > 0. When interpreted by the Aki and Chouet’s (1975) approach and 

many of its modifications, the positive  is then seen as an artificial Q(f) increasing with frequency.  

6.5. Preliminary Model for Coda Amplitudes 

Determination of a suitable form of the “reference” or “background” geometrical spreading 

for coda waves is a difficult problem, and no universal solution for it likely exists. In this section, 

I only suggest an empirical model for geometrical spreading for coda inspired by the mapping 

procedure by Xie and Mitchell (1990) and Singh et al. (2019). 

 From eqs. (6.8) and (6.18), a reasonable empirical form of G(t) additionally dependent on 

distance from the station r can be suggested: 

                                                 ( ) ( )0

0, expG t r t rt
 − = − .  (6.23) 

This relation follows the average trend of frequency-independent coda amplitudes within the study 

area, and the detrend and c,Earth values are determined with respect to this form 

(Figures 6.7 and 6.8a). By combining the effective geometrical spreading (6.23), 

attenuation (6.21), and the surface-consistent site terms (6.22), the measured decay rates of coda 

envelopes (shown by Qc(fb) maps in Figure 6.2) are accurately reproduced. 

As shown by eq. (6.23), the geometrical spreading for coda cannot be rigorously 

represented by a single time dependence G(t) as in eq. (6.5). The coda consists of waves traveling 

within a broad area surrounding the source and receiver, and its geometrical (elastic) spreading 
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depends on the entire structure within this area. In particular, the coda depends on the source-

receiver distance, at least for wider separations between them. This dependence can be seen from 

the difference between parameters  = 1 modeled in a boundless homogeneous half-space and 

likely valid for an immediate vicinity of the source (Aki and Chouet, 1975),   2 measured at 

local distances (Jhajhria et al., 2017), and   5 at near-regional distances estimated in subsection 

6.3.1. The geometrical spreading for coda should also depend on the selected coda start time and 

window length. Note that even at 300–350-km distances, Singh et al. (2019) use the definition of 

coda start times recommended for local-earthquake studies: 
coda start 2 St t=  (where tS is the direct S-

wave time) but not definitions by group velocities, such as 3.15 km/s for Lg coda by Xie and 

Mitchell (1990). 

To understand the strong sensitivity of  to the source-receiver distance and other 

parameters of the data, note that the geometrical spreading has different meanings for traveling 

waves and codas. For a traveling wave (body or surface), the purpose of the geometrical spreading 

function is to describe the amplitude of the wave at time t, such as represented by factor ( )G t t −  

in eq. (6.5). By contrast, for coda, the amplitude itself is unimportant and only its time derivative 

( )G t G t     is used (eq. (6.9)). For a power law ( )G t t − , these two functions are closely 

related as  

                                                          ( ) ( )G t G t t = −  . (6.24) 

However, this relation cannot be used for seismic coda, in which local variations of 

amplitudes are not simply proportional to G(t)/t. Large values of  derived from ( )G t  in coda 

measurements refer to such local scattered-wave amplitude variations (as in eq. (6.24)), and they 

should not be replaced with simplistic body-waves G(t) models. Numerical modeling 

(Morozov, 2010a) shows that power-law wave amplitude decays are close to the t– form (still 

with  > 1) only to about 50 – 100-km distances. Beyond these distances, amplitude variations are 

more complex and may be non-monotonous. Note that unlike , the attenuation coefficient  

appears to always attain stable values ranging from zero to about 0.1 s-1, with consistent 
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correlations with tectonic types of the crust (Morozov, 2008b, 2010a). This is because  is a 

differential quantity evaluated locally, similar to function ( )G t  above. 

Although the geometrical spreading for coda is not a function of time alone, the model in 

subsection 6.3.2 allows writing it for each earthquake/station pair as an integral over the interior 

of the scattering ellipse: 

                                 ( ) ( )0

,Earthexp , ,c

W S

t
G t dxdyW x y x y

S

 −
 

= − 
 

 .  (6.25) 

Here, eq. (6.14) was used to express G through the observed , which further predicted from c,Earth 

similarly to predicting 1

cQ−  in eq. (6.20). This empirical expression should explain coda amplitudes 

in the absence of attenuation, and therefore it can facilitate measurement of Q when moderate 

attenuation is present. The complete location-, time-, and frequency-dependent model replacing 

eq. (6.5) is 

                     ( ) ( ) ( ) ( ) ( )1

c,Earth, exp , ,
W S

ft
A f t S f R f G dxdyW x y Q x y

S

 −
 

= − 
 

 .  (6.26) 

where G is the regional geometrical spreading in eq. (6.25). 

6.6. Discussion 

Although much weaker than in Qc models (Figure 6.2), the footprint of the procedure by 

Singh et al. (2019) still dominates the near-station area in the final images (Figures 6.8 and 6.9). 

This footprint consists of the area in which all of the scattering ellipses overlap (see Figure 5 in 

Singh et al. (2019)). In this area, the approximation of the heuristic forward model for 
1

cQ−
 is most 

problematic (section 6.3). With such non-uniform acquisition geometry, regionalization as 

attempted by Singh et al. (2019) is likely impossible without detailed knowledge of the mechanism 
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of the coda, which is unavailable. However, outside of the footprint area1, the average values of  

and Qe can probably be trusted in these images. 

For comparisons with existing coda models (e.g., Singh et al., 2019), the change of 

parameterization from the conventional (Q0, ) to (, Qe) can be viewed as an alternate way to 

describe Qc(f) dependencies. However, parameters (, Qe) yield new insights into the earth’s 

structure that are difficult to glean from (Q0, ) or from the frequency-dependent Qc(f). The (, Qe) 

parameterization encourages more specific and quantitative interpretations than usually achieved 

by reporting Qc(f) values. In particular, elastic structures generally correspond to 1 0eQ− = , and 

variable  represents the complexity of crustal structure. As described in section 6.4, larger   

values (i.e., faster geometrical spreading) to increased crustal velocity gradients, pronounced 

layering, and stronger small-scale reflectivity and scattering. These effects were modeled 

numerically for realistic media and structures with and without attenuation (Morozov et al., 2008; 

Morozov, 2011a). When the attenuation is “turned on,” quantity 1 0eQ−   becomes a measure of 

all frequency-dependent effects including the anelasticity of the crust. As shown in this chapter, 

these effects are relatively weak within the eastern Indian Shield. Since coda envelope decay rates 

are often nearly frequency independent (section 6.1), crustal 1

eQ−  is likely low in many areas 

around the world. 

Due to the consistent physical background and unambiguous separation between 

parameters  and Qe, these parameters can be expected to be comparable for different types of 

waves. Morozov (2008b, 2010a, 2010b, 2013) and Morozov et al. (2008) reinterpreted a number 

of Qc and other types of Q studies by using this pair of parameters instead of the conventional Q0 

and . Figure 6.10 shows a summary of this interpretation of Lg coda Q combined with the results 

from this chapter. Although producing nearly identical dependencies of wave amplitudes A(f,t), 

the (, Qe) parameterization reveals a simple correlation with tectonic and geological features of 

the study areas (Morozov, 2008b). Tectonically stable areas are characterized by  < D = 0.008 s-

 

1 Singh et al. (2019) provide a resolution estimate that appears comparable to the footprint area (their 

Figure 8). However, this estimate refers only to their inverse approach within the same footprint area and does not 

account for the non-uniform weighting of the forward model (chapter 5 in this dissertation).  
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1, and in active tectonic areas,  is above this level and extends to about 0.1 s–1 (Figure 6.10b). 

Across the entire range of tectonic ages,  decreases with age (gray line in Figure 6.10b). 

Morozov (2008b) explained this reduction of  by lower crustal velocity gradients, weaker 

reflectivity, and thicker crust in older tectonic regions. The effective attenuation quality factor Qe 

 exceeds about 800–1000 in most cases. For tectonically stable areas, Qe is generally higher, and 

its values are difficult to measure and scattered (principally because the corresponding attenuation 

per one wavelength 1 1eQ− ) (Figure 6.10a). 

 

Figure 6.10. Compilation of (, Qe) results for different areas by Morozov (2008b) (labeled circles) 
with the average value for eastern Indian Shield by Singh et al. (2019) (diamond labeled “This 

study”), as functions of time since the most recent tectonic activity: a) effective inverse attenuation 

(Qe) and b) geometrical attenuation ().The thick dashed line shows the discriminant D = 0.008 s-1 

(Morozov, 2008b), and the gray line is the interpreted trend of  with tectonic age). Letters indicate 

the tectonic regions (Mitchell and Cong 1998): A – The Andes Mountains; B – Basin and Range 

Province of north America; C – Tethys region (the area of convergence of the Eurasian, African, 

Arabian, and Indian plates), D – the Arabian Peninsula; E – the East African Rift; F – the Rocky 
Mountains; G – northeastern China; H – the eastern Altaid belt of Eurasia; I – the Tasman province 

of Australia; J – the Atlantic Shield of South America; K – the African Fold Belts; L – the North 

American Craton within the United States; M – the Australian Craton; N – Eurasian cratons; O – 
African shields, P – the Brazilian Shield; Q – the Indian Shield. The tectonic age of this study was 

taken the same as for point Q. 
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In relation to the interpreted level of 
D
 , the ~20% magnitudes of acquisition/inversion 

footprints in c,Earth and Qc,Earth do not affect the principal conclusions about  values. The 

geometrical attenuation c,Earth is between 0.01 and 0.013 s-1, which is above D and within the 

range characteristic for active tectonic areas (Figure 6.10b). These increased values of  may be 

due to the structural complexity caused by extensive folding and faulting in the foothills of 

Himalaya (Singh et al., 2019). Outside of the near-station footprint, the values of c,Earth slightly 

increase into the interior of the Indian Shield west and south-west of the seismic station 

(Figure 6.8a). However, the amount of this increase is below 0.001 s-1 and may be insignificant. 

Overall, spatial variations of the model appear to be not reliably resolved by these data. 

Q-type coda attenuation within the study area is typical for stable tectonic regions, with the 

lowest Qc,Earth of about 5700 (Figures 6.8b and 6.10a). Note that the inverted values are about 20 

to 30 times larger than Q0 = Q(1 Hz) by Singh et al. (2019) (Figure 6.2). This relation between Qe 

to Q0 is typical for coda studies (Morozov, 2008b). As mentioned above, Qe has the meaning of a 

Q-factor for waves within the crust, and similar values of Q are found in body-wave attenuation 

studies (e.g., Atkinson 2004). Similarly to the observations in section 6.2, effects of Qc,Earth are 

weak compared to those of c,Earth and the frequency-dependent site (de)amplification factors  

(Figure 6.9). Therefore, the inverted Qc,Earth values may be within fluctuations of these primary 

factors.  

The spatial pattern of the attenuation-coefficient residuals  is dominated by the 

acquisition footprint (Figure 6.9). Interestingly, this footprint is positive at 1 Hz and above 10 Hz 

but negative between these frequencies (Figure 6.9). These variations are likely caused by 

resonances beneath the recording station. Farther away from the recording site, spatial variations 

and contrasts between close frequencies are present, such as at 1, 2, and 3Hz frequencies (Figure 

6.9). However, these variations are weak (about 310–4 s–1, or ~3% of ; Figure 6.9) and difficult 

to interpret. These patterns may be affected by measurement uncertainties due to the distribution 

of earthquakes and the regionalization method by Singh et al. (2019). These patterns may also 

contain contributions from source effects and near-surface resonances, which may corroborate the 

suggestions by Jhajhria et al. (2017) that coda is dominated by near-surface scattering. Potentially, 
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with footprint-free (fb,x,y) data derived directly from coda envelopes, (fb,x,y) would contain 

useful information for site amplification maps. 

As discussed in section 6.3, along with the relatively straightforward inversion procedure, 

regionalization of the observed (f) (i.e., forward model for this inversion) remains a difficult open 

question. This question equally applies to the present as well as to the conventional coda Q 

methods such as by Xie and Mitchell (1990). Rigorous physics-based models directly 

explaining (f) and/or coda amplitude envelopes are needed. Such models could follow the single- 

or multiple-scattering energy transport theories (e.g., Zeng et al., 1991; Nishigami, 1997) or 

numerical ray-theory or waveform modeling (Fehr et al., 2019; Morozov et al., 2008).  

6.7. Conclusions 

The frequency-dependent coda Q results by Singh et al. (2019) for the eastern Indian Shield 

are reinterpreted by using two new properties of the Earth’s subsurface: geometrical attenuation 

denoted  and an alternate (effective) Q-factor. Both of these parameters are frequency-

independent, which makes these quantities better constrained and easier to compare for different 

geographic areas. In chapter 7, mapping of these parameters will be derived from a much larger 

dataset in Zagros area of Iran.   

The inverted level of   0.010 to 0.013 s-1 is similar to those in other areas of active 

tectonics around the world. The effective Qc is above 5700, and the Q-type attenuation may be 

below the detection level. In addition to  and effective Qc, maps of frequency-dependent and 

spatially-variant coda amplification and deamplification are obtained. Effects of these resonances 

on coda spectra also exceed those of the effective coda Qc.  

Thus, coda amplitudes in the study area are principally determined by the structure of the 

crust and not by Q-type (intrinsic or small-scale random scattering) attenuation effects. This 

observation is corroborated by observations of raw spectral amplitudes of the coda, in which the 

time derivatives of the logarithmic coda envelopes are nearly frequency-independent. These 

general conclusions are supported by the results from Zagros dataset (chapter 7) and are likely 

relevant to many other areas around the world. 
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CHAPTER 7    

ANALYSIS OF SEISMIC CODA II: Lg CODA ENVELOPES IN ZAGROS AREA 

In this chapter, I describe the analysis of seismic coda in Zagros area of Iran. As mentioned 

in the preceding chapter, coda waves are used for characterization of the physical properties of the 

Earth. When done for an extended area, results of coda measurements are often presented by maps 

of the frequency-depended coda Q, denoted Qc. However, mapping results and even the definition 

of Qc depends on multiple variables: the source and receiver locations, measurement time, and 

reference model for geometrical spreading. Therefore, Qc cannot be rigorously represented by a 

function of only one point within the subsurface, as it is commonly assumed.  

This chapter reviews the existing methods and proposes several new methods for coda 

mapping. In addition or replacement for Qc, new, physically better justified parameters of the 

subsurface are proposed: exponents of geometrical spreading (denoted  here), effective 

attenuation (denoted qe), and scattering intensities (denoted ). I compare several methods for 

mapping parameters , qe, and  by using Lg coda records from Zagros dataset (chapter 2). The 

presentation is based on the following paper submitted to the Geophysical Journal International: 

• Safarshahi, M., and Morozov, I. B. Quantitative interpretation of Lg coda envelopes: 

Several types of mapping and spatial interpolation in Zagros area of Iran. 

My contributions to the submitted paper in processing the data, providing codes, inversion, 

and participation in interpretation and writing.  

7.1. Introduction 

The goal of seismic coda studies consists in characterizing the Earth’s crust by the 

properties of scattered waves. With numerous computational enhancements, the principle of coda 

imaging remains the same since its original inception, and it consists in utilizing the shapes of 

normalized coda envelopes within several frequency bands (Aki, 1969). Envelope normalization 

removes the effects of the source and receiver and reduces coda measurements to deriving a single 

quantity denoted the coda Q, or Qc. This quantity is typically found to be steeply increasing with 
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frequency (denoted f here) and often with coda lapse times (Aki and Chouet, 1975; Calvet and 

Margerin, 2013). 

By now, frequency-dependent Qc(f) curves have been documented in hundreds of studies 

within many areas around the world. However, the fundamental question about the meaning of Qc 

and its relation to physical properties of the crust and/or uppermost mantle is still far from clarity. 

It is even unclear whether the Qc is purely a measured attribute of coda shape, phenomenological 

property of the crust, or both. In numerous models originating from the scattering-theory approach 

by Aki and Chouet (1975), these questions are answered by hypothesizing phenomenological P- 

and S-wave Q-factors of the crustal and mantle layers. These Q-factors are further subdivided into 

the P- and S-wave Qs, intrinsic and scattering Qs, and sometimes into more subtle types of Q 

related to wavefield fluctuations, boundary effects, or pore flows within rock samples (Morozov 

and Baharvand Ahmadi, 2015). Q-factors are commonly found to be frequency-dependent, which 

is often approximated by the power law ( ) 0Q f Q f = . For seismic codas, values  > 0 and often 

close to  = 1 are commonly reported. However, neither such steep Q(f) dependencies nor 

parameters Q0 and  necessarily represent “attenuation” in physical sense related to small-scale 

heterogeneity, temperature, fluids, and melts within the medium. For example, Q(f) dependencies 

with   1 are observed for purely elastic crust containing velocity gradients and reflecting 

boundaries such as sedimentary layers and the Moho (chapter 6). The physical meanings of the 

measured Q0 and  need to be examined in each specific case. 

Establishing the physical reality and meanings of the frequency-dependent Q(f) is a 

complex task, which is not considered here. Instead, in this chapter, I follow the convention made 

in most studies and assume that the measured Qc possesses some meaning as an empirical property 

of the Earth. With this assumption, I only focus on the ways this empirical property is attributed 

to the continuum of surface or subsurface locations x = (x,y). I show that this mapping procedure 

is generally only a mathematical operation which can be performed in multiple different ways, and 

suggest how it can be improved by physical considerations. 

The procedure for distributing the Qc measured in a finite set of coda records to a 

continuous function Qc(x) is called mapping, regionalization (Singh and Herrmann, 1983), or 

spatial weighting (e.g., Del Pezo et al., 2016). In Qc mapping, the desired “in-situ” ( )1

cQ−
x  at an 
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arbitrary point x is sought as a linear combination of values measured from a discrete set of coda 

records ( )1

c k
Q−

: 

                                                 ( ) ( )( )1 1

c k c k
k

Q w Q− −= x x ,  (7.1) 

where k is the number of an observation, and wk(x) is some spatial weighting function (Del Pezzo 

et al., 2016). The same spatial weights are used for different types of inverse Q, such as the intrinsic 

or scattering parts of 1

cQ−  (Del Pezzo et al., 2016). 

Although eq. (7.1) looks like spatial interpolation, it is not interpolation because there 

exists no specific coordinate xk for a given measurement k, so that the mapped ( )1

c kQ−
x  would 

equal the measured ( )1

c k
Q−

. Instead, coda measurements are performed in a four-dimensional (4-

D) space of receiver and source coordinates, which I denote xi and xj, respectively. The meaning 

of eq. (7.1) can be seen from the “back-projection” method by Xie and Mitchell (1990), in which 

the weights wi(x) are derived by solving an inverse problem with the observed ( )1

c k
Q−  serving as 

data. Such inversion requires a forward problem predicting the coda measurement k from the in-

situ Q of the subsurface: ( ) ( )1 1

c c k
Q Q− −→x . However, no rigorous forward model of such kind 

exists, and as shown in section 7.4, no such model is generally possible. The meaning of mapping 

by eq. (7.1) is rather specific: it represents a form of 4-D interpolation-extrapolation of the data 

with respect to the source and receiver coordinates. The success of this mapping can only be 

verified by predicting the measured data ( )1

c k
Q−


 for some source-receiver combinations k, by 

using the same eq. (7.1). Therefore, quantity ( )1

cQ−
x  in eq. (7.1) is not guaranteed to be an in-situ 

property of the subsurface, but it is an auxiliary, “apparent” quantity used in this mathematical 

interpolation-extrapolation. In section 7.4, I show that several simpler (including more accurate) 

forms of such 4-D data interpolation can be constructed without assuming an “in-situ” ( )1

cQ−
x . 

In the absence of a physically justified forward model for the observed ( )1

c k
Q−

, functions 

wi(x) in eq. (7.1) are usually selected by some rules based on the experiment geometry. For 
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example, Calvet et al. (2013) design these functions so that for any model cell at point x, ( )1

cQ−
x  

is an average of all readings ( )1

c k
Q−

 for which the great-circle arc connecting the source and 

receiver crosses the cell. However, for local coda, this intuitive rule is hardly justified because 

most scattered waves do not travel along the source-receiver great arc (Aki and Chouet, 1975). In 

the method by Xie and Mitchell (1990), the measured ( )1

c k
Q−

 is predicted by averaging the 

model ( )1Q x−
over a 2-D surface area enclosed within the scattering ellipse for kth source-receiver 

pair. This areal averaging is also a hypothesis assuming that some “in-situ 1

cQ− ” at point x equally 

contributes to all measurements whose scattering ellipses cover this point. This hypothesis is 

difficult to explain, and Xie and Mitchell (1990) gave no argument for it. For Lg phase Q (not 

coda), Xie et al. (2004) used a similar rule with Q-1(x) averaged along the Lg ray path. The 

subjectivity of such ad hoc rules is further increased by the variety of back-projection type (row-

action) inverse methods and spatial filtering (such as smoothing) utilized when evaluating the 

inverse in eq. (7.1) (Xie and Mitchell, 1990). Finally, Del Pezzo et al. (2016) and others proposed 

numerical models for functions wi(x) from Monte Carlo simulations of a multiple-scattering energy 

transport the coda. Del Pezzo et al. (2016) also gave approximations of the weights wi(x) by 

Gaussian functions. 

Regardless of the detail of weights wi(x) (eq. (7.1)), from the physics point of view, all of 

the above mapping approaches contain a common and serious flaw. These models attempt 

explaining the measured coda 1Q−  by postulating a namesake property Q-1 of the medium (or 

sometimes the intrinsic and scattering Q-1, or mean free paths in multiple-scattering models; 

Sato, 1978). However, the notion of an in-situ Q-factor is only meaningful in the very abstract 

model of a quasi-homogeneous medium with small random scatterers. In realistic cases, this 

approximation ignores all first-order physical factors such as the structure of the crust. For a useful 

analogy, in reflection seismology, it is well known that the near-source and receiver structure 

(velocity gradients, low-velocity layers, reflectors) is responsible for most features of the seismic 

record, and Q-1 represents only a small correction to it. Scattering-theory concepts such as the 

effective Q and the mean free path are suitable in quasi-homogeneous media with no spatial 

variation (for more on this, see Morozov and Baharvand Ahmadi, 2015). However, this 
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approximation is insufficient for local and particularly Lg coda mapping, in which spatial 

variations of crustal properties are sought. 

Thus, I argue that for Lg coda mapping, the interpretation should not reduce to the 

conventional transformation of the measured coda envelope A(t,f) into a ( )1

cQ f−
, which is further 

mapped into a ( )1 ,cQ f−
x . Instead of this procedure, in sections 7.4 and 7.5, I explore two new and 

one little used old type of approaches: 

1) Empirical mapping similar to the one by Xie and Mitchell (1990) but with explicit 

recognition of the elastic (frequency-independent) and anelastic (frequency-

dependent) parts of A(t,f). Instead of ( )1

cQ f−
 at multiple frequencies f, I use only two 

simpler, frequency-independent attributes suggested by Morozov (2008b, 2010a, 

2011b): the geometrical attenuation denoted (x) and effective attenuation factor 

denoted 1

e eq Q−=  . These quantities are assumption-independent, and possess a more 

straightforward interpretation than the frequency-dependent 1

cQ− . I explore two 

alternate mapping schemes: one based on the areal coda averaging model by Xie and 

Mitchell (1990), and another using averaging over the circumferences of the coda-

scattering ellipses rather than their interiors. 

2) Alternatively, mapping can be performed not for coda models but any coda data 

attributes directly, by their interpolation in the 4-D space of source and receiver 

coordinates. This yields a simple, accurate, and practical approach suitable for 

predicting coda observations from new source-receiver combinations. 

3) Mapping regions of scattering within the near surface using fluctuations of coda 

power based on the method by Nishigami (1997) (section 7.5). 

The empirical maps for Lg coda (x) and qe(x) are illustrated by using the Lg coda data 

from Zagros area in Iran (Figure 7.1). From the Zagros dataset (chapter 2), I extracted 1968 

vertical-component, 2146 orientation-independent horizontal-component (H2C), and 1975 three-

component (3C) records from 777 earthquakes. Lg coda windows were selected as starting at 

group velocity 2.6 km/s and extend for 45 s, and records with signal to noise ratios above 1.5 are 

included in coda mappings.  
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Figure 7.1. Study area showing the seismic stations (red and green triangles) and source locations 

(blue and green dots) of the Lg coda dataset. Grid shows the discretization of the area into 0.2 by 

0.2 blocks for back-projection inversion and mapping. Lines show major faults. Labels indicate 

geological features discussed further in this chapter: LB –Lut block, ALB – Alborz, SSZ – 

Sannadaj-Sirjan zone, ZFTB – Zagros fold thrust belt, UF – unfolded zone, and AR – Arvand Rud 

river. 

Prior to discussing the mapping methods, in section 7.2, I define the attenuation-coefficient 

parameterization of coda data. As shown in chapter 6 and also on many examples by Morozov 

(2008b, 2010a, 2010b, 2011b), this parameterization allows achieving model-assumption free 

results for many types of waves. In section 7.3, I use the attenuation coefficient to make a key 

observation directly from the data. This observation consists in the predominantly elastic 

(frequency-independent) behavior of the observed coda amplitudes, which can be expressed as 

( ) ( )ln ,A t f t const f   . This elastic character is rarely noted in the literature, apparently 

because of the established practice of immediate transformation of lnA(t,f) into a ( )1

cQ f−
 (Aki and 

Chouet, 1975). Nevertheless, the nearly frequency-independent time derivatives of lnA(t,f) appear 

to be common in many datasets, and they suggest that coda amplitude decay is not a Q-type 

process. We can therefore expect that the elastic structure of the crust should be responsible for 
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most of the observed coda envelopes. As shown in section 7.4, the “physical” attenuation 

(described by parameter qe) is only a relatively small correction to elastic effects. 

7.2. Data Parameterization  

As with any data, parameterization of coda observations should be objective (represent the 

data and not our theories or assumptions) and insensitive to complicating factors which I would 

like to avoid, such as source magnitudes and local variations of receiver coupling (Mayeda, 1993). 

The classical Aki’s (1969) coda model was motivated by exactly these considerations. By taking 

time derivatives of the logarithms of coda amplitudes lnA(t,f), all scaling factors are removed, and 

local variations of the crustal structure are averaged out by considering sufficiently large scattering 

times. 

As a result of these normalization operations, the raw quantity measured in this method is 

the temporal attenuation coefficient (t,f),which can be written it two forms (Morozov, 2008b):   

                                   ( ) ( ) ( ) ( )
def

, ln , ln c

ft

Q f
t f A t f G t e

t t




−  

= − = −  
    

. (7.2) 

The first of these equations is the definition of , and the second is its conventional transformation 

into the frequency-dependent Qc by using some reference factor denoted G(t) (e.g., Aki and 

Chouet, 1975). Function G(t) has the meaning of geometrical spreading in the absence of 

“attenuation,” which means that ( ) ( )
def

,G t A t f=  in the hypothetical case of 1 0cQ− = . For Lg coda, 

the geometrical spreading is taken as a function of time t and the source-receiver distance d (e.g., 

Xie and Mitchell, 1990). Note that G(t) in eq. (7.2) is not measured but only defined theoretically 

for some simple reference model. Morozov and Safarshahi (2020) showed that the geometrical 

spreading for real coda cannot be reduced to a function of only t and/or d. However, in the present 

chapter, it is only important that: 1) the attenuation coefficient  is independent of any selection 

for G(t), and 2) using the second eq. (7.2), function ( )1

cQ f−
 can always be viewed as a 

recalculation of (t,f).  
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Of the two forms of eq. (7.2), the first one is unambiguous and most useful for data analysis 

below. By contrast, the second eq. (7.2) is only a limited theoretical model assuming that G(t) is 

accurately known, and scattering occurs by some perfectly known mechanism, such as a quasi-

homogeneous medium with single or multiple scattering, and scatterers distributed in certain way. 

For example, in local coda studies, the geometrical spreading is usually taken for spherical body 

waves: ( ) 1G t t−  (e.g., Aki and Chouet, 1975), and an analogous model of pure surface waves is 

used for Lg coda (Xie and Mitchell, 1990). Consequently, the inferred frequency dependence 

of Qc(f) is largely determined by the adopted model for G(t). However, specifying the 

reference G(t) plus inferring a Qc at independent frequencies f is equivalent to simply reporting the 

original (t,f) (first eq. (7.2)). Such reverse transformations of Q(f) curves into their parent (t,f) 

were shown for coda in chapter 6 and for other wave types by Morozov (2008b, 2010a, 2011b). 

The use of the attenuation coefficient  encourages measuring and inverting the coda data directly, 

without referencing subjective and unrealizable models such as quasi-homogeneous crust or 

following strict conventions in data processing (Havskov et al., 2016). 

Because published coda amplitudes (e.g., Aki and Chouet, 1975) usually use geometrical-

spreading corrections, let us also define the corresponding modified attenuation coefficient by 
G
: 

                                           
def ln

lnG

A G

t G t
 

  
= − = + 

  
. (7.3) 

This attenuation coefficient is related to the reported frequency-dependent Q (of any kind, not only 

Qc) as ( ) ( )1,G t f fQ f  −=  (second eq. (7.2)). Note that with this Q-type parameterization, it is 

expected that 
G
(t,f) is strictly proportional to t. Thus, for any reference G(t) function, ( )1

cQ f−
 and 

the two forms of  (eqs. (7.2) and (7.3)) can be transformed into each other. The first eq. (7.2) is 

clearly more convenient for Lg coda, because in this case, the accurate function G is unknown. As 

argued in chapter 6 this function cannot be inferred from simple models of waves in a 

homogeneous crust. Once the zero-frequency limit (t,f→0) is measured from the data, the 

geometrical spreading can be obtained from eq. (7.2) as ( ) ( ) ( )0, exp ,0
t

G t f G f t dt  = −
   , 



 

173 

 

where G0 is an arbitrary and generally frequency-dependent factor (Yang et al., 2007; Morozov, 

2010a). 

Time dependences of (t,f) and G(t,f) need to be carefully considered further. With 

relatively short coda time windows and in the presence of random noise and significant amplitude 

fluctuations, both lnA(t,f) and ( ) ( )ln ,A t f G t    are usually approximated by linear functions of t 

for a fixed f. Therefore, the differential quantities  and G are approximately independent of time, 

and they can be viewed as functions of frequency alone and written as (f) and 
G
(f) 

(Morozov, 2008b). This approximation of short measurement windows is made in most coda 

studies, and I also use it further in this chapter. However, in some studies, longer time intervals 

allow observing (for a fixed f) G(t,f) different from proportional to t, and therefore Qc(f) variable 

with t. In the Q-based terminology, this observation is described as the “lapse-time dependence 

of Qc(f)” (e.g., Calvet and Margerin, 2013) and explained by variations of scattering properties at 

different crustal or mantle depths. Nevertheless, eqs. (7.2) and (7.3) show that the variation of 

G(t,f) with t only indicates that the selected function G(t) is insufficiently accurate in match with 

the observed A(t,f). This inaccuracy of G(t) comes from grossly oversimplified models and is 

almost certainly unrelated to the scattering properties of the subsurface.  

7.3. Elastic Character of Coda Envelopes 

This section continues the discussion of the near‐elastic character of coda envelopes started 

in section 6.4. Figure 7.2 shows the time dependencies of the logarithms of Lg coda envelopes 

lnA(t,fb) measured within several frequency bands denoted fb, and the corresponding (fb) within 

Lg coda window for one earthquake. As seen from the plots on the left in Figure 7.2, the slopes of 

lnA(t,fb) with time t are negative and similar for all fb. The reduction of coda amplitudes occurs 

predominantly with time, which is different from Q-type attenuation (which is expected to show 

slopes steeply increasing with frequency fb). The time-only dependent amplitude reduction is 

naturally explained by the geometrical spreading and reflections of seismic waves. For a useful 

analogy, note that coda waveforms closely resemble reflection seismic records in controlled-

source seismology.  
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Figure 7.2. Lg coda from earthquake number 1140759 in the database recorded on station MAHB 

at source-receiver distance 165 km and backazimuth 163: a) Vertical-component waveform. 
magenta bars indicate the Lg coda window.  b) Logarithms of band-pass filtered coda envelopes 

(frequencies shown in labels). Red lines show the average slopes representing the attenuation 

coefficients ; c) Attenuation coefficients  versus frequency (blue dots),  for unfiltered record 

(red diamond), and their average trend (f) (red line). The locations of the earthquake and station 

are shown by green circle and triangle in Figure 7.1.  

Unfortunately, time-only dependent amplitude decays can also be explained by one 

ambiguity of the Q model, which makes the interpretations ambivalent and/or biased (for a review, 

see Morozov et al., 2018). A frequency-independent (t) can be explained by a Qc(f) proportional 

to f in the second eq. (7.2), so that the ratio ( )cf Q f const= . Thus, dependencies close to Q(f)  f 

are equivalent to geometrical spreading with no Q-type attenuation at all (Morozov, 2008b, 2010a). 

However, using Q(f)  f or even steeper frequency dependencies is clearly an artificial and 

physically inappropriate way of describing frequency-independent phenomena. A much simpler 

and more natural view consists in analyzing and reporting the functional dependencies of (t,f) 

directly (first eq. (7.2)). 
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By using the  parameterization of the coda, two observations can be made directly from 

the plots on the lower right corner in Figure 7.2: 1) the attenuation coefficient is nonzero (usually 

positive) and nearly constant within the coda windows, and 2) it only weakly varies with 

frequency. To parameterize such dependencies, I can use the two leading terms in the Taylor series 

with respect to f (now considering t fixed as the coda window time): 

                                                      ( ) ef q f   + , (7.4) 

where  is the “geometrical” attenuation coefficient, 
def

1

e eq Q−= , and Qe denotes the “effective” 

(apparent) Q-factor (Morozov, 2008b, 2010a). Similar parameters can be defined for 
G
(f). 

Across the measurement frequency band, the contribution from the geometrical term  

dominates the values of (f) for Lg coda (plots on the lower right corner in Figure 7.2). These 

observations are similar in many other coda studies (Morozov, 2008b, 2011b; Jhajhria et al., 2017; 

Morozov et al., 2018; chapter 6 of this dissertation). Therefore, we can expect that the elastic 

structure should explain most of the A(t,f) dependencies. In addition to this weak or moderate trend 

with frequency, (f) contains strong variations due to the partly coherent scattering and near-

surface resonances (chapter 6). Similar to the scattering-theory coda model (Aki, 1969), I disregard 

these variations here and focus on the averaged linear trend (f) in eq. (6.11). 

The attenuation-coefficient data collected from 1968 vertical-component Lg coda windows 

of this study are summarized in Figure 7.3. The values of  range from about -0.01 to 0.07 s-1, 

and qe ranges from about -0.004 to 0.004. The mean qe is small and negative (-610-4), and the one 

standard deviation range includes the point qe = 0 (green lines in Figure 7.3b). Thus, the deviation 

of qe from zero appears to be statistically insignificant. The data show a slight trend of the 

(negative) qe reducing with increasing  (thick red line Figure 7.3b), which might be due to the 

additive background noise in the seismograms. By empirically subtracting this trend, noise-

corrected (, qe) data are obtained (Figure 7.3c). The mean value of this corrected qe is 

low: qe  8.3510-5, suggesting that the characteristic Q-factor for coda waves within the study area 
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is about Q  12000. Note that with uncorrected qe (Figure 7.3b), the average Q would be higher or 

even negative. 

 

Figure 7.3. Measured attenuation coefficients in vertical-component Lg coda windows: a) values 

of  versus coda times; b) cross-plot of qe and , c) the same for corrected qe. Lines in b) indicate 

the mean level of qe (cyan dashed), its range of one standard deviation (green lines), and mean qe() 

trend (thick red line). 

The high and likely unmeasurable values of Q in this study are not surprising, and they can 

be seen directly from coda observations (Figure 7.3). Similar weak attenuation with Q  4000 or 

higher was found for body S-waves for an adjacent area (chapter 5), from other body-wave 

attenuation studies (e.g., Palmer and Atkinson, 2020), and inferred by re-interpreting frequency-

dependent Q from many other areas (Morozov, 2008b, 2010a, 2010b, 2011b). High crustal Q 

values can also be recognized from steep positive frequency dependencies of Q(f) reported for 

many areas around the world (Morozov et al., 2018). 

7.4. Empirical Regionalization of Lg Coda 

As described in section 7.1, empirical coda regionalization directly attributes the measured 

data attributes such as the inverse Q-factors to the (sub)surface by using certain mapping rules. In 

this section, I show that similarly to Q-1, coefficients  and qe of the Taylor series for the attenuation 

coefficient (eq. (6.11)) can be used with any of these mapping methods. Because these frequency-

independent coefficients are better constrained and only two of them replace all maps of Q(f) at 
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multiple frequency bands, mapping of  and qe appears to be preferable for interpretation. More 

arguments about this subject were given in chapter 6. 

To perform mapping of any coda attribute pk  such as 
1

kQ−
, 

k
, or (q

e
)

k
 measured in kth 

coda record from ith source measured on jth receiver, let us denote by an overbar ( ( )p x ) the 

corresponding mapped attribute at point x. Analogously to eq. (7.1), ( )p x  can be obtained by 

inverting the following linear forward model:  

                                                    ( ) ( )2

k kp d K p=  x x x , (7.5) 

where K
k
(x) is the weighing kernel for this record, and the integration is performed over the surface 

of the Earth. The kernel is normalized so that ( )2 1kd K = x x  (e.g., Del Pezzo et al., 2016). After 

discretization on a spatial grid {xn} shown in Figure 7.1, function Kk(x) becomes matrix kernel 

Kkn, eq. (7.5) becomes matrix product k kn n

n

p K p=  , and the normalization relation becomes 

1kn

n

K = .  

Mapping of the measured attribute pk into its gridded counterpart np  is found by some 

form of an inverse of eq. (7.5). Iterative row-action (“tomographic”) inverses are convenient for 

such large and mixed-determined problems. In row-action methods, each data point is modeled 

independently, and model updates p(xk) are constructed from the resulting data misfit pk. In this 

chapter, I utilize the so-called filtered Simultaneous Iterative Reconstruction Technique (SIRT), 

which is often used in travel-time tomography (Aster et al., 2018). As a starting model p0(x
n
), I 

use the minimum-length inverse (Menke, 1984) of the same problem, in which all eqs. (7.5) are 

summed: 
sum

sum n n

n

p K p=  , where 
def

sum

n kn

k

K K=   and  
def

sum k

k

p p=  . 

In the coda Q mapping approach by Xie and Mitchell (1990), kernel Kk(x) is selected equal 

to one when S R kt t t+   and zero otherwise: ( ) ( )k S R kK t t t= + −x , where tk is the coda recording 

time, tS and tR are the travel times within the source- and receiver parts of the scattered wave path, 
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and (…) is the Heaviside step function. Equation S R kt t t+ =  gives the scattering surface, which 

is an ellipsoid (ellipse in 2-D) in the case of a homogenous Earth (e.g., Xie and Mitchell, 1990). 

On the discrete model grid, kernel Kk(x) is also represented by a matrix, which I denote 

kn knK = . In Figure 7.4, this model is inverted from  and q
e
 values measured for the vertical-

component Lg coda in the Zagros dataset. For comparison with other Lg coda studies (e.g., Xie 

and Mitchell, 1990; chapter 6), values of  are transformed into 
G
 (eq. (7.3)) using the reference 

geometrical spreading function for surface waves in a homogeneous half-space 

( )
1 4

2 2

2

1
, 1

2

V t
G d t

dd

−

 
= − 

 
, where d is the source-receiver distance (for its derivation, see 

Appendix A in Xie and Nuttli, 1988).  

 

Figure 7.4. Mapped vertical-component Lg coda parameters using inversion of areal coda 

averaging as in the approach by Xie and Mitchell (1990): a) , and b) qe. Lines show major faults. 

Labels indicate: LB –Lut block, ALB – Alborz, SSZ – Sannadaj-Sirjan zone, ZFTB – Zagros fold 

and thrust belt, and A – possible imaging artifacts. The model is only shown in areas covered by 

scattering ellipses (non-white). 
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The resulting map of 
G
(x) shows a good correlation with geology and surface topography 

(Figure 7.4). Tectonically stable areas, such as the Lut block (e.g., Berberian et al., 2001) with low 

topography have a smaller value of 
G
(x), but the active tectonic areas such as the Zagros fold and 

thrust belt (ZFTB) and Alborz have a larger value of 
G
(x). qe values are small, variable, and likely 

below the detection limit with anomalies scattered over parts of the map. High values of  and qe 

near the edges of the images likely represent imaging artifacts due to poorer coverage and data 

noise (labeled A in Figure 7.4). 

As noted in section 7.3, the Lg coda is explained by a predominantly frequency-

independent amplitude decrease with distance and travel time. As q
e
 values in the data, the mapped 

attenuation levels are weak and lie in the range of -0.001 to 0.001. In some areas like parts of the 

Sannadaj-Sirjan zone (SSZ), qe has negative smaller value. Thus, comparison of these maps again 

shows that the coda is dominated by the spatial variations of (x), which should be related to the 

elastic properties of the crust such as its thickness and layering (Morozov, 2008b). 

The uniform areal averaging of 1

cQ− in Xie and Mitchell’s (1990) mapping method is a 

heuristic choice not supported by any physical model of the coda. Integration over the constant-

time surfaces S R kt t t+ =  is more viable if the coda is dominated by single scattering within the 

near surface (e.g., within sedimentary layers or on topographic variations or crustal faults), as 

suggested by Morozov (2011b) and in chapter 6 of this dissertation. Recently, Gabrielli et al. 

(2020) supported these inferences by direct observations of near-surface guided waves dominating 

the coda recorded at the Mount St Helen’s volcano (state of Washington, U.S.A.). The single-

scattering approximation is also successful in reflection seismology and seismic interferometry, in 

which the imaging environments are close to the observations of seismic coda. Note that 

function G(d,t) above was also derived for single scattering of surface waves (Xie and 

Nuttli, 1988). The corresponding forward-model kernel for single scattering is 

( ) ( )k S R kK t t t= + −x , where (…) here is the Dirac delta function. In practical calculations, the 

delta function was replaced with a “boxcar” function tapering the scattered-wave time S Rt t+  to 

the duration of the observed coda window.  
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The resulting mapping of the vertical-component Lg coda is shown in Figure 7.5. As this 

figure shows, with sufficient data coverage, the results are close to those in Figure 7.4. This 

comparison shows that empirical coda mapping is relatively insensitive to the selection of the 

forward model. This is not surprising, because empirical mapping basically represents 

interpolation of the observed pk values, and its spatial resolution is limited by the set of the 

available source and receiver points (see subsection 7.4.3).  

 

Figure 7.5. Mapped vertical-component Lg coda parameters using inversion of a single-scattering 

coda model: a) , and b) qe. Plotting style and labels are as in Figure 7.4. 

By using the mapped G and qe, the inverse frequency-dependent Lg coda Q can be obtained 

as ( ) ( )1

c e GQ f q f − = +  (eqs. (7.2) to (6.11)). This transformation of the maps in Figure 7.5 

gives a mapping of the vertical-component Qc(f) (Figure 7.6), which can be directly compared to 

other regionalization studies (e.g., Singh et al., 2019). As in most studies (Morozov, 2008b, 2010a; 

chapter 6 in this dissertation), these maps are dominated by a trend of Qc(f) steeply increasing with 

frequency (Figure 7.6). This trend is principally caused by positive values of G (Figure 7.5), which 

means that the geometrical spreading of coda waves occurs faster than expected in the reference 

G(d,t) model. Overall, the two model- and frequency-independent maps (x) and qe(x) contain the 
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same information as the frequency-dependent Qc at all frequencies. The two maps also seem to 

provide easier interpretations and more direct links to geological structure and physical properties 

(Figure 7.6). 

 

Figure 7.6. Coda Q-1 (Q-1
c) inferred from the mapped  and qe: a) at frequency 1 Hz, b) at 

frequency 10 Hz. Plotting style and labels are as in Figure 7.4. 

To characterize the scattering properties of the crust, it is useful to explore not only the 

vertical but also horizontal components of seismic records. For S waves scattered and traveling at 

various directions and to long distances within a heterogeneous crust, significant horizontal 

components of ground motion can be expected. Different wave modes (P, vertically and 

horizontally polarized S waves, surface and guided waves) exchange energy when interacting with 

dipping heterogeneities, and therefore multicomponent estimators of ground-motion amplitudes 

should provide better stability of the measurements. To evaluate such multicomponent Lg coda 

attributes, I repeated the above measurements and attribute mapping using the orientation-

independent horizontal-component amplitudes (H2C; Figure 7.7) and the three-component 

amplitudes (3C; Figure 7.8).  
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Figure 7.7. Maps of orientation-independent horizontal-component (H2C) Lg coda parameters 

using inversion of single-scattering coda model.: a) , and b) qe. Dashed lines show NW‐ SE trends 

in  Plotting style and labels are as in Figure 7.4. 

 

Figure 7.8. Maps of three-component (3C) Lg coda parameters using inversion of single-scattering 

coda model.: a) , and b) qe. Dashed lines show NW‐SE trends in  Plotting style and labels are as 

in Figure 7.4. 
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These multicomponent amplitudes were evaluated by relations used in chapter 5: 

                           
2 2

H2C R TU U U= + , and     
2 2

3C H2CVU U U= + ,    (7.6) 

where UV, UR, and UT are the instantaneous amplitudes (envelopes) of the vertical, radial, and 

transverse components of recordings, respectively.  

Because qe values are small and likely dominated by noise, I will emphasize the comparison 

of  values in Figures 7.5 to 7.8).  Compared to Figures 7.5a, maps of multicomponent  appear to 

reveal more consistent NW‐SE trending structures following the topography and tectonic features 

in Zagros and the Central-east Iran areas (dashed lines in Figures 7.7a and 7.8a). As a tomographic 

inverse, the SIRT-based mapping allows performing various resolution and covariance tests. For 

example, Figure 7.9 shows a model grid cell coverage for the single-scattering model of the 

vertical-component Lg coda mapping. 

 

Figure 7.9. Model grid cell counts for the single-scattering model (Figure 7.5). The gray-scale bar 

shows the number of data points affected by each grid cell. 
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For each model grid cell, the gray scale level in this figure shows the numbers of data points 

affected by  or qe values in this cell. As this figure shows, the denser source and station 

distributions in the NW part of Zagros leads to significantly greater coverage of the model. 

Figure 7.10 shows a standard checkerboard test for the spatial resolution of   for vertical-

component Lg coda mapping. Similar tests for Qc were shown by Singh et al. (2019). The size of 

each of the input checkerboard block was 13 ×13 grid cells. As Figure 7.10 shows, such blocks are 

resolved by the inversion well in most of the study area, except two blocks in the eastern part of 

the image (at (34.5°N, 58°E) and (32°N, 56°E)). Trials of smaller checkerboard blocks (not shown 

here) showed degradation of resolution in the central part of the model. Therefore, this test shows 

that the available source and receiver distribution allows mapping variations of the “in-situ”  or 

qe on about 150 km spatial scale. Due to low coverage, the model is not well-resolvable for the 

block located near 34.5°N,58°E and also for the block at 32°N,56°E.  

 

Figure 7.10. Checkerboard resolution tests for parameter : a) using the mapping method by Xie 

and Mitchell (1990) (Figure 7.4); b) using the single-scattering forward model for coda 

(Figure 7.5). 
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7.4.1. Interpretation of coda attribute maps 

Although spatial variations of coda attributes can be mapped and show correlations with 

surface topography, crustal structure, and geology, these observations still do not answer the basic 

question about how the mapped properties can be understood physically. In the existing 

interpretations, maps of Qc and similar coda attributes at spatial locations x are viewed as 

phenomenological “seismic attenuation” properties of the study areas (e.g., Xie and 

Mitchell, 1990; Calvet et al., 2013; Del Pezzo et al., 2016; Singh et al., 2019). However, the 

meanings of these maps are more complicated and not simply related to the subsurface. In this 

section, I briefly consider this meaning.  

The usual interpretation of mapped Qc(x) as representing the “coda Q at point x” is 

meaningful only when the spatial variation of Qc across the scattering ellipse is insignificant, i. e. 

when the regionalization is actually unimportant. For example, this is the case of Aki and 

Chouet’s (1975) model, in which the source and receiver are closely spaced, and a single Qc value 

refers to the whole study area. However, this model is insufficient for regionalized Lg coda, for 

which the Qc(x) is expected to be different in the vicinities of the source, receiver, and near the 

scatterers (e.g., Xie and Mitchell, 1990). 

The uncertainty in the physical meaning of coda maps arises from the lack of differentiation 

between the Qc as a quantity measured from the data and the “in-situ” Qc(x) attributed to the 

subsurface. However, these namesake quantities are fundamentally different. The observed data 

consist of discrete readings ( )1

c k
Q−  taken within the kth coda time window, which are characterized 

by two source and two receiver coordinates and the selected lapse time, but no specific spatial 

coordinates x. Thus, coda data reside in a 2+2+1=5-dimensional data space, and they cannot be 

unambiguously mapped onto a 2-D surface or 3-D volume of the physical subsurface. Conversely, 

spatially mapped quantities such as ( )1

cQ−
x are functions of a single 2-D or 3-D vector x, and they 

cannot represent codas recorded from any given source-receiver combination and at different lapse 

times.  

If Qc cannot be associated with individual points in in the subsurface, then what is the 

meaning of the mapped Qc(x) field? For empirical regionalizations considered in this chapter and 

in the literature, this question can be answered as follows. To unambiguously interpret coda 
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attributes mapped as functions of x, I need to transform them back into the data domain, i.e. to the 

shape of the observed coda envelope A(t,f) for a given source, receiver, and recording time. This 

transformation consists in evaluating the same forward model as used for the back-projection 

inversion (eq. (7.5)). This forward modeling can be performed for new source and receiver 

positions and coda times that may not be present in the dataset. For example, Figure 7.11 shows 

such inferred values of  for arbitrary source or receiver locations. To obtain these images, eq. (7.5) 

for the back-projection coda model was used, with a new data index ‘k’ corresponding to the source 

(for Figure 7.11a ) or receiver (for Figure 7.11b) selected at the center of the model, and the other 

pair of coordinates varied across the coverage area. From this  and a similarly mapped qe, Qc(fb) 

at arbitrary pass-band frequency can also be estimated as in Figure 7.6 (not shown for brevity). As 

in the forward model, the scattering surfaces were constructed for times equal to the source-

receiver distance in km divided by 2.6 km/s plus half of the coda window (45 s). 

 

Figure 7.11. Lg coda  predicted by the single-scattering model (Figure 7.5): a) for a new 

earthquake at the center of the study area (star), and arbitrary positions of receivers; b) for a new 

receiver at the center of the study area (blue triangle) and variable positions of the sources.  
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Maps of predicted measured parameters (x), qe(x), or, ( )1 ,cQ f−
x  for a geographical area 

such as shown in Figure 7.11 can be used for interpreting coda measurements, assessing their 

spatial variability, or potentially for planning deployments of new seismic stations. 

In summary of this subsection, the inverse-mapping and forward-modeling procedure 

represents a form of spatial interpolation or extrapolation (resampling) of the Lg coda data. The 

quantities produced by this procedure are coda parameters expected to be measured for source-

receiver pairs ( )1

c k
Q−


 different from those in the actual data (Figure 7.11). The maps of (x), qe(x), 

or ( )1 ,cQ f−
x  (e.g., Figures 7.5 to 7.8) are mainly auxiliary quantities used for this data prediction. 

Care should be exercised when attributing these quantities to the subsurface, and particularly when 

considering their spatial patterns. 

7.4.2. Mapping by spatial interpolation 

Once we realize that spatial mapping coda attributes represent a form of data interpolation, 

then it is important to note that such interpolation can be performed by many other algorithms. 

Some of these algorithms may provide better insights into the meanings of the mapped quantities 

or better accuracy in reproducing the measured data. For example, Figure 7.12 illustrate two forms 

of direct spatial filtering of coda data within the source and receiver planes. 

 

Figure 7.12. Schematic illustration of 4-D interpolation by source and receiver locations. For 
arbitrary source position xsource and receiver xreceiver (black dots), the nearest sources (labeled Sj=1,2,3) 

and receivers (labeled Ri=1,2,3) can be obtained in several ways: a) by Delaunay triangulations of the 

available locations (triangles); b) by conical spatial filters (circles)). Shading within the triangles 

indicates the values of functions ( )
1

S

j SF = x  and ( )
1

R

i RF = x , with dark colors corresponding to the 

value of one, and white corresponding to zero.  
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In this Figure, coda parameters at a continuum of receiver locations xR and source 

locations xS are derived from their discrete readings by: 1) using Delaunay triangulations within 

the source and receiver planes (Figure 7.12a), and 2) using convolution with a conical spatial filter 

(Figure 7.12b). Within the planes of source and receiver positions, these operations are described 

by the corresponding interpolation kernels ( )S

jF x  and ( )R

iF x ,which are known as “shape 

functions” in finite-element modeling. For example, for Delaunay triangulation, a linear shape 

function ( )S

jF x  equals one at point 
j=x x  and linearly decreases to zero at all adjacent source 

locations (shaded by red and blue in Figure 7.12a). With these kernels, any quantity pj measured 

at the source (such as some coda attribute) can be simulated at xS as ( ) ( )S

S j S j

j

p F p= x x , and 

similarly for receivers: ( ) ( )R

R i R i

i

p F p= x x . By interpolating within both of these planes, any 

coda attribute pk can be transformed into one recorded at the source-receiver pair (x
S, xR

):  

                                       ( ) ( ) ( )
all  

( ,  pairs)

, S R

S R j S i R k

k
i j

p F F p= x x x x , (7.7) 

Note that this mapping is based only on the geometrical proximity of sources and receivers and 

does not require hypothesizing subsurface model attributes (eq. (7.5)) with all the epistemic 

complexities discussed in the preceding sections. 

Figure 7.13 shows  in the study area interpolated by using eq. (7.7) using the two types of 

spatial filters in Figure 7.12. The result represents another way of Lg coda Q mapping. In contrast 

to the “in situ” Qc(x) on a 2-D plane of x, this quantity has a clear meaning of a measured coda 

attribute, which can be verified by conducting a seismic experiment at the new receiver location. 

However, because coda attributes exist not in a 2-D but in the 4-D space of (xS, xR) coordinates, 

this mapping is only successful in the vicinity of the actual source-receiver pairs. To predict coda 

attributes at other receiver positions, different source locations or much broader filters would need 

to be tried in Figure 7.12.  

Note that unlike mappings based on inversions (eqs. (7.1) and (7.5)) or broad spatial 

filtering (Figure 7.12b), the interpolation using Delaunay triangulations (Figure 7.12a) accurately 
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predicts each of the discrete data coda readings pk (k in Figure 7.13, but this is valid for any other 

coda attribute as well). Thus, this type of interpolation mapping is mathematically most accurate. 

 

Figure 7.13. Lg coda  predicted by 2-D filtering within the source- and receiver coordinate planes 

for a new earthquake at the center of the study area (star), and arbitrary positions of receivers: a) 

using Delaunay triangulation of the locations of receivers (Figure 7.12a); b) using conical filters 

centered on receivers (Figure 7.12b). 

7.4.3. Spatial resolution 

Although this may appear contrary to the traditional goals of regionalization (revealing 

spatial variations of scattering properties), it is important to note that because the mapped coda 

attributes are not subsurface properties but only measured data properties, their mapped patterns 

are algorithm-dependent on spatial scales smaller than the characteristic scales of the selected 

algorithms. These patterns and scales vary broadly for different inversion-based (e.g., Figures 7.4a 

and 7.5a) and interpolation-based approaches (Figures 7.13a and 7.13b). Generally, an increase of 

smoothness of a map reduces the accuracy of its predicting the observed coda data.   

Because of the algorithm dependence, at smaller scales for which the images (e.g., 

Figures 7.4a, 7.5a, 7.11a, 7.11b, 7.13a, or 7.13b) differ, the mapped spatial variations of   (and 
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similarly qe or ( )1

cQ f−
) are likely unreliable for geological and physical interpretations. However, 

on larger spatial scales (i.e., disregarding the dependence on x), these attributes can be interpreted 

in a 1-D sense (a single parameter for the whole region), as in the original approach by Aki and 

Chouet (1975). In this limited sense, coda attributes represent “apparent” properties, analogously 

to the apparent resistivity in electrical imaging (Morozov and Baharvand Ahmadi, 2015). In a 1-

D (layered) medium, these attributes would be near constant spatially (independent of x) and 

represent the pattern of layering. Because of their independence of filtering frequencies and 

reference models, attributes  and qe appear to be preferable for characterization of geological 

structures. These attributes also show good correlation with crustal types and tectonic ages of the 

crust (Morozov, 2008b, 2010a, 2011b), and they can be modeled numerically (Morozov et al., 

2008). However, similar to the apparent resistivity, spatial variations of these quantities are hardly 

reliable on scales much shorter than the characteristic scales of the algorithms used for their 

inference. 

7.5. Mapping of Scatterers 

To step beyond empirical mapping schemes for measured coda attributes and obtain an 

objective characterization of the subsurface, models of true in-situ properties of the crust or mantle 

are needed. These models should utilize not only (t,f) but the complete coda envelopes A(t,f). 

Ways for producing such a model will be outlined in chapter 8. In this section, I derive a simple 

initial approximation for this model by mapping the spatial distribution of scatterers within the 

study area. 

The spatial pattern of crustal heterogeneity contributing to the observed coda can be 

constrained by mapping the intensity of scatterers (Nishigami, 1997). This mapping is analogous 

to migration broadly used in reflection data processing and in imaging teleseismic receiver 

functions. This mapping is based on the single-scattering approximation, in which the fluctuations 

of coda power at time t are caused by the variations of scattering intensity at points located on the 

scattering surface S R kt t t+ =  (eq. (7.5)). Similar to Nishigami (1997), for each coda window, I 

evaluated the average least-squares trend of the total (frequency-independent) coda power and 

measured the deviations from it within 2-s time intervals spanning the entire coda windows 
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(Figure 7.2). Let us denote P
k
(t) the variations of coda power above and below the average 

envelope in coda record k. Similar to seismic reflection migration, the forward model for coda 

power fluctuations is 

                                         ( ) ( ) ( )j k S S R R kn n

n

C P t G d G d  =  , (7.8) 

where n is a point in the gridded map, n is the scattering intensity at this point, GR(d) and GS(d) 

are the geometrical spreading functions for power, dS and dR are the distances from point n to the 

source and receiver, respectively, and weight matrix kn combined with summation over n 

implement integration over the scattering surface (section 7.4). The source scaling factor Cj is 

needed for correcting the recorded power P
k
(t) for the magnitude and spectra of the jth source. 

Selection of the geometrical spreading functions GS(d) and GR(d) requires additional 

research. However, this selection does not significantly affect the qualitative results, and I can use 

simple approximations for these functions. For local coda, Nishigami (1997) used spherical-wave 

relations ( ) 2G d d −= , and here, I use the results of detailed S-wave amplitude inversion in chapter 

5. From that chapter, this amplitude dependence for GS(d) can be parameterized as 

                                   ( )
( ) ( )

( )
near near far far2 2

2

1 2

r

d d

r d

S

d d
G d e

d d

   



− −

   
=    

   
, (7.9) 

where d1 = 90 km,  d2 = 115 km, 
near 1.21 = , 

far 1.99 = , and r = 0.89. For the receiver-side branch 

of the scattered wavefield, I use a surface-wave approximation, which is also normalized at 

distance d1: 

                                                  ( )
1

1

R

d
G d

d

−

 
=  

 
. (7.10) 

Determination of the scaling factors Cj also requires detailed inversion, but here, I again use a 

simple approximation based on coda normalization (Aki, 1969). For each source j, let us select Cj 
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so that for constant scattering intensity 1n = , the logarithm of the of coda power fluctuations 

falls on the same average dependence with distances: ( ) ( )ln ln lnj k S S R R kn

n

C P G d G d + =  , 

where k are the record numbers from source j (eq. (7.8)). Denoting the number of these records N 

and averaging this equation over all k  = 1…N, factor Cj is obtained: 

                             ( ) ( )
1

exp ln lnj S S R R kn k

k n

C G d G d P
N

 
  

= −  
  

  . (7.11) 

The resulting spatial distribution of scatterers (x) by inverting eq. (7.8) using the SIRT 

method is shown in Figure 7.14. Note that the distributions of scatterers form bands correlated 

with the coastline, topography, and tectonic structure of the region. Such correlations support the 

above argument that the scattering occurs near the surface and/or within the upper crust. 

 

Figure 7.14. Scattering intensities contributing to Lg coda in the study area. The gray-scale bar 

shows scattering intensities. Lines and labels are as Figure 7.1. 
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The high intensity of scattering (darker areas in Figure 7.14) appear to be associated with 

the north-east coastline of the Persian Gulf, the north-east margin of unfolded zone (labeled UF in 

Figure 7.14), the middle part of Sannadaj-Sirjan zone (SSZ), and in Arvand Rud river (labeled AR 

in Figure 7.14). The distribution of scattering intensities in Figure 7.14 could also serve as a more 

realistic and accurate alternative for the ad hoc averaging kernels used in section 7.3 (eq. (7.5); 

Figures 7.4 and 7.5). 

7.6. Discussion and Conclusions 

As shown by general arguments and examples in this chapter, the conventional 

regionalization of Lg coda parameters represents not rigorous characterization of the subsurface 

but a specific form of interpolation of the observed data. The measured coda attributes such as the 

inverse coda Q ( 1

cQ− ) or  are interpolated with respect to source and receiver coordinates. Maps 

of Qc and similar attributes represent intermediate products of this interpolation. Therefore, care 

should be exercised when using these maps in geological or geophysical interpretation. The 

mapped attributes can be viewed as apparent properties analogous, for example, to the apparent 

resistivity in electrical imaging. Such apparent properties are useful for interpretation, but their 

spatial variations are algorithm- and experiment- dependent and may be unreliable. 

The variability of empirical mappings of Lg coda attributes is illustrated on coda windows 

extracted from the Zagros dataset, by using four types of mapping algorithms and three types of 

coda amplitudes: vertical-component, orientation-independent horizontal (H2C), and three-

component (3C) envelopes. Instead of the conventional frequency-dependent Qc, two parameters 

of the attenuation coefficient were used: the geometrical attenuation  and the effective attenuation 

qe = 1/Q
e
. The (, qe) parameterization is simpler and more robust (frequency and theoretical-

model independent), and it allows clear correlations with crustal types. Four types of mapping 

algorithms were considered:  

1) Coda averaging over scattering ellipses (the single scattering method); 

2) Averaging over their interiors (currently popular back-projection method); 

3) Four-dimensional spatial interpolation with respect to the source and receiver 

coordinates; 
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4) Migration of power fluctuations within the recorded codas. 

 All methods produced similar mapping results, although with significant differences in spatial 

patterns of mapped attributes. 

All types of coda-attribute mapping show that Lg coda envelopes in the study area are 

dominated by the elastic structure of the crust, including its thickness, layering, and the surface- 

and near-surface topography. The geometrical (elastic) attenuation  for vertical component shows 

values from about   0.005 to 0.05 s-1, which are characteristic for areas of active tectonics similar 

to the value found for the eastern Indian Shield (chapter 6). Anelastic (Q-type) attenuation is weak 

(Q ~ 6000 or higher) and appears undetectable with the noise level in the data. When using the 

attenuation-coefficient analysis, similar observations have been made for other areas of the world. 

From the mapped  and qe, frequency dependent Qc(f) similar to those in many other areas are 

obtained. 

As a next step, I need to characterize the Earth’s crust not by apparent coda attributes but 

by true physical parameters. Rigorous forward models and inversion of complete coda envelopes 

is needed for this purpose. The model should be based on true physical properties such as velocity 

gradients, major reflectors, parameters of surface and subsurface topography, thicknesses and 

patterns of layering, and amounts of scatterers within various parts of the crustal and lithospheric 

structure. Such a model and inversion will be presented in a continuation of this study (chapter 8). 
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CHAPTER 8    

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH 

Because of the limited time span and volume of this dissertation, I aimed not at 

comprehensive analysis of a single dataset but at addressing several interesting and key problems 

in regional-distance earthquake seismology:  

1) Versatile analysis of large and complex datasets;  

2) Models for body-wave amplitudes at a broad range of source-receiver distances;  

3) Analysis of seismic coda;  

4) Physical meaning and values of seismic attenuation, and its methodological role in 

other seismological studies.   

In addition to these fundamental topics, I performed a more routine study of earthquake 

relocation and proposed an advanced approach to inverse problems encountered in seismology. In 

the following section 8.1, I present key conclusions on these topics in more detail. In section 8.2, 

I outline several unsolved problems and directions of further research inspired by this study. 

8.1. Conclusions from this Study 

Management and processing of a large earthquake datasets is a significant task in modern 

seismology. In this dissertation, I gave the first large-scale application of a new paradigm in this 

processing. I used the seismic processing package developed for many years in our group and 

named IGeoS (Morozov, 2008a), which utilizes the organization of data flows and many tools used 

in reflection and wide-angle controlled-source seismology. Combination of this high-throughput 

processing framework with multiple tools written in Octave allowed performing efficient 

processing of arbitrarily large or small datasets. Generic Mapping Tools (GMT) programs 

represented another important complement of this processing model, which allowed generation of 
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numerous plots. Importantly, the combined IGeoS+Octave+GMT processing procedure described 

in this dissertation is completely self-documented and can be reproduced automatically at any time. 

With regard to topic 2) above, a new frequency-time dependence standard model of 

spectral amplitude was developed for Rigan area in southeastern Iran. By selecting a more accurate 

parameterization of the geometrical spreading, source-receiver coupling, high frequency spectral 

decay, and Q-factors, significant physical properties of the Earth’s crust were revealed for this 

area. The geometrical spreading selected in the form t– was found to be significantly stronger than 

assumed in existing models, with power-law exponents near  1.7 at distances closer than 90 km 

and far  2.45 beyond 115 km for orientation-independent horizontal component (H2C). In the 

transition between these distances, amplitude increases by a factor of about three. This amplitude 

increase is not shown in existing models, but it appears to be expected and caused by the onsets of 

deep crustal waveguide modes and near-critical Moho reflections. The seismic attenuation (Q) 

factor exceeds about 2000, which means that the crustal attenuation is low. The above 

characteristic values of , critical-distance amplification, and characteristic Q values should also 

be applicable to many other areas around the world. 

Another important group of conclusions for the standard model 2) relates to inversion 

methodology and measurement of uncertainties. For the standard model developed in chapter 5, 

two types of model uncertainties were measured. The first type of model uncertainty is caused by 

subjective selection of mathematical parameterization, such as the under-parameterized 

geometrical-spreading function combined with an over-parameterized frequency-dependent Q(f). 

It was also shown that strong biases in the existing models are caused by conventional disregard 

of certain groups of model parameters such as receiver coupling, and by allowing data residuals to 

correlate with source-receiver distances. To control these uncertainties, I proposed using additional 

constraints in the inverse method. With the use of these constraints, the model became much more 

accurate across the whole distance range. Simultaneously, the model became more physically 

consistent and much simpler than the existing ones because of the use of a frequency-

independent Q. 
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Even with sufficient parameterizations, the second type of model uncertainty needs to be 

studied, which is the uncertainty produced by random measurements errors in the data. This 

statistical analysis was conducted in chapter 5 and showed that all model parameters were correctly 

resolved. In addition, a new, “optimal” parameterization of the time‐ and frequency‐dependent 

spectral amplitude was inverted for by the principal-component analysis.  

From coda studies in chapters 6 and 7 (topic 3 above), the key conclusion consists in 

proposing an alternate parameterization using the geometrical-spreading parameter  and effective 

Q-factor denoted Qe. I showed that this parameterization allows an insightful re-interpretation 

of conventional coda Q(f) results (chapter 6) as well as analysis of new coda data (chapter 7). 

Parameters  and Qe are frequency-independent, which makes them much better constrained and 

simpler to compare for different geographic regions. The inverted levels of   are 0.010 to 0.013 s-

1 for the eastern part of Indian Shield and   0.005 to 0.05 s-1 for Zagros area of Iran. The values 

of  for H2C and 3C coda amplitudes are somewhat smaller than the vertical component ones. 

However, I found that the body-wave spectral multicomponent amplitudes decrease much faster 

than the vertical component (chapter 5). In contrast to many existing studies, this dissertation 

shows that the Q-type attenuation is actually weak, with values of Qe above 2000–6000, which 

appear to be within measurement errors. These large Qe values are likely dominated by noise in 

the recordings. 

From the above large values of Qe, a most spectacular and important conclusion from coda 

analysis in this dissertation is that in both datasets, the observed codas are near-elastic. Therefore, 

I conclude that coda shapes are principally determined by the structure of crust, and particularly 

in the near-receiver area. This interpretation differs from many conventional models, in which the 

coda is explained by a Q-factor of an effective homogeneous medium. 

In addition to revealing the high values of Qe and elastic character of codas, in chapter 6, I 

obtained frequency-dependent spatial patterns of coda amplification and deamplification (i.e., coda 

attenuation). This observation was validated by observations of raw coda spectral amplitudes and 

supported by further results of Lg coda in Zagros region (chapter 7). 
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Another group of conclusions for coda relates to the methodology of coda mapping 

(chapter 7). To my knowledge, this is the first study in which three mapping methods and three 

types of coda amplitudes (i.e., vertical component, H2C, and 3C) were compared, including a new 

method of direct interpolation with respect to the source and receiver coordinates. Instead of the 

conventional frequency-dependent Q, two frequency-independent parameters of attenuation 

coefficient (i.e.,  and qe = 1/Qe) were assessed.  

All the mentioned mapping approaches yielded similar values of  and qe but with 

considerably different spatial patterns of mapped attributes. This difference was an important 

observation corroborating the general argument of this dissertation that coda mapping cannot be 

rigorously carried out in terms of coda attributes dependent on only surface or subsurface locations. 

However, parameter  can be interpreted in a 1-D sense, as an indicator of crustal layering. 

The results of coda studies in this dissertation (chapters 6 and 7) suggest that Lg coda 

envelopes are dominated by the elastic structure of crust (i.e., 1 0Q− = ), which includes crustal 

layering, surface topography, and major structural features such as the Moho depth and the 

coastline. New mapping by coda power fluctuations (chapter 7) also indicated good correlation 

with topographic features and tectonic structures in Zagros area. 

Finally, the event relocation analysis in this dissertation (chapter 4) was only an initial 

approximation using a crude 1-D travel-time model, and its results were preliminary. Most sources 

were relocated by 10 to 25 km, which was within location uncertainty. After their improvements 

during further research (next section), accurate earthquake source locations should be useful for 

many other applications, such as travel-time tomography and polarization measurements.  

8.2. Directions of Future Research 

The Zagros dataset and ideas of the dissertation suggest numerous other studies which 

could not be pursued here because of time limitations. In the following, I outline several promising 

research directions that can be followed with these data in the future. Some of these studies are 
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already being cast into papers in preparation, some are in preliminary trials, and others still need 

to be explored: 

1) Estimation of the velocity structure and Moho depths for Zagros area using Pn travel-

time tomography. For large datasets like Zagros (chapter 2), travel-time tomography 

represents a standard part of seismic imaging, yielding information about the wave 

velocities and depths to the major velocity discontinuities such as the crust-mantle 

boundary. Identification of these features is critical for determining the tectonic 

structure of the region and answering the questions posed in chapter 2. 

2) Concurrently with the Pn travel-time tomography, the more accurate velocity model 

would allow accurate modeling of the travel times predicted for various source and 

receiver combinations. Based on these predictions, travel times for P- and S-wave 

arrivals can be picked more accurately. This procedure would require an extensive 

amount of interactive data analysis, but it should further improve the accuracy of the 

tomographic model. Potentially, more accurate phase identification would allow 

constraining the depths of seismic sources and improve their locations. 

3) With more accurate travel-time models produced by tomographic inversion, the 

relocation study of chapter 4 can be expanded to more earthquakes. Relocations 

would also become more accurate. If surface reflections (Pp phases) can be identified 

in the local-distance records, depths of the sources can also be estimated more 

accurately. 

4) Applying joint spectral decomposition of chapter 5 to the large Zagros dataset and 

constraining parameters kappa for sources and receivers in Zagros area. Preliminary 

tests show that this task may be challenging because of the trade-off between the 

numerous source parameters and path attenuation effects. Therefore, further 

enhancements of the inversion methodology will likely be required. Most 

importantly, this study could yield unique constraints on the source spectra (like 

source), differentiate them from receiver effects (receiver), and estimate the true 
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geometrical spreading, and path attenuation (Qe). None of these estimates are 

currently available for other areas. 

5) Finding a standard model for complete coda envelopes. This would be a most 

important but also challenging task, because no such models have been developed 

before. This model would replace the empirical mapping schemes for measured coda 

attributes (chapters 6 and 7) with a model using true in-situ properties of the crust or 

mantle, such as proposed in chapter 5. Instead of utilizing only decay rates of the 

normalized coda envelopes ((t,f)), the complete coda envelopes A(t,f) would be 

used. With its large number of records, the Zagros-area dataset appears to be suitable 

for this major effort. 

6)  An interesting new hypothesis arises from the observations of low attenuation and 

elastic characters of coda envelopes (chapters 5, 6 and 7): it appears likely that codas 

and high-frequency receiver-site parameters kappa are mutually related, and both of 

them can be explained by elastic scattering. This scattering likely occurs near the 

receiver and with a strong contribution from surface waves. Currently, both codas 

and kappas are explained by body-wave Q-factors of the crust, and an alternative 

explanation by mostly elastic scattering could make an important shift in the 

paradigm.  

7) Mapping of frequency-dependent and spatially variant coda amplification and 

deamplification for Zagros area. This mapping would provide additional information 

about the source and receiver site conditions, and it could complement the complete-

coda amplitude model proposed above.  

8) Analysis of wave polarizations and seismometer orientations. Regularly, P-wave 

arrivals are expected to occur with ground motions oriented within the plane of the 

back-azimuth direction to the source. However, deviations from this plane can occur 

due to two reasons: a) misorientations of the horizontal sensors (for example, because 

of using the magnetic compass in concrete buildings or near local magnetic 

anomalies), and b) physical effects of the earth’s topography, sideway refractions, 

and scattering. With either of these explanations, the results of P-wave polarization 
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measurements should contribute to accurate characterization of the stations and study 

area. Variations of P-wave polarizations are often measured by methods similar to 

the principal-component analysis. Most of this analysis for Zagros records was 

already done when working on the present dissertation, and its interpretation can be 

completed during future research. 

9) Analysis of the horizontal- to vertical-component ratios of spectral amplitudes 

(HVSR) for the different receiver sites in Zagros area. Resonance peaks in the HVSR 

spectra can be used for constraining layering of the near surface and constraining the 

seismic hazard near the stations. This knowledge can be used in further modeling and 

help understanding the effects of topography, buildings, and layered structures on 

ground motions. Numerous arrivals recorded in Zagros area would allow 

investigation of the dependence of HVSR on arrival types, angles of incidence, and 

on recording within body-wave or coda time windows.
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APPENDIX A 

INVERSION WITH EXACT MODEL CONSTRAINTS  

To derive the solution for variables m satisfying eqs. (5.10) and (5.11) in chapter 5 exactly 

and simultaneously, I use the Lagrange multiplier method. In this method, it is first noted that the 

least-squares solutions of eq. (5.10) minimize the following penalty function (squared data error): 

                                         ( ) ( ) ( )
1

2

T

d = − −m d Lm d Lm .  (A-1) 

To additionally constrain the solution by eq. (5.11), this penalty function is modified as 

                                          ( ) ( ), T

d =  + −m λ λ Bm c ,  (A-2) 

where  is a vector of N Lagrange multipliers, with one multiplier corresponding to each row 

(constraint equation) in matrix B. Quantities  represent additional model unknowns, and the 

minimization equations   =m 0   and   =λ 0  become  

                                                 
T  

=   
   

m L d
K

λ c
,  (A-3) 

where 

                                              

T T

N N 

 
  

 

L L B
K

B 0
 , (A-4) 

and notation N M
0  means a zero matrix with N rows and M columns. By inverting matrix K, the 

model and Lagrange multipliers are obtained: 
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                                                  1

T

−
  

=   
   

m L d
K

λ c
. (A-5) 

Since ( ) ( ), d = m λ m  for any m satisfying =Bm c , solution  (A-5) is unbiased and exactly 

minimizes the LS norm ( )d m  within the set of models satisfying the constraints. 

Note that in many applications of geophysical inversion (such as of smoothing of 

nonparametric models by Castro et al. (1990) or use of “prior” model by Drouet et al. (2008); 

subsection 5.7.1 in chapter 5), model constraining is performed in a different way, which is called 

“regularization.” The squared data error is modified as (Tikhonov regularization; e.g., 

Menke, 1984): 

                                    ( ) ( ) ( ),
T

d  =  + − −m λ Bm c Bm c ,  (A-6) 

where the single parameter  is fixed. For example, by selecting B equal the identity matrix and 

0=c m , the solution can be attracted toward some “prior,” or preferred model m0.  

For the modified objective function in eq. (A-6), vector  in eq. (A-2) is fixed and related 

to m by ( )= −λ Bm c . Because this value of  is not optimal, the original data error (A-1) is not 

minimized, and this solution is biased toward the constraint. The amount of this bias and the 

stability of model m depends on selecting , which may be not easy to do (Fang et al., 2019). By 

contrast, when using the solutions obtained by eqs. (A-2) to (A-5), there is no need for the 

subjective parameter , and solution m exactly minimizes the data error (A-1) within the subspace 

of models exactly satisfying the required constraints.
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