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ABSTRACT 

Seismic facies analysis aims to classify oil and gas reservoirs into geologically and 

petrophysically meaningful rock groups, or classes. An artificial neural network (ANN) is a 

versatile and efficient tool for classifying data or estimating subsurface properties from large 

geophysical datasets. This tool can provide critical information for oilfield development and 

reservoir characterization.  

This study includes application of artificial neural networks on two different datasets: 1) 

geophysical characterization of an oil reservoir in Iran and 2) geological prospectivity for porphyry 

in British Columbia, Canada. In the first case study, I utilize seismic attributes, well-log data, and 

core data analysis and use supervised machine learning techniques to efficiently estimate the 

acoustic impedance and porosity of the reservoir and to classify it into four lithological classes. 

Seismic attributes as inputs for our techniques capture the lithological patterns or structural 

characteristics in the seismic amplitude, phase, frequency, and other complex seismic properties 

that cannot be directly seen in the original seismic images. Selection of an optimal set of input 

features from the vast number of possible mathematical transformations of seismic data is a critical 

task for reservoir property prediction and classification. This selection is performed by standard as 

well as innovative procedures employing properties of the target classes. 

Three different supervised approaches to non-linear classification are used: 1) the so-called 

probabilistic neural network (PNN), 2) conventional ANN, and 3) an ANN with the new approach 

of optimal attribute selection. For each of these approaches, images of classification confidence 

levels and confidence-filtered class images are produced. Assessments of the robustness and 

accuracy of seismic facies classification is performed for each of these algorithms. The ANN 

classifiers are validated using validation and test data subsets. The proposed algorithm shows a 

higher performance, particularly in comparison with the PNN algorithm. Several visualization 

techniques are used to examine and illustrate the power of the ANN-based approaches to classify 

the seismic facies with high accuracy. However, the three approaches still provide significantly 

different levels of lateral continuity, frequency content, and classification accuracy. Therefore, 

some level of expert assessment is still required when using machine learning for reservoir 

interpretation. 
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In the second case study, I use an ANN to explore the prospectivity for porphyry within 

the Quesnel Terrane, BC, Canada. A purely data-driven approach based on geophysical, structural, 

and volcanic-age data results in a predictive prospectivity map which correlates well with known 

mineral occurrences and suggests new areas for potential exploration. 
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1. CHAPTER 1: Introduction 

In order to conduct geological or geophysical interpretation, a combination of multiple 

datasets such as geological maps, well logs, measurements of chemical and physical properties of 

core samples and in thin sections, and estimations of rock density, porosity, or permeability are 

used. Broadly, such interpretation tasks reduce to classification of the input data into certain 

classes, such as certain rock types, productive or non-productive zones within an oil or gas 

reservoir, or geographical areas of various levels of mineral prospectivity. With large volumes of 

the datasets and broad variety of input parameters, the classification procedure requires significant 

expertise and effort. In the recent years, machine learning techniques using computer algorithms 

called the artificial neural networks (ANN) have started getting to the forefront of many of these 

interpretation methods, particularly for automated interpretation of geophysical maps and making 

reservoir property estimations.  

The need for ANN-aided approaches is particularly important in seismic data interpretation 

and reservoir characterization. By adding seismic data to geological parameters, an analyst has to 

deal with a large amount of data, which is time-consuming and often even impossible to do. A 

typical seismic reflection trace contains several thousand of time samples, with millions of traces 

in a three-dimensional (3-D) dataset, and numerous geophysical features (seismic attributes) need 

to be taken into account when making a parameter estimation or classification at each sample. 

However, with the help of machine learning, this process of detailed reservoir characterization can 

be aided and possibly even automated in the future.  

The general approach to geological or geophysical data classification used in this thesis is 

as follows. Using seismic processing and interpretation, an expert geophysicist extracts the 

significant geological or geophysical features from the data and performs classifications on a set 

of ground truth and carefully studied examples (maps or well logs, called the training dataset). 

Further, a data scientist uses machine-learning techniques to learn the rules used by the expert, and 

then uses these rules to the valuable parameters or classify the complete dataset. In this thesis, I 

try the roles of both the geophysics expert and data scientist in applications to two case studies: 

1) Investigate reservoir properties in an Iranian oilfield (Chapters 3, 4 and 5); 
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2) Exploration of prospectivity for mineral deposits in Quesnel area, BC, Canada 

(Chapter 6). 

In the first of these applications, I also use utilize the inversion and machine learning methods to 

derive volumes of acoustic impedance and to estimate porosity within the reservoir (Chapter 4). 

1.1 Objectives and contributions of this study 

The general objective of this study consists in obtaining new interpretations of geological 

and geophysical datasets using machine learning techniques utilizing seismic attributes, well-log 

data, core data and thin-section analysis.  The specific and practical objectives for the two datasets, 

and the corresponding contributions are: 

1) For the reflection seismic dataset: 

a) Perform complete and accurate model-based inversion of acoustic impedances 

(AI). This procedure results in a new 3-D volume of AI, which is the seismic 

attribute most useful for seismic interpretation and correlation of seismic results 

with geology.  The AI volume is also used further for estimating porosity and for 

obtaining final classification. 

b) Use machine learning to estimate porosity volume from the estimated AI and other 

seismic attributes. Similar to AI, prediction of porosity at any point within the 

subsurface is the key part of reservoir analysis and classification.  

c) Perform a feasibility study and quality control to investigate the relation between 

porosity and AI. The contributions from this objective consist in measuring the 

correlation between these two parameters and testing several machine learning 

techniques and making recommendations for the best algorithm porosity 

estimation. 

d) Apply and compare three machine learning techniques for producing classifications 

Perform an innovative feature selection approach and use neural network to obtain 

the highest possible validation accuracy. The proposed approach shows a 

significant improvement in the classification of seismic facies compared to 

previously used neural network and also current machine learning techniques used 

in a specific industrial software. 
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2) Train and apply an artificial neural network to model prospectivity of porphyry related 

deposits in Quesnel Terrane (BC, Canada) using a pattern-recognition algorithm and 

structural, geological and geophysical data. 

In meeting the practical objectives for the seismic (principal) part of the thesis, significant 

methodological questions need to be addressed. There exist numerous seismic attributes, but many 

of them are mutually related and cannot be used for final classification of the reservoir. Selecting 

the best set of seismic attributes is the primary step of feature extraction, and it has a significant 

impact on the final parameter estimation or seismic facies classification. Selection of an optimal 

set of independent attributes should yields valuable information that could lead to a better 

understanding of the studied area and help detecting detailed features of the subsurface geology.  

How to select the best method and the best structure of the ANN to predict and estimate 

reservoir properties from seismic data? What features should be selected, and which algorithms 

should be employed to address this problem? These are the main challenges for someone dealing 

with reservoir characterization from seismic data. In this thesis, I discuss these challenges and 

propose an approach to their solution using an innovative attribute selection approach. This is the 

key methodological contribution from this study (chapter 2). Another important new methodology 

of this thesis consists in the estimation of confidence levels of the classifications and in using these 

levels for plotting the classification sections for final interpretation (chapter 5). 

1.2 Structure of this thesis 

In the current Chapter 1, I briefly introduce the general approach of machine learning and 

summarize the goals of this study. In chapter 2, I describe the key methodologies which are 

common to most applications in this study. Also in chapter 2, I describe the new methodology of 

optimal selection of features for ANN classification developed in this study.   

Chapters 3, 4, and 5 are devoted to the reservoir classification project. In chapter 3, I 

describe the geology of the study area, seismic data and processing, and the initial interpretation 

of the studied reservoir. In chapter 4, I describe the post-stack seismic acoustic-impedance 

inversion method and porosity estimation within the 3-D seismic volume using the Emerge method 

by Hampson and Russell. In chapter 5, I develop a rock-type classification model by using the 
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seismic data, borehole core data, and wireline logs. The model consists of four reservoir 

electrofacies, which represent group or clusters of geophysical measurements.  

In chapter 6, I describe a different, geological classification study to classifying potential 

porphyry deposits in Quesnel area in BC, Canada. The chapter contains a brief overview of the 

data, methods of prospectivity prediction, and an application of ANN to several geophysics’ fields 

and also structural and geological data.  

Finally, in chapter 7, I present the conclusions from this research, discuss the applications 

of multiple machine learning techniques, and also make recommendations for further development 

of the methods of this thesis and for solving the outstanding problems.  
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2. CHAPTER 2: Methodology 

This chapter summarizes the general methodology used in other chapters of this thesis. 

Inversion and porosity estimation are mostly performed using Hampson-Russell software. Some 

seismic attributes are extracted using HRS (Hampson-Russell) and some of them using interactive, 

open-source OpendTect software by dGB Earth Sciences. Machine learning techniques are 

performed mostly using MATLAB and Python.  

Acoustic impedance estimation for entire seismic cube consists of multiple steps. I used 

the post-stack seismic inversion using HRS software. There are several inversion methods 

including model-based, bandlimited, sparse spike and colored inversion. In this thesis, I tested all 

methods and the best method in our case is model-based inversion which gives the highest 

correlation (Chapter 4). The most critical step in seismic inversion is the quality control which a 

geophysicist could use different visualization and numerical validation to confirm or reject a final 

output of the inversion process.  

After confirming the estimated acoustic impedance using several quality control steps, I 

aimed to estimate porosity volume using seismic attributes, especially the estimated acoustic 

impedance in the previous step, and well-log data. I used Emerge tool in HRS which includes 

selecting the best subset of attributes from a range of several attributes using stepwise regression 

and then utilizing multi-attribute regression. After selecting the best subset of data using cross-

validation plots. I used several supervised learning techniques such as the probabilistic neural 

network (PNN), multi-layer feedforward network (MLFN) and radial basis function neural 

network (RBFN) and after performing a careful comparison, the best technique with least 

validation error was selected (Chapter 4). These algorithms are artificial neural networks. Artificial 

neural networks (ANN) are multilayer perceptron (MLP) supervised neural networks, which are 

mathematical mechanisms designed to execute complicated pattern recognition tasks. They are 

utilized to classify the seismic facies into multiple classes due to their power to eradicate the need 

for intricate statistical techniques, noise control, and complex and extensive database management. 

Then, the most meaningful seismic attributes were extracted from HRS and OpendTect to 

feed into different neural networks in order to classify our lithofacies from the well-log analysis 
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and core data interpretation. This step was done using MATLAB and Python and the results are 

compared to the PNN algorithm using HRS. In this study, I used an innovative approach to select 

the optimal number of attributes to avoid overfitting and obtain the highest validation score and 

the results are compared to PNN and regular ANN in chapter 5.  

 After standard or improved initial preconditioning of the data (section 2.1), this 

methodology can be subdivided into three broad tasks: 

1) Inversion: Using continuously distributed data such as reflection seismic records, 

produce new continuous data such as the acoustic impedance or porosity. 

2) Prediction: Using known occurrences of a certain class, derive a probabilistic model 

for predicting this class from values of a set of features measured from the data (seismic 

attributes). 

3) Classification: Using a known classification of a part of the data into several discrete 

types, extend this classification to the complete dataset. 

The Inversion task is considered in application to inversions for acoustic impedance (AI; 

section 2.2) and porosity (section 2.3). The AI inversion is based on knowledge of the specific 

physical relation between the wave reflectivity and acoustic impedance, and therefore the 

algorithm is also based on inverting a rigorous forward problem. By contrast, the prediction of 

porosity (section 2.3) utilizes no specific model for its dependence on seismic attributes. The 

prediction is obtained by training an artificial neural network (ANN) to reproduce the ground-truth 

observations in the available wells. 

In section 2.4, I describe several approaches to the Prediction task above. This task is 

accomplished in the thesis by using a kernel-based interpolation method (chapter 4) or an ANN 

(chapters 5, and 6). 

Section 2.5 describes the principal idea and several application methods for the 

Classification task above. With any type of classification, it is useful to additionally precondition 

the input data by selecting the combinations of features which are most sensitive to the expected 

classes. As shown in chapter 5, this selection significantly improves the classification results while 

reducing the computational effort. The approach to selecting an optimal set of features from the 

seismic dataset is described in section 2.6. 
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2.1 Data preconditioning 

Before performing a statistical or machine-learning analysis, both the input and output data 

need to be preconditioned. Let us represent the feature vectors x (column matrices in Matlab) by 

transposed rows of data matrix X. For example, the dataset in chapter 5 consists of 692 vectors xi 

in a 25-dimensional attribute space, with i = 1, … , 692, and therefore X is a 69225 matrix. The 

most common preconditioning method consists in applying the Z-score transform to the rows of 

this matrix by relation ( )z x  = − , where µ is the mean and σ is the standard deviation 

(Haykin, 2009). The jth component (attribute) of 𝑖𝑡ℎ vector equals ( )i ijj
X=x . For data with zero 

mean 0=x , the covariance of the jth and kth attributes equal ( ) ( )covx ij ikik ik
X X =C X  where 

summation over repeated indices (i) is implied. In matrix notation, this expression is 
T

x =C X X , 

where ‘T’ denotes the matrix transpose. 

My first goal in data preconditioning is to transform the data attributes (features) X into 

new attributes X which are uncorrelated and possess unit variance. This transformation can be 

represented by matrix multiplication of each row of matrix X with some matrix M as 

                                                          =X XM .           (2.1) 

The multiplication needs to be on the right side of X, so that each row is multiplied by M 

independently. Note that if dimensionality reduction is desired, matrix M may have fewer columns 

than rows (also the number of columns in X). After the transformation, the covariance matrix 

equals: 

                                     ( )
TT T

x x
  = = =C X X XM XM M C M .        (2.2) 

To determine matrix M, let us first determine the normalized eigenvectors en and the 

corresponding eigenvalues 𝜎𝑛
2 of the data covariance matrix 𝐂𝑥 in Equation (2.23). If some of the 

values of 𝜎𝑛
2 are considered small and insignificant for subsequent analysis, these eigenvectors can 

be excluded. Let us denote N the number of significant eigenvectors en. Using its eigenvectors, the 

square, symmetric, and positive-definite matrix 𝐂𝑥 can be represented by the sum as 
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                                                       2

1

N
T

x n n n

n


=

= C e e .                (2.3) 

Using the eigenvectors of matrix 𝐂𝑥, let us define the 𝑛𝑡ℎ new attribute (feature) as 

projection of the data onto the eigenvector 𝐞𝐧 divided by the corresponding n: 𝑥𝑛
′ =

𝒙𝑇𝒆𝑛

𝜎𝑛
. This 

relation means that the transformation matrix M in Equation (2.1) consists of N columns, with nth 

column being the scaled eigenvector 
𝒆𝑛

𝜎𝑛
. 

Using equations (2.2) and (2.3), the covariance between the kth and lth transformed 

attributes equals 

                             ( ) 2

'

1

T TN
T k n n l

x x n klkl
n k l

 
 =

= = =
e e e e

C M C M   (2.4) 

(Kronecker delta, equal one when k = l and zero otherwise), which means that x =C I  as expected. 

Therefore, after this transformation, the new set of attributes are zero-mean, normalized, and 

mutually uncorrelated. 

2.2 Model-based estimation of acoustic impedance 

The acoustic impedance (AI) is the most important attribute derived from reflection seismic 

records and used in many types of geological and geophysical interpretation of reflection seismic 

data.  At normal incidence, the AI is usually denoted by Z and given by equation 

                                                           Z V= , (2.5) 

where  is the mass density and V is the P-wave velocity. Because the impedance is proportional 

to both  and V, it reduces with increasing porosity (decrease of ) and increases with stiffness of 

the rock. For example, for P waves, the velocity depends on the elastic moduli  and  as 

( )2V   = + , and therefore the AI increases with both moduli and density: ( )2Z   = +  

(Lindseth, 1979). 

Because of such key importance of the AI, numerous studies analyse its properties and 

invert it from seismic data. Lindseth (1979) and Oldenburg et al (1983) gave the first inversions 
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of AI in a layered medium from stacked seismic data. These authors pointed out the fundamental 

uncertainty of this inverse (described below) and suggested practical approaches to its correction 

by interpretive analysis. Latimer et al. (2000) reviewed many practices of using AI in seismic 

interpretations. Connoly (1999) proposed an extension of the AI concept to offset (pre-stack) 

seismic data, which is called the elastic impedance (EI). Although the EI is not as rigorous physical 

property as the normal-incidence AI, Connoly (1999) and Whitcombe et al. (2002) showed that 

the offset dependencies of this quantity contain important indicators of fluid content within 

reservoirs. Multiple forms of AI and EI inversion approaches exist, most notably the ‘colored’ 

method by Lancaster and Whitcombe (2000), log-calibration (SILC) inversion by Morozov and 

Ma (2009), and the ray-path EI inversion by Santos and Tygel (2004). Mallick (1995) started a 

broad group of AI inversions using stochastic models and algorithms. In addition, a broad new 

area of research focuses on AI inversions for non-stationary (time- and depth-variant) source 

waveforms in the presence of seismic attenuation (e.g., Zou et al., 2022). 

All of the above applications of the AI or EI consider the same general problem, which I 

explain below on the example of the normal-incidence post-stack AI. In a layered subsurface, the 

waves travel in the vertical direction, and the recorded P-wave reflection amplitude from the ith 

layer boundary is related to the impedance ratio across the boundary as  

1

1

1

1

i i
i

i i

Z Z
r

Z Z

−

−

−
=

+
,   (2.6) 

where Zi and Zi-1 are the impedances below and above the boundary, respectively. Using eq. (2.6), 

the impedance time series can be obtained starting from Z = Z0 at the top of the model (i = 0) and 

proceeding downward: 

                                                      
1

1

1

i
i i

i

r
Z Z

r
−

+
=

−
. (2.7) 

This inversion formula is known as the recursive AI inverse (Lindseth, 1979). Representing the 

time series Zi and ri by vectors Z and r, respectively, this formula can be written as B= +Z Z Hr , 

where H is a matrix implementing recursive eq. (2.7), and ZB is the background impedance model. 

The reflectivities ri are related to the data values ui in stacked seismic records by the source 

wavelet wi which also contains a scaling factor arising from seismic processing:  
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                                                          ( )* ii
w r u= ,  (2.8) 

where ‘*’ denotes the convolution operation for time series. In matrix form, this relation also 

becomes matrix multiplication: 

                                                             =Wr u .   (2.9) 

The wavelet matrix W is difficult to determine accurately but it is constant or only 

smoothly variable for different layer numbers (time samples in a seismic trace) i. Thus, the 

inversion for AI consists in solving equations and (2.6) and (2.7) for Zi at each sample i. The 

outcome of this inversion is the physical property Z = V of each layer, which should be directly 

related to the rock type, porosity, fluid content, etc. By contrast, the measured reflection amplitudes 

ui only refer to boundaries between different layers, and they contain an arbitrary scaling and 

effects of wavelet shape. 

Inversion of eqs. (2.6) and (2.7) for Zi is nonunique and often represents a complex 

procedure. The difficulties of this procedure are: 1) in the need to simultaneously estimate the 

wavelet wi, 2) in the invariance of these equations with respect to arbitrary scaling of impedance 

i iZ cZ→ , 3) in the lack of low-frequency signal in seismic data ui, which causes an uncertainty in 

the background model ZB, and 4) in the effects of noise in the data. The many AI and EI inversion 

methods differ in the ways of treating these issues. Morozov and Ma (2009) argued that since the 

AI inversion problem is inherently under-determined (Menke, 1984; Morozov, 2021), the inverse 

typically fits the reflectivity data nearly accurately. Therefore, the quality of the result should be 

judged not by the data fit but by satisfying the criteria of geological interpretation.   

To obtain geologically meaningful results also broadly accepted in the industry, I use the 

constrained least-squares inversion method included in the Hampson-Russell software STRATA. 

In this method, the wavelet wi and the background impedance time series ZB are estimated first, 

and the layered model beneath a given point is parameterized by reflectivity values ri for all i. 

These time series are represented by matrix W (wavelet) and vectors ZB and r, respectively. Then, 

the reflectivity r is obtained by minimizing the cost function consisting of two terms 

(Menke, 1984): 

                    ( ) ( ) ( ) ( )( ) ( )1 11
T T

J w w= − − + − − −r L Hr L Hr u Wr u Wr , (2.10) 
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where u is the seismic time series, L is some prior (initial, low-frequency) model for the 

impedance, and 𝑤1 is a weight factor between 0 and 1. The low-frequency model L cannot be 

obtained from seismic data, and it has to be constructed based on geological and/or well-log 

considerations (Lindseth, 1979). The first term in this cost function penalizes deviations of 

predicted seismic-frequency impedance (Hr) from the prior model, and the second term penalizes 

deviations of the predicted reflection record (Wr) from the observed data u. If we set w1 = 0, it 

means that the prior model is not used. If we set w1 = 1, the inversion will attempt fitting only the 

prior model while ignoring the data. 

The solution r minimizing the cost function J(r) (eq. (2.10)) can be obtained from the 

requirement that at the optimum point, the gradient of J(r) equals zero: 
TJ  =r 0  (Menke, 1984). 

This equation gives 

                     ( ) ( )
1

1 1 1 11 1T T T Tw w w w
−

   = + − + −   r H H W W H L W u . (2.11) 

Using this r, the final AI model is obtained as = +Z L Hr (Russell and Hampson, 2006).  

Thus, the solution for AI depends not only on the data u but also on the low-frequency 

model L, wavelet W, and weight w1 with which these effects are intermixed. In addition, since 

seismic traces (u) always contain noise, the resulting model r is also affected by this noise. During 

the inversion analysis and testing, I compared different models for L and W and values of w1, and 

selected the best model based on the accuracy of the AI estimated near the wells. This accuracy 

was measured by the normalized correlation coefficient (R) calculated between the estimated and 

original acoustic impedances at the well locations (Haykin, 2009):  

xy

x y

Cov
R

 
= ,   (2.12) 

where Covxy is the covariance of the two variables (the estimated and well-log acoustic 

impedances), and 2

x  and 2

y are the variances of these variables. 
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2.3 Porosity estimation 

The total or effective porosity is another key petrophysical material property of great 

interest in reservoir studies. Porosity of the in-situ rock is routinely measured in various ways: 

using core samples in the laboratory; from well-log data, from interval velocities of seismic traces 

and from mathematical modelling (Willie et al., 1956). Well-log and core-sample observations 

yield high detail and spatial resolution of measurements, but they are only available at sparse 

locations. By contrast, seismic data allow obtaining continuous areal coverage between well 

locations. To obtain such coverage, one needs to find a combination of seismic attributes that can 

be calibrated at the wells and used as a proxy for porosity. 

From physical considerations, rock porosity is most sensitive to the acoustic impedance 

(AI), and therefore empirical relations are always sought between these quantities. The density of 

porous rock equals ( )1 s f   = − + , where s is the density of the solid matrix, f is the density 

of the pore fluid, and  is the porosity. The effect of porosity on the P-wave velocity is weaker, 

and it was estimated by a similar average of slownesses: ( )1 1 11 s fV V V − − −= − +  (Willie et 

al., 1956). From these relations, for different relations between s and f, and also Vs and Vf,, the 

logarithm of AI can be expected to linearly relate to ( )log 1 −    (Kumar et al., 2016): 

                                            
0log log log

1
Z Z b





 
 +  

− 
, (2.13) 

where logZ0 is the intercept and b < 0 is the slope of this dependence. An inverse of this relation 

gives a slightly nonlinear relation of  to Z. Verma and Biswal (2012) investigated similar 

empirical relations between porosity and the extended elastic impedance evaluated at nonzero 

source-receiver offsets in seismic data (Whitcombe et al., 2002). 

Based on near-linear empirical relations like eq. (2.13), Din and Hongbing (2019) and 

Ekone et al. (2020) created comprehensive models of hydrocarbon reservoirs using geostatistical 

methods such as cokriging, stochastic Gaussian simulations, and probabilistic neural networks. 

These methods allow making probabilistic estimates of reservoir porosities and their uncertainties 

from seismic and well-log data. 
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In this thesis, I also start by estimating a linear empirical approximation for porosity from 

seismic data but using not only AI but a several other seismic attributes. I use the multi-linear 

regression, which attempts presenting the desired outcome (porosity) as a linear combination of 

the input attributes. If we use Nf seismic features (columns of data matrix Xij) to estimate porosity φi 

at ith data point, we will have 

                                                        0= +y Xw w , (2.14) 

where w is a vector row of weights, w0 is the bias vector, and y is the vector of predicted porosity 

values at all n data points. If X and y represent the training dataset (seismic data near wells), then 

eq. (2.14) contains n equations for the unknown elements of w and w0. By convention in this thesis, 

I denote all these model variables by vector . Equations (2.14) can be solved for  in the least-

squares sense by minimizing the cost function  

2

1

1
( ) ( )

2

n

i i

i

J y
n


=

= −θ ,    (2.15) 

where φi is the observed data (porosity) and yi is the predicted value at sample i.  Methods of linear 

and nonlinear inversion are well known (Menke, 1984) and are not discussed in this thesis. 

With broad ranges of parameter variations such as porosity varying from 0.2 to 0.7 and AI 

values between 2500–6000 m/s·g/cm3, the relation between  and Z may become significantly 

nonlinear (Kushwaha et al., 2020). Kushwaha et al. (2020) used a small three-layer feed-forward 

to model such nonlinear porosity-AI relations. In this thesis, I also utilize an ANN to derive 

nonlinear predictions of a porosity volume but again combining the AI with multiple other seismic 

attributes. I tried several algorithms called the Radial Basis Function Network (RBFN), multi-layer 

feed-forward network (MLFN), and Generalized Regression Neural Network (GRNN) 

(Haykin, 2009). These algorithms are outlined in the next section. As described in chapter 4, the 

best results for porosity were obtained by using the GRNN.  

2.4 Prediction  

To create a predictive model that would fit the training data sufficiently accurately and 

produce predictor values normalized within the range [0,1], nonlinear and sufficiently flexible 
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forward models are needed. Such nonlinear models can be provided by the logistic regression and 

neural-network approaches. However, linear inverse lies at the core of all these approaches, and it 

is also useful for preforming initial feasibility studies and finding starting models for nonlinear 

inversions. In the following subsections, I briefly describe the linear and nonlinear approaches to 

property prediction used in this project.  

2.4.1 Linear inverse 

The simplest predictor that can be used for property prediction is a linear combination of 

the features with bias (intercept) (Haykin, 2009). The vector of predictors for property y (for 

example, porosity or probability of finding the kth class of seismic facies) is sought in the form of 

a linear combination of the data with additional bias terms: 

       nb= +y Xw I ,   (2.16) 

where n is the number of data samples in the training set, X is the data (feature) matrix, w is the 

desired vector of weights, b is the bias value, and In denotes a column of n values equal one. This 

equation can be rewritten as a linear problem: 

=y Km ,   (2.17) 

where  n=K X I  is the kernel matrix and the model vector is 
b

 
=  

 

w
m . The least-squares 

solution is obtained as (Menke, 1984) 

( )
1

T T
−

=m K K K y .   (2.18) 

After mk is obtained, the predictors for any data point can be obtained by the matrix multiplication 

in eq. (2.17).  

2.4.2 Logistic regression 

Logistic regression is a popular method for mapping input feature vectors x onto scalar 

outputs y (x → y) so that the values of y are within the normalized range [0,1] (Haykin, 2009). The 

function y = h(x) is called the hypothesis. In contrast to the general parameter prediction where 
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h(x) is some deterministic function of x (section 2.2), in logistic regression, the hypothesis has a 

different meaning. This meaning consists in viewing the rows in data matrix as occurrences of a 

certain event. For a classification problem, this event may consist in the data point belonging to 

the kth class. The logistic regression of the dataset obtains a directional vector  in the space of 

features such that if we measure the dot product of x with : x = Tx, then the probability of 

finding this event in area x   equals some cumulative probability function P( ). As a probability 

function, P( ) must tend to zero for  → -∞ and to one for  → +∞.  The usual practical choice 

for P( ) is the ‘logistic’, or sigmoid function (Figure 2-1):  

 
1

( )
1 z

g z
e−

=
+

.                                                          (2.19) 

Therefore, the hypothesis function for logistic regression is a sigmoid-shaped transformation of 

the linear projection of x onto vector : 

( ) ( )x θ x
Th g = .                                                      (2.20) 

 

Figure 2-1: Sigmoid function 

To perform logistic regression for a binary classification, we need to use nonlinear 

optimization to make the elements of vector θ reach the global minimum of the following cost 

function. The cost function is given by a sum of two terms: ( ) ( ) ( )0 1J J J= +θ θ θ , where J0 and J1 
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are contributions from all data points with y = 1 (occurrences of the event) and y = 0 (non-

occurrences) respectively: 

                                               0

1 0

1
( ) log ( )

i

n
i

i y

J h
n


= =

 = −  θ x ,                                              (2.21) 

                                                1

1 1

1
( ) log 1 ( )

i

n
i

i y

J h
n


= =

 = − − θ x ,  (2.22) 

where log means logarithm and n is the total number of data samples. This minimization of the 

negative sum of logarithms of probabilities corresponds to finding the distribution with largest 

entropy. The sum of J0 and J1 can be written as one summation over all data as 

1

1
( ) log( ( )) (1 ) log(1 ( ))

n
i i i i

i

J y h y h
n

 
=

 = − + − − θ x x .                       (2.23) 

The algorithms for finding the minimum of J() often require setting starting models and 

additional parameters. A good starting model for  can be obtained by fitting the same data with a 

linear inverse (subsection 2.4.1). Iterative algorithms such as gradient descent are commonly used 

for finding a global minimum of a function. Such algorithms usually contain an adjustable 

parameter  which controls the learning rate (size of update made during one iteration). Since the 

direction of the update and curvature of the cost function is constantly changing, with larger 

learning rate, we may miss the global minimum, and the process of convergence to the global 

minimum may become oscillatory or completely unstable. Small values of parameter  < 1 reduce 

the steps and slow the inversion down, but the convergence to the minimum of J() becomes more 

stable. The most commonly used rates range from  = 0.001 to 0.1. However, generally, the value 

of  should not affect the final solution. 

In addition to , another algorithm-related parameter  may be required for finding the 

optimal . As with other inverse problems, overfitting may occur from logistic regression 

(Haykin, 2009). Overfitting means producing accurate predictions for the examples in the training 

set but capturing too much of their detail. The model may contain high variability (be ‘rough’) and 

not generalizing well enough to make proper predictions on new (previously unseen) examples. 

This problem arises whenever there is a large number of features and limited input data in the 
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training dataset, i.e. the inverse problem is not very strongly determined. To solve the problem of 

overfitting, I use a procedure called regularization. The purpose of regularization is to keep fitting 

all the features but also to try reducing the values of parameters j themselves. Smaller values of 

j give larger gradient of the logistic function (Figure 2-1) and consequently sharper transitions 

between classes in the feature space. In Tikhonov regularization, this is achieved by adding the 

squared length of the model vector  to the cost function (Menke, 1984; Haykin, 2009): 

1
( ) log( ) (1 ) log(1 )

2

T T TJ
n n


 = − − − − + θ y h y h θ θ .                               (2.24) 

With larger values of , the regression approximates the probability function P(y) less accurately 

but with smaller average values of j, and the model is ‘smoother’. However, regularization also 

creates problems of its own: 1) it introduces additional parameters like  which have little physical 

meaning and may be difficult to set, 2) it introduces subjectivity of the selected form of 

regularization terms and ‘prior’ models, and 3) it reduces the accuracy of data prediction. 

Similarly, to , parameter  should be selected so that it does not affect the data prediction 

significantly. 

2.4.3 Feed-forward Artificial Neural Network 

Logistic regression can only be applied to hypotheses in the form of a single transformation 

of a linear function (eq. (2.20)). However, for more complex applications, nonlinear relations 

between multiple inputs xi and outputs yj are required. A general computational model for such 

relations simulating the memory and decision-making processes of a network of neurons was 

introduced in bioinformatics by McCulloch and Pitts (1943). The nonlinear transformation →x y  

depends on the connections between the neurons and is usually depicted graphically 

(Haykin, 2009). For example, Figure 2-2 shows a multi-layer feed-forward perceptron ANN 

(MLFN), in which the neurons (dots) are arranged into layers (yellow boxes), and the evaluation 

of the response is performed by a ’propagation’ process from the input to the output (left to right 

in Figure 2-2). Layer A(1) is the input layer, A(2) and A(3) are called hidden layers, and A(4) is the 

output layer. This diagram represents a mathematical relation →x y  evaluated by a series of 

matrix multiplications and nonlinear functions:                         
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Figure 2-2: A general multi-layer feed-forward artificial neural network (ANN, MLFN) with four layers 

representing eqs. (2.23) (modified after Morozov (2021)). Yellow boxes labeled A(i) are the 

layers, black dots are the neurons (layer elements) containing the activation functions and bias 

terms b(i)), and red lines are the ANN weights W(i). 

In these equations, x(i) and y(i) denote the inputs and outputs of the ith layer, functions y = A(i)(x) 

represent the nonlinear elements, matrices W(i) are the ANN weights (red lines in Figure 2-2), and 

terms b(i) are called biases. By adding a constant input equal one into each vector x(i), the biases 

can be viewed as elements of weight matrices. In geophysical applications (e.g., Kushwaha et 

al., 2020), functions A(i)(x) are usually taken in the form of a smooth sigmoid function (Figure 2-1) 

applied to each element of x independently, or softmax function using all neurons in an ANN layer 

simultaneously. The softwax function outputs value from the ith output is 
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where i = 1,…K, K is the total number of outputs, xi represents the values from the neurons of the 

output layer,  and the exponentials act as the non-linear function. Because 
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  and yi → 1 
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when the ith input is much larger than all others, values yi can be interpreted as class probabilities. 

Thus, for the 𝑖𝑡ℎ estimator, the softmax function normalizes the outputs in the same way as 

eq. (2.20). 

The weights and biases comprise the information about mapping →x y  stored in the 

selected ANN model. These parameters are determined by ‘training’ the ANN to reproduce a set 

of known examples (x,y). Denoting the vector of all model parameter  and the mapping function 

(eq. 2.23) by y(x), vector  is obtained by minimizing the misfit of the training data (cost function) 

                           ( ) ( ) ( )
1
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i i i i

i
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 
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= − −      θ y y x y y x ,  (2.27) 

where i = 1,…n denotes the ith training data point. In many cases (particularly with multiple and 

large hidden layers as in the example in Figure 2-2), the inverse for  becomes nonunique or 

unstable, and the training process is prone of overfitting. To control overfitting, regularization 

terms are added as in eq. (2.24): 
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The above relations for cost functions are useful for predicting continuous output values, 

such as rock porosity in chapter 4. For classification problems such as considered in chapters 5 

and 6, the training data yi are binary vectors consisting of values of 0 or 1. In such cases, quantities 

y(x) predicted by the ANN are interpreted as probabilities of observing the different classes, and 

the cost function is modified by taking logarithms as in logistic regression (eq. (2.24)): 
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where k denotes the class number (k = 1,2, 3, 4 in chapter 5). As above, careful analysis should be 

performed to search for the optimum sizes of the hidden layers (one hidden layer is used in 

chapters 5 and 6) and the regularization factor .  

Minimization of cost functions (2.22) or (2.26) is a nonlinear inverse problem, which can 

be solved by iterative linearization methods (Menke, 1984). Due to the usually (moderately) large 

number of weights, backpropagation, Newton, or conjugate-gradient algorithms are commonly 
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used (e.g., Kelley, 1960; Werbos, 1982). In these methods, derivatives of the cost function with 

respect to parameters  are evaluated and the weights and biases are updated by proceeding from 

the output of the network to its input (back-propagation). By iteratively repeating these updates 

with different strategies for selecting update directions, the desired solution  is obtained, and the 

ANN training is thereby completed. 

Once all weights and biases in the network are determined, eqs. (2.23) (forward 

propagation) can be used for predicting continuous geophysical properties (chapter 4) or 

probabilities of classes (chapters 5 and 6) using the data not included in the training datasets. The 

prediction process represents an application of the trained neural network to new samples using 

the forward algorithm.  

2.4.4 Other types of neural networks 

In this section, I outline two other algorithms used in chapters 4 and 5: the Radial Basis 

Function Network (RBFN) and the Generalized Regression Neural Network (GRNN), also known 

as the Probabilistic Neural Network (PNN). In the machine-learning literature, mathematical 

expressions for any functions y(x) by using summations, multiplications, and nonlinear 

transformations (as in eq. (2.25)) are often referred to as neural networks (e.g., Haykin, 2009). The 

RBFNs and the GRNNs are of this kind. However, these expressions are based on pure spatial 

relations and do not employ the topology of connections between neurons. In other subject areas, 

such representations of functions y(x) are known as interpolation or smoothing kernels, kriging 

and cokriging, basis functions, solution functions, shape functions, or finite elements (e.g., 

Polyanin and Manzhirov, 2007). 

Let us consider an input set of n samples xi (i = 1,..n) in an M-dimensional space of 

attributes, which are, for example, geophysical log values in a borehole. Let us assume that we 

also have a function ( )i if y=x  (e.g., porosity) measured at these samples, and our goal is to 

predict this function at an arbitrary other point at which the attributes equal x. In basis-function 

methods, the output is sought as a weighted sum of some basis functions k(x) (termed activation 

functions in machine learning):  
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where Wk  are the weights. 

The difference between the RBFN and GRNN is in the selection of the basis functions and 

weights. In RBFN, Gaussian functions of Euclidean distances between point x and a set of K basis 

centers k (k = 1,…K) are used:  
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where  is the standard deviation of the distribution of attributes, or smoothing parameter. A small 

number of basis centers is used ( K n ), and these centers and parameter  are determined using 

some unsupervised clustering algorithm. After locating the clusters, weights Wk are found by 

inverting equations ( )i if y=x  for the known (training) data by the least-squares method.  

The RBFN approach is appropriate for large training datasets in which closely spaced 

points may contain noise or conflicting data. By using clusters as basis centers, a smaller set of 

significant features k is unidentified. These basis centers are spatially separated (in the attribute 

space). 

In contrast to RBFN, the GRNN algorithm belongs to the Bayesian (probabilistic) Neural 

Networks, which are feed-forward networks without backpropagation, i.e., without using inverse 

algorithms for training. In the GRNN, each training data point is used as a basis-function center (

k k=μ x , and K n= ) and training data are used as weights: 
k kW y= . The basis functions are 

obtained from Gaussian functions in eq. (2.31) by normalizing them so that ( )
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https://www.sciencedirect.com/topics/engineering/clustering-algorithm


22 

 

Thus, the predictions by a RBFN or GRNN can be viewed as spatial smoothing of the data 

(eq. 2.30) by using kernels (2.31) or (2.32), respectively. In both of these methods, the data at the 

training samples yi are not predicted accurately, but the general variation of the data is captured. 

For application of both of these methods, it is important to carefully estimate parameter , which 

should be close to the characteristic distance between clusters in the data. 

2.5 Classification 

The key goal of most applications in this thesis consists in obtaining a discrete 

classification of the dataset, i.e. assigning an integer class number to each data point. Such 

assignment can be done based on any type of predictors described in the preceding sections. To 

classify the data into Nc classes, we need to split the training dataset into Nc subsets and construct 

Nc predictors fj(x). In most applications, the values of fk(x) will lie within the interval [0,1]. When 

training the algorithm or constructing another model for the kth predictor, we need to specify the 

target output for the ith data point equal fi = 1 if the point belongs to kth class and fi = 0 otherwise. 

After training or inversion, the model will predict larger values fj(xi) for feature vectors xi 

belonging to class j. Using these outputs, the predictors can be normalized as 
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f x
=

=
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.                                                                 (2.33)         

These normalized predictors have a sum of one, and consequently pk(x) can be interpreted as 

probabilities of finding class k at point x. Note that this is the same normalization as used, for 

example, in the PNN method (section 2.3). In ANNs using the softmax activation function 

(eq. (2.26)), this normalization is included in the construction of the algorithm. 

Based on the normalized predictors (2.33), the classification decision appears 

straightforward: for a feature vector x, class k with the largest pk(x) should be selected 

(Haykin, 2009). Let us denote the corresponding highest pk by Pmax. However, clearly, this 

selection would still have a low degree of statistical confidence if other values of pj(x) are close to 

the selected one. Therefore, I include not only the most likely class label k but also the estimated 

probability pk(x) in the outputs of the classification procedure. In this way, I produce images of the 
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estimated probability of each selected class for each sample of the subsurface, and images of 

confidence of the classification (next subsection). 

With regard to their use for classification, each of the predictor models considered in the 

preceding section has advantages and disadvantages. Because of its form and relatively small 

number of model parameters, linear inverse is simple, well-constrained, and efficient, but it usually 

results in high fractional classification errors. The fractional classification error shows the 

percentage of samples whose classification values were incorrectly predicted. The values of 

predictors may also become negative or larger than one, which makes it difficult to interpret them 

as estimates of class probability. Therefore, this method is generally not a proper technique for 

final classification of the data. However, this approach often captures the key relationships within 

the data. Linear prediction is also useful for forming starting and prior models for nonlinear 

classification. 

The advantage of using ANN predictors for classification is in their nonlinearity, 

universality, and flexibility. Numerous ANN architectures can be used, with different numbers of 

layers, neurons, and shapes of the activation functions. With larger numbers of ANN weights and 

bias terms, training can be made more accurate. At the same time, the universality of the ANN 

model is also its disadvantage. The predictors are obtained by pure empirical fitting of the training 

data x consisting of zeros and ones, and the resulting values cannot be rigorously viewed as 

probabilities of the classes. With large numbers of ANN weights, the ANN can overfit the training 

data and allow data noise to influence the model. 

If using logistic regression for obtaining class predictors, its advantage is in a clear physical 

meaning of the output quantity as the probability of finding the specified class k at point (feature 

set) x in the data. This probability is defined within the expected range [0,1], although 

unfortunately, the different classes do not exclude each other. A disadvantage of the standard 

logistic regression approach is in limited number of variable parameters and consequently limited 

accuracy of data fitting. In one pass of logistic regression, the probability of only one class is 

estimated. However, to solve for a multiple classification, we can choose one class k, consider all 

other classes as non-occurrences of k, and estimate the probability of class k as described above. 

This method is known as One-versus-All classification. After repeating this estimation for each 

class k, their predictors fk(x) can be combined by eq. (2.33).  
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Thus, a large number of choices for selecting prediction and/or classification algorithms is 

available, and the appropriate algorithm should be selected by trials and quality control. However, 

selection of the criteria of this model quality control may become a nontrivial issue in geophysical 

applications.  

2.5.1 Probability and confidence of the predicted class 

By using eq. (2.33), outputs of any ANN or similar prediction algorithms can be normalized 

into the range [0.1], which allows them to be interpreted as estimated probabilities (likelihoods) of 

finding these classes at a given data point x (Haykin, 2009). In many ANN algorithms, the softmax 

activation function (eq. (2.26)) is available, which performs this normalization automatically.  

In many applications, it is useful to output not only the resulting class label i but also some 

measure of statistical confidence of this classification. For example, when using attributes not 

allowing differentiation between the classes, near-random values of some classes would be 

reported, but the confidence of these identifications should be low. Unfortunately, this issue of 

confidence is usually not considered in conventional approaches to AI classifications, but it is 

important for reservoir characterization.  

Denoting the measure of classification confidence by C(x), two useful expressions for it 

can be proposed using the values of normalized estimators  pi in equation (2.33). First, we can use 

the value of Pmax itself:  

max .C P=                                                        (2.34) 

This measure would indicate the inferred probability of observing the class i reported for data 

point x. Values of C close to one correspond to high confidence of identification of class i 

compared to all other classes, and values close to 1/K would mean low confidence. 

In addition to pk(x) for the selected class, another measure of confidence can be obtained 

by taking the ratio of the largest pk to the second largest one:  

max

max

.
next

p
C

p
=                                                          (2.35) 

This value is always greater or equal one, and larger values indicate lower ambiguity of the 
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classification, i.e., situations when class k is more likely that the next competing alternative. 

Using the probability of each prediction (2.33) or its confidence levels (2.34) and (2.35), I 

also filter the classification seismic sections to only show the zones with desired minimum 

confidence (chapter 5). 

2.6 Construction of optimal features 

As shown above, the accuracy and stability of classification critically depends on the 

selection of input features. In seismic data interpretation, a vast number of input time series 

(seismic attributes) is available, and selection of an optimal subset of them is a nontrivial task. In 

engineering and machine-learning applications, this selection optimal attributes (feature reduction) 

is performed by analyzing the statistical distribution of the data (Haykin, 2009; section 2.1 in this 

thesis). In this section, I propose an improved approach to this selection additionally utilizing the 

relations between the expected classes in the training dataset. The idea of this approach is in 

constructing combinations of input attributes which produce the largest validation scores in 

classification. In this sense, the procedure is analogous to the iterative cross-validation used for 

determining the optimum inputs in PNN-based parameter predictions (section 2.3). 

Denoting the number of classes K and the number of features Nf, the proposed procedure 

of optimal feature selection is as follows:  

1) Create up to Nf binary classifications of the data. In the first k = 1…K of these 

classifications, include one class k (assign to it a target value of one) against all 

other classes (target value zero). For the next k = (Nc + 1)…2K classifications, 

remove the kth class and repeat the same procedure for the remaining K – 1 classes. 

Continue this procedure until a sufficient number of binary classifications is 

obtained. 

2) Using logistic regression, calculate probabilities pk for each of the binary 

classifications above. Sort the values of pk in descending order. These values of k 

give the combinations of the original classes most classifiable by the training data.  

3) In the kth logistic regression, parameters vector k is returned. This vector gives the 

direction in the feature space in which the kth binary classification is most effective. 
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By evaluating the matrix product k k=u Xθ  (where X is the data matrix), feature 

vectors uk are obtained. Finally, by orthogonalizing and normalizing these vectors 

(section 2.1), the desired kth optimal attribute xk is obtained. 

The above procedure outputs a set of features that are mutually uncorrelated, normalized, 

and optimized by their ability to differentiate between different combinations of classes. By 

selecting a subset of these features with pk exceeding a certain threshold, feature selection 

(dimensionality reduction) can be performed.  

 

 



 

 

3. CHAPTER 3: Data and Geology of Mansuri Oil Field  

In this chapter, I describe the geological setting, data, previous results, and goals of the first 

study of this thesis, focusing on a characterization of reservoir quality in Mansuri oil field in Iran. 

This field was discovered in 1963 using a 2-D seismic exploration project. From 1986 to 2005, 65 

wells were drilled using only regional geology studies and previous well geological information. 

In a previous study (Zahmatekesh et al., 2021), I with co-authors developed an initial classification 

of the reservoir. In this thesis, I keep this basic classification but improve and extend it using the 

methods described in chapter 2. 

In section 3.1, I give an overview of the geology and results of stratigraphic interpretations 

of the Mansuri Oilfield in Iran, history of the reservoir, and petrophysical data. In section 3.2, the 

seismic dataset is described. In section 3.3, I overview the well-log geophysical data and describe 

the previous seismic interpretation of the study area. Further analysis of these datasets will be 

conducted in chapters 4 and 5.  

3.1 Geology of the study area 

In this study, I aim at performing reservoir characterization using seismic facies 

classification on Asmari Formation in the Mansuri oil field, located in southwest Iran and north 

Dezful embayment (Figure 3-1). This formation is considered the main oil-producing reservoir 

unit in Iran. 

The Asmari formation mainly consists of interbedded carbonates, sandstones, and shales 

of the Oligocene to Miocene age. In Dezful Embayment of the Zagros fold belt, oil and gas are 

trapped in Asmari Formation in asymmetrical anticlines sealed by evaporites of the overlying 

Gachsaran Formation (Dashti and Sfidari, 2016; Zahmatkesh et al., 2017; Abdizadeh et al., 2017).  

The Mansuri Asmari reservoir consists of two-thirds of limestones and dolomites and one-

third of clastic sediments. The production has been and is still mainly from the sandstones. Based 

on well-core descriptions and wireline logs, the Asmari reservoir of Mansuri oil field is subdivided 

into eight zones indicated in Figure 3-2. In this figure, sandstones are shown by yellow color, and 

pink and cyan colors show carbonites. Among the eight zones, carbonates are dominant in zones 
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1, 6, 7, and 8, and other zones contain extensive sandstones. Thus, beneath the first zone which 

contains carbonates, the first half of the Asmari reservoir mainly contains sandstones (yellow color 

in Figure 3-2). 

The stratigraphic zones in Figure 3-2 were obtained from three logged and cored key wells, 

along with additional 15 logged wells of the Mansuri oil field. After that, depth matching was 

performed, which included the correlation of the well-logs with the related core samples, thin-

section analysis, and permeability measurements in the samples. The petrophysical parameters 

selected from wireline logs consist of bulk density (denoted RHOB), sonic transit time (DT), 

compensated gamma-ray (GR), neutron porosity (NPHI) and effective porosity (PHIE) (Figure 

3-2). These well-logs parameters are directly related to reservoir quality and reveal the reservoir 

lithology. 

 

Figure 3-1: a) Regional location map of the Mansuri oil field (red box in (a)) in southwestern Iran. 

The large and important Tertiary and Cenomanian oil fields are also shown in the region. 

b) Time structure map (two-way time) of the Asmari Formation (Oligo-Miocene) in the 

study. Well locations are spotted as small circles with plus sign. 
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The petrophysical classification which was developed in a previous study (Zahmatkesh et 

al., 2021) and further improved in this thesis (chapter 5) is based on the concept of electrofacies. 

One group of electrofacies represents a cluster of similar well-log measurements, demonstrating 

the physical and chemical characteristics of specific rocks and fluids involved in the volume. In 

addition, electrofacies need to be calibrated based on the laboratory analysis of the core plugs to 

confirm their geological consistency.  

The principal use of electrofacies consists in their use as known labels for training machine 

learning algorithms to predict the geological (or reservoir) facies through the oil field, in areas 

where the core samples are unavailable. The importance of this concept consists in its being a link 

between pure numerical geophysical measurements in the well and the geological, petrophysical, 

and economic properties of the reservoir.  

After calibrating the well logs using core-sample and petrophysical data and merging some 

electrofacies due to sparse distribution in the studied wells, the final electrofacies in the Asmari 

reservoir were subdivided into four subfacies, or classes denoted EF1 through EF4. Among these 

electrofacies, the first two classes are related to sandstone rocks (EF1 and EF2), and classes EF3 

and EF4 are related to limestone rocks (Figure 3-3). 

Zones with high permeability and high porosity are usually considered as having good 

reservoir quality. Therefore, electrofacies related to high-reservoir quality rocks should show a 

lower gamma-ray, higher neutron porosity, lower density, and higher sonic transit time (i.e., lower 

seismic-wave velocity). Thus, classes EF1 and FF3 contain rocks with the best reservoir quality, 

EF2 has a medium reservoir quality, and class EF4 with low porosity and high percentages of shale 

considered as non-reservoir (Figure 3-3; Zahmatkesh et al., 2021). 

Since core data analysis, thin-section studies and petrophysical parameters were evaluated 

for each of the four electrofacies, we have an almost complete lithological information about each 

of them (Zahmatkesh et al., 2021). Class EF1 includes unconsolidated channel sandstones and 

medium to coarse-grained sandstones with dolomitic cement, in which interparticle porosity was 

regarded as the predominant pore type. Class EF2 included fine to very fine-grained argillaceous 

or dolomitic sandstones whose interparticle porosity was partially impeded by dolomitic cement  
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Figure 3-2: Lithology or stratigraphy log in six vertical wells in the studied area. Z_1 is the top and 

Pb is the bottom of the reservoir. Reservoir zones are shown in the left and right side of 

figure. 
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or clay matrix. Class EF3 is characterized by vuggy and intercrystalline porosity, including 

dolomitic skeletal packstone and grainstone. Finally, the carbonate samples of mudstone with 

microporosity and low reservoir quality were associated with the non-reservoir class EF4.  shows 

the four classes of electrofacies and their characteristic porosity, density, gamma-ray wireline logs, 

lithology types, and examples of thin sections. Thus, the electrofacies are also significantly distinct 

by their lithologies, structure of the matrix, grain sizes, types of porosity, depositional textures, 

and also the characteristic values of some wireline logs. 

The lithology log consists of several lithologies such as anhydride, shale, sandstone, calcite 

and dolomite (Figure 3-2). Sandstone, dolomite and calcite are dominant lithologies in the Asmari 

reservoir, which means that it can be subdivided into two primary lithologies: sandstone and 

carbonate. The sandstone compartments of the reservoir can be further subdivided into pure 

sandstone and sandstone with shale content. The sandstone layers contaminated with shale have 

poorer reservoir quality, with low porosity and high acoustic impedance. Carbonate rocks within 

the reservoir also have different reservoir qualities depending on calcite or dolomite being 

dominant, and the amount of shale content.  

The electrofacies classes in this study give information about the lithology of each class, 

reservoir quality and also the specific type of porosity. Thus, the prior study was carried out, and 

electrofacies obtained from calibrating the well-logs and core and petrophysical data can be 

divided into six subfacies which contain information about the size of the grains, rock types, 

lithology, porosity type, matrix, depositional texture, reservoir quality and the specific wireline 

Figure 3-3: Final electrofacies model and histograms of wireline log values in Asmari reservoir, 

Mansuri field. The green line is the normal density function. In each histogram, the Y axis 

shows the frequency and the X axis the wireline logs values: PHIE = effective porosity; 

ROHB = bulk density; DT = sonic transit time; NPHI = Neutron porosity; 

CGR = compensated gamma-ray. 



32 

 

log values (Figure 3-4). Then, electrofacies 3 and 6 with low distribution in the studied wells were 

combined with facies 2 and 5, respectively.  

 

Figure 3-4: Well-log tracks for Asmari reservoir interval. From left to right: track 1: depth; track 2: 

spectral gamma ray and compensated gamma ray; track 3: photoelectric factor (PEF), bulk 

density (RHOB), and neutron porosity (NPHI); track 4: effective porosity (PHIE); track 5: 

estimates of volumetric concentrations of shale, calcite, dolomite, sand and anhydrite; track 

6: electrofacies rock types (legend); track 7: thin section photomicrographs showing the 

main pore types and rock fabrics in each reservoir electrofacies 

 EF1 

EF6 

EF5 

EF4 

EF3 

EF2 
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3.2 Seismic data 

The 3-D seismic reflection dataset was provided by the National Iranian Oil Company. The 

dataset also included a set of well logs. The seismic acquisition was performed in 2005, with the 

main goal of identifying the fractures within reservoir, estimating its quality, and recommending 

targets for future drilling. Seismic acquisition parameters of this survey are presented in Table 3.1. 

Two source types (Vibroseis and dynamite) were used depending on the topography and seismic 

operation challenges. After processing the seismic data, a 3-D stacked seismic volume with 2040 

inlines and 550 cross-lines was obtained.  

Figure 3-5 shows an inline seismic section with the interpreted horizons. As you can see 

the structure of this oil field is gentle with asymmetric anticline.  

Table 3.1: Seismic acquisition parameters. 

PATCH GEOMETRY 

Receiver group interval 50 m 

Receiver line interval 400 m 

Source line interval 500 m 

Number of channels per receiver line 180 

Number of eecording lines 10 

In-line fold 9.0 

Cross-line fold 5.0 

Total fold 45 

Bin size 25m x 25m 

Full fold area (approx.) 421 

Steepest dips  10.0 

RECORDING PARAMETERS 

Number of seismic channels 1800 (Full spread) 

Record length 7.0 

Total number of shots 26368 

Sampling interval 2 ms 

Format SEG-D 

Low cut filter Out 

Anti alias filter 200Hz (0.8 Nyquist) Minimum Phase – Dynamite 

Zero Phase - Vibroseis 
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Figure 3-5: Interpreted seismic inline 500 of Mansuri oil field. At the top of Asmari formation is 

Gachsaran formation which is the most important cap rock of hydrocarbon reservoirs in Iran. 

The Asmari formation (As to Pb) is our studied reservoir is shown around 1500 ms to 2000 ms 

in the inset. 

3.3 Previous results and problems to address 

In the previous study by (Zahmatekesh et al., 2021), I used supervised and unsupervised 

machine learning techniques to classify the Asmari reservoir into the four electrofacies classes 

EF1 to EF4 described above. I used seismic attributes, the principal-component analysis and a 

supervised ANN learning algorithm in commercial software Stratimagic by Emerson E&P 

Software, which yielded a high validation score of 68% in the quality control step. The result of 

this classification applied on the selected seismic line which goes through 9 wells, is shown in 
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Figure 3-6Figure 3-6. Wells “A” and “G” were blind wells, and they could be conceived as future 

wells in this oilfield which reasonably match the classification results in selected seismic section. 

These two wells were not used in the training step. 

Despite the high validation score and the classification generally perceived as successful, 

the results in Figure 3-6 Figure 3-6 still contain several issues of concern and questions: 

1) Lack of lateral continuity in the classification section, which makes it difficult to 

correlate it with the geological features within the reservoir. Usually, more continuous 

geological layers would be expected in an area with such gentle variation of 

stratigraphic layering (Figure 3-5).  

2) I would like to investigate whether using additional seismic attributes could improve 

the classification.  

3) At the same time, when using multiple input attributes, they must be carefully selected 

and preconditioned before training an ANN. The noisy appearance of the classification 

in Figure 3-6Figure 3-6 is likely due to the contributions from noise input attributes. 

In a previous study (Zahmatekesh et al., 2021), I used the conventional methods for 

attribute selection based on statistical data properties, such as covariances and 

 

Figure 3-6: Reservoir classification by Zahmatekesh et al., 2021) along a line passing through the 

boreholes. Well logs facies are inserted at the well locations in order to compare the actual 

well logs facies with the estimated facies adjacent to the well locations. Wells "A" and "G" 

are blind wells used for testing the accuracy of classification. 
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principal components. However, it appears that this procedure could be improved by 

making the selection of the attributes based not only on data but also on the desired 

classification. 

4) Different parts of the image are classified with variable levels of statistical confidence. 

For example, in areas where identification of class EF4 appears patchy (noisy), the 

probability of this class may be insignificantly greater than those of other classes.  

However, confidence levels are not visible in the conventional classification section in 

Figure 3-6Figure 3-6. It is important to develop a visualization and interpretation 

technique in which the confidence level is displayed and utilized. 

5) In addition to classification into discrete classes EF1 to EF4, it is useful to estimate 

other important reservoir properties such as porosity. 

In this thesis, I address questions 2) to 5) above for the Mansuri oil field. These questions 

lie within the realm of machine learning. Question 1) appears to be more complex and related to 

the sensitivity of the attributes to the noise inherent in seismic records. However, as shown in 

chapter 5, by taking into account the confidence levels (i.e., solving question 4) above), the 

continuity of the images is greatly improved.  
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4. CHAPTER 4: Acoustic Impedance and Porosity 

Evaluating petrophysical properties from seismic data and well logs is vital in hydrocarbon 

exploration. Well sampling is detailed and reliable, and one can utilize a vast range of information 

such as core data, geophysical logs, production data, and geological studies for developing the 

reservoir models. However, these models are limited to well locations and depths. By contrast, 3-

D seismic data cannot be interpreted directly in terms of geological and petrophysical properties, 

but they can characterize the lateral reservoir continuity away from the wellbore (e.g., 

Yilmaz, 2001). Therefore, it is important to develop methods for relating the characteristics of 

seismic signals to the geological and petrophysical properties, and also to their variability. This 

task of producing effective well-log columns from reflection seismic records is generally known 

as prediction of pseudo-logs (Yilmaz, 2001). The ability to predict pseudo-logs is particularly 

crucial when there is an insufficient borehole coverage or when studying an extensive reservoir 

with relatively weak lateral variation. 

A direct pseudo-log prediction approach using seismic attributes and artificial neural 

networks (ANN) was introduced commercially by Hampson et al. (2001). By using the flexibility 

of ANN training, adaptive nonlinear relations between seismic records and geophysical logs were 

developed at the well locations and applied to the entire 3-D volumes.  

In this chapter, I describe applications of ANN and other inverse methods (chapter 2) to 

deriving 3-D volumes of the acoustic impedance (AI) and porosity for the Asmari reservoir. These 

inversions are obtained from seismic and well-log data using mathematical transformations and 

machine learning procedures. Thus, as in other reservoir characterization studies, I try combining 

a broad variety of data near the wells to derive the reservoir properties of interest in inter-well 

locations. 

In section 4.1, I present the AI inversion. The AI contains the most valuable information 

about the subsurface geology, and this property is further used for lithology classification in this 

thesis (chapter 4). The AI (product of density and acoustic wave velocity) shows the geologic 

layers much clearer and more accurately than the original seismic data, and it is closely related to 

porosity, rock density, and hydrocarbon saturation. After obtaining the AI volume, I use it together 



38 

 

with other seismic attributes to further extract a 3-D porosity volume (section 4.2). In chapter 5, 

the obtained AI and porosity will be again combined with other seismic attributes to perform a 

classification of electrofacies within the reservoir.  

4.1 Inversion for acoustic impedance 

I tried several post-stack AI inversion methodologies in the Hampson-Russell software, 

and the method called the model-based inversion appeared to be the best. This method appears to 

be the most popular in the industry and is commonly used for porosity and permeability 

estimations, and also in geostatistical studies (e.g., Din and Hongbing, 2019; Kushwaha et al., 

2020). Principles of the model-based AI inversion method are described in chapter 2. As most 

nonlinear AI inversion approaches, this method contains three key components: 1) inverting for 

the source wavelet, 2) building an initial model, and 3) iterative modifications of this model to 

achieve fitting the seismic reflectivity data.  

The source wavelet was estimated by fitting the spectra of reflectivity synthetics to the data 

between the top and bottom of the reservoir in the vicinities of the selected wells. Because the 

phase spectrum of the wavelet cannot be accurately determined, a minimum-, zero-, or constant-

phase wavelets are commonly used. In this inversion, I used a 120-ms length and a constant -7 

phase of the wavelet (Figure 4-1). This selection produced a wavelet with little reverberations and 

spectral bandwidth from about 6 to 45 Hz (Figure 4-1). 

Ideally, inverse methods should be independent of starting and ‘prior’ models. However, 

this is not the case for many problems in geophysics, and in particular to the inversion of seismic 

reflectivities for AI. Because seismic data lack low-frequency information, AI inversion methods 

are often sensitive to initial models and algorithm parameters (chapter 2). Therefore, for the 

remaining steps 2) and 3), I tried several approaches available in the Hampson-Russell STRATA 

software and selected solutions providing the best accuracy of the inverse. In the following 

subsections, I briefly summarize these two steps of model-based AI inversion. 
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4.1.1 Initial model 

In model-based AI inversion, the initial model is obtained by interpolating the low-

frequency component of the well logs (Russell and Hampson, 2006). For the present dataset, the 

best results were obtained by using the inverse-distance power spatial interpolation method. This 

well interpolation method weighs the contribution of each well inversely to its distance from the 

point being calculated (chapter 2). This procedure is controlled by a parameter called acceptance 

variance, which is the maximum smoothing variance (parameter  in the method, chapter 2) which 

can be used by the mapping procedure. If this acceptance variance is too low, a circular ‘bull’s 

eye’ pattern is often produced around each well and fades away with distance from the well 

location. A higher value of the acceptance variance smoothens the map and reduces the possibility 

of bull’s eye artifacts. However, selection of a larger acceptance variance is also undesirable 

 

Figure 4-1: Wavelet inverted from seismic data in the reservoir interval near the 12 selected wells. 

Upper panel: wavelet shape, lower panel: amplitude spectrum (blue shading) and phase 

(dashed line, constant –7). 
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because it does not allow fitting the well data sufficiently closely. To prevent the bull’s-eye artifact 

while achieving reasonable accuracy, I selected the acceptance variance in a well tie to equal 15%. 

Figure 4-2 shows a map of the survey area with a custom (arbitrary) line drawn through 

the locations of all wells. This line will be used for presenting the various cross-sections from the 

3-D volumes of the various models and seismic attributes. The cross-section of the 3-D initial 

model along the selected line (Figure 4-2) is shown in Figure 4-3. As shown in this figure, the AI 

model is created between two horizons (Asmari and Pabdeh) which are top and bottom of the 

reservoir. Above and below these horizons, the AI is extended by constant values. Eight zones 

within the reservoir (chapter 3) are labeled from Z-1 (the top of Asmari formation) to Pb (the top 

of Pabdeh formation). The model is close to well-log observations at all well locations. No depth  

 

Figure 4-2: Seismic survey area (gray) and a line going through all 12 used for displaying the 

subsequent depth cross-sections of AI and porosity. 
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Figure 4-3: Initial AI model (color) and acoustic well logs (insets) along the line in Figure 4-2. Labels indicate the reservoir zones defined in chapter 

3. 
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smoothing filter was used to create this initial model, and the layering in this model appears to be 

geologically reasonable and structurally close to the reality. 

4.1.2 Acoustic impedance estimation 

The next step of AI estimation consists in using the stacked seismic records to modify the 

initial model in Figure 4-3, so that in addition to the low-frequency velocity variation in the 

interpolated logs, it starts predicting the reflectivity observed in the seismic data. The model-based 

AI inversion (chapter 2) is known as the generalized linear inversion (GLI) algorithm, which 

attempts to adjust the model until the synthetic record derived from the AI model matches the 

seismic trace. Using the previously estimated source wavelet and an updated impedance, a 

synthetic seismogram is created and compared to the original seismic data in each seismic trace.  

As described in chapter 2, the model-based inversion contains user-specified control 

parameters which determine how far the final model is allowed to deviate from the initial model 

and how closely it should match the seismic data. These control parameters represent constraints 

in the inversion, and their selection significantly affects the results. To select the control 

parameters and evaluate the performance of inversion, I compare the inverted AI near well 

locations to AI values from the well logs (Figure 4-4). As this figure shows, the correlation between 

the inverted AI and the original AI (from the well log nearby) equals 0.86, and the normalized 

error is 0.06, which shows a good performance with this method. The slope of regression for the 

inverted seismic AI with respect to the well-log AI equals 0.98. This value close to 1.0 shows that 

the model-based inverse correctly estimates the average high-frequency AI variation near the 

wells. 

In another standard quality control test, I compare the synthetic seismograms modeled at 

well locations with waveform synthetics calculated from the reflectivities in the well logs (Figure 

4-5). This correlation between synthetic seismograms from the inversion and seismograms 

modeled from well logs gives quality control to confirm the inversion process (Austin et al., 2018). 

In Figure 4-5 inversion analysis is illustrated for one of the wells (number 066).  

As shown in Figure 4-5, the predicted seismic records (panel c) are close to the observed 

data (panel d), and their difference is small (panel e). The correlation measure between these time 
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series (labeled ‘Correlation’ in Figure 4-5) is the square of the correlation coefficient, R2 (chapter 

2), which is often called the goodness of fit. This measure equals 0.98 (and therefore R  0.99), 

which shows a very high accuracy of predicting the reflection seismic signal. A high accuracy of 

predicting the reflectivity is typical for AI inversion, because this inverse problem is highly under-

determined, and accurate data fitting is expected (Menke, 1984). The difficulty of under-

determined inverses is in achieving stability and accuracy of AI models (Morozov and Ma, 2009), 

and the 0.86 correlation with independent well-log data (Figure 4-4, bottom panel) is a good 

indicator of inversion accuracy. This quantity was used as the primary quality criterion for 

selecting parameters of the algorithm. 

 

Figure 4-4: Inversion analysis cross plot between original and inverted acoustic impedance from 

STRATA software (top) and parameters of the correlation (red line) between the true and 

inverted AI (bottom). 
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The inverted AI along the selected line is shown in Figure 4-6, with AI columns calculated 

from well logs inserted for comparison. Systematic variations of the AI with depth and lateral 

coherence demonstrate a layering pattern and indicate different lithofacies within the reservoir 

interval (Eze et al., 2019). As in the initial model (Figure 4-3), there is a strong correlation between 

the AI values and well-log impedances at well locations. Between the wells, the inverted AI reveals 

the detail of geological layering within the reservoir. 

The AI and estimated porosity are restricted to the reservoir because a common well-log 

interval is required to perform the inversion or machine learning techniques. Generally, the lower 

 

Figure 4-5: Analysis of the inversion results at well 066: a) The true AI at well location (blue) 

and the inverted AI (red); b) source wavelet; c) synthetic seismograms from the 

inversion (estimated reflectivity convolved with the wavelet); d) seismic records near 

the borehole; e) their error (difference between d) and c)). 

 

 
(a) (e) (d) (c) (b) 
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Figure 4-6: Cross-section through the inverted AI cube using model-based inversion method. Insets show the AI columns from well logs, and labels 

indicate the reservoir zones.
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part of the estimated AI volume shows higher values compared to the upper part of the reservoir. 

Also, at the very top of the reservoir, there is a thin layer of higher acoustic impedances compared 

to the other part of the first half of the reservoir. This pattern is also expected to be seen in the 

porosity volume estimated in section 4.2.  

4.2 Porosity estimation 

To estimate a porosity volume from seismic data, I use the estimated acoustic impedance 

(AI) in combination with additional seismic attributes using the GRNN (PNN) algorithm in 

Hampson-Russell STRATA software. This methodology was successfully used to estimate 

porosity in many previous studies (e.g., Russell et al., 1997; Din and Hongbing, 2020). 

The first step in this estimation is a feasibility study establishing that the dataset contains 

attributes which are sufficiently sensitive to porosity. This feasibility study is performed in 

subsection 4.2.1, and it shows that the AI should indeed be the primary attribute for porosity 

estimation (Ekone et al., 2020). 

Porosity inversion using GRNN training involves the solution of a nonlinear inverse 

problem with many unknowns (chapter 2). To obtain stable and geologically meaningful results, 

it is important to avoid attributes which are noisy or do not contribute to the final estimate. In 

subsection 4.2.2, I describe the procedure for this selection of optimal attributes. Once the GRNN 

algorithm is trained, it can be applied to any location within the seismic cube, producing a 3-D 

volume of reservoir porosity. This porosity volume for Mansuri reservoir is derived in 

subsection 4.2.3. 

4.2.1 Feasibility study 

Prior to designing an ANN structure and performing training, it is useful to conduct a 

feasibility study, which is a series of tests showing whether the expected correlation between the 

input features and output values (porosity in this case) exist. To perform the feasibility study, the 

AI and true porosity values derived from the well logs are cross-plotted in Figure 4-7.As this plot 

shows, there is a significant anti-correlation between the AI and porosity, which indicates a 
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meaningful relation between these physical properties of geological layers. This relation is 

principally due to the rock density  decreasing with porosity for a fixed rock type, and the AI 

being proportional to density as Z = V. The correlation coefficient between porosity and the AI 

is 0.73 and the normalized regression error is 0.07 using linear regression for 12 wells (Figure 4-7). 

Because of this significant linear trend, the AI should be included into estimation of porosity from 

seismic data.  

Along with the general negative linear correlation between the porosity and AI, there still 

is a significant scatter of porosity values from this trend (Figure 4-7). This scatter may be due to 

multiple other factors, such as depth (deposition age) and layering. To investigate the porosity 

variation with depth, a cross-plot of porosity versus depth is shown in Figure 4-8. Across the entire 

reservoir interval, there is an about 5% drop in porosity, but it appears to occur near the middle of  

 

Figure 4-7: Cross plot of acoustic impedance (AI) and porosity in several selected wells (color bar). 

The X-axis is the acoustic impedance and Y-axis is porosity. Line indicates the least-

squares fitting of porosity as function of the AI. 
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the reservoir, due to different rock types dominating the upper and lower halves of the reservoir. 

This about 5% change in porosity may also contribute to the vertical offsets of the dots from the 

regression line in Figure 4-7. This contrast in porosity between the two halves of the reservoir will 

also be seen in the results from facies classification (chapter 5). 

4.2.2 Selection of seismic attributes 

The standard procedure for selecting input attributes for ANN training consists in analyzing 

the covariances of all attributes and discarding those which are valeither have too low variance or 

corelated with each other (Haykin, 2009). However, a better approach would be to select attributes 

based not only on their mutual covariances but on how they contribute to the final prediction of 

porosity. In Hampson-Russell software STRATA, such selection is done by a process called 

stepwise regression. In this process, one or several wells are removed from the dataset and used 

for validation, i.e. checking how the algorithm is capable of predicting known but ‘blind’ data. In 

an iterative process, the prediction (cross-validation) error is minimized to find the best attribute, 

then the best pair of attributes, then the best triplet, and so on. The cross-validation procedure is 

as follows: 

 

Figure 4-8: Scatter plot between porosity and depth in the reservoir. 
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1) Remove the target log and attributes for one well from the training data; 

2) Calculate the multi-attribute coefficients without the removed well; 

3) Apply the coefficients to the removed well; 

4) Repeat steps 1) to 3) for each well in turn; 

5) Evaluate and average the errors by repeating the procedure twelve times, each time 

treating one of the wells as the blind-predicted wells. The squared error for each 

test is defined as 

2 2

1

1 N

vi

i

E e
N =

=  ,    (4.1) 

where evi the validation error for the blind well, and N is the number of known points (i.e., time 

samples) in the analysis.  

In other words, at the first step, all attributes are checked to find the one predicting the 

target value (porosity) best when used alone. At the next step, this first attribute is kept, and an 

additional attribute is scanned in the same way, to produce the best pair which yields the highest 

correlation with the target value in the removed wells. Then we search the best triplet of attributes 

keeping the previously selected pair of attributes.  

In Figure 4-9, the performance of this procedure is illustrated graphically. The cross-

validation error (error in predicting the porosity in the removed blind wells; red line) decreases 

until the number of used attributes equal nine (Figure 4-9). When adding more than nine attributes, 

the cross-validation error increases, showing that the additional attributes reduce the ability to 

predict known data. Thus, the optimal number of attributes equals nine, and they should be selected 

in the order of the above procedure. Using additional attributes continues to decrease the total 

training error (black line in Figure 4-9) but this reduction can be viewed as ‘overfitting’ since it 

compromises prediction in the removed cross-validation well(s).  

The nine seismic attributes selected by the stepwise regression are:  

1) AI (Acoustic Impedance) from model-based inversion process.  
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2) Dominant frequency of the seismic signal determined from the maximum of the 

amplitude spectrum over a small window centered on each time sample.  

3) Bandpass filtered seismic signal with the frequency range of 5/10–15/20 Hz, which 

means that the filter amplitude increases from zero to one between 5 and 10 Hz and 

tapers off from one to zero between 15 and 20 Hz.  

4) “Derivative Instantaneous Amplitude”, which is the derivative of the amplitude 

envelope of the input trace.  

5) “Amplitude Weight Cosine Phase”, which means the product of the amplitude 

envelope and the cosine of instantaneous phase.  

6) Cosine of the instantaneous phase of the signal. 

7) Average signed amplitude envelope. 

8) Instantaneous frequency.  

9) “Amplitude-Weighted Frequency”, which is the product of the amplitude envelope 

and the instantaneous frequency. 

 

Figure 4-9: Measures of cross-validation error for different numbers of optimal input attributes used. 

The total training error (black) continuously decreases as the number of attributes increases, 

but the validation score (red) decreases till the optimal number of attributes (9 in this case) 

and then again increases. The validation error will always be higher than the training error 

since in the validation process there are always fewer data to use (in our case, fewer well to 

use) than in the training process.  
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By applying multi-linear regression using these attributes, the training correlation (cross-

correlation between all data and predicted data at the well logs) is approximately 0.82, and the 

validation correlation (the same cross-correlation for blind wells) is about 0.75. Detailed observed 

and predicted porosity profiles in the training and validation phases are shown in Figure 4-10 and 

Figure 4-11 respectively.   

 

Figure 4-10: Porosity predicted in a training well (red) and the true porosity (black). Well 

numbers are shown in the labels (training correlation = 0.82). 

 

Figure 4-11: Predicted porosity (red) and true porosity (black) in a blind well (validation 

correlation = 0.75). 
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4.2.3 Estimation of porosity volume  

After selecting the best subset of input seismic attributes, this subset is used to estimate the 

desired reservoir parameters using a multi-linear regression algorithm in Hampson-Russell 

software. Then, this subset is used for further machine learning techniques such as GRNN (PNN), 

RBFN, and MLFN (chapter 2). All these machine learning techniques were used and compared by 

validation on blind wells, and the GRNN was found to provide the highest accuracy. The results 

obtained by the GRNN are shown further in this section. 

With any porosity prediction algorithm, cross-plotting of the observed and predicted 

porosity values is another way to check the quality of the results (e.g., Kushwaha et al., 2020). 

Figure 4-12 and Figure 4-13 show cross-plots of the predicted versus actual porosities, obtained 

by applying the multi-linear regression using the nine attributes of the preceding subsection. Figure 

4-12 compares the porosity data in the training phase, and Figure 4-13 shows the results in the 

validation phase. From Figure 4-12, the training correlation is about 0.82. The validation 

 

Figure 4-12: Cross-plot of the actual and predicted porosities using multi-linear regression in 

training step (training correlation = 0.82). 
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correlation is near 0.75 (Figure 4-13), which is a high accuracy for porosity estimations (e.g., 

Kushwaha et al., 2020).  

Although the conventional quality control only checks for the correlation coefficient (0.82 

in Figure 4-12), a closer look at the cross-plots also indicates a problem with this model and its 

solution. The regression line in Figure 4-12 corresponds to equation 

                                                  inverted 0.82 3.85 = + .    (4.2) 

Ideally, this relation is expected to be inverted = , and therefore eq. (4.2)  shows that the 

prediction contains an 18% underestimation of the porosity range and a 3.85% bias in it. These 

distortions are undesirable, and they can be corrected by adding an empirical transformation of the 

inverted porosity (inverse of eq. (4.2)). 

                                                 inverted1.22 4.70 = − .   (4.3) 

 

 

Figure 4-13: Cross-plot of the actual and predicted porosities using multi-linear regression in 

validation step (validation correlation = 0.75). 
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In order to verify the best method to predict the porosity, after applying the GRNN to 

predict the desired output, cross-plots of training and validation results are shown in Figure 4-14 

and Figure 4-15 respectively. The GRNN method with 91% correlation at training and 77% 

correlation at the validation steps is preferred to the multi-linear regression with 82% at training 

and 75% at validation steps. At the same time, note that the simple multi-linear regression method 

yields an only 2.5% reduction of validation accuracy compared to the best (GRNN) method. This 

comparison shows that the limitation on the accuracy of porosity inversion principally comes from 

the data and can hardly be overcome by data-driven algorithms. 

In addition, the GRNN algorithm yields the highest training and validation accuracy 

compared to other machine learning algorithms. The validation accuracy is used as the quality 

control to select the best algorithm to estimate porosity. In this step, 12 wells and 9 attributes are 

used to estimate the porosity using machine learning techniques.  

The porosity section predicted by the GRNN method along the custom line is shown in 

Figure 4-16. This figure shows reasonable porosity values, with expected match between the 

 

Figure 4-14: Cross-plot of the actual and predicted porosities in training step using GRNN (training 

correlation= 0.91). The x axis is actual porosity at well locations, and the y axis is the 

predicted porosity. Also, the color bar represents the well data, so the reader can find which 

well shows the highest correlation. 
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estimated porosity section and porosities measured from well logs. The porosities are generally 

layered similarly to the AI layering, with noise seen as vertical bands at some midpoints. This 

noise comes from increased levels of noise in the seismic attribute sections. In chapter 5, I show 

details of some of these attribute sections. Clearly, since the porosity is derived purely from seismic 

data, it is also affected by all limitations of seismic data acquisition and processing. The quality 

and smoothness of seismic attributes could potentially be improved by more accurate data 

processing, which can be a subject of future research of this dataset (chapter 7).  

Similar to the cross-plotting at well locations in subsection 4.2.1, it is useful to cross-plot 

the inverted porosity data versus the acoustic impedance (AI) for the whole 3-D volume or within 

the selected cross-section (Figure 4-17). As this cross-plot shows and as expected, the estimated 

porosity generally anti-correlates with the AI, with slope -2.7·10-3 (line in Figure 4-17) and 

correlation coefficient 0.76. The distribution has a generally parabolic shape as suggested by 

Kushwaha et al. (2020). However, this plot also suggests that several relations between porosity 

and the AI may actually be present in the reservoir. In particular, it appears that the upper half of 

the reservoir (warm colors in Figure 4-17) has lower values of porosity but steeper dependence on  

 

Figure 4-15: Cross-plot of the actual and predicted porosities in validation step using GRNN 

(validation correlation= 0.75). 
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Figure 4-16: Inverted porosity cross-section along the same custom line as in Figure 4-6. 
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the AI. By contrast, the lower half of the reservoir (cold colors in Figure 4-17), seem to show 

higher porosity values but weaker dependence on the AI. In addition, these dependencies may be 

nonlinear, which means that some transformation of porosity , such as evaluation of log() may 

improve the correlation. These issues may also deserve further analysis in future studies. 

 

 

Figure 4-17: Cross-plot of the estimated porosity and inverted acoustic impedance within the cross-

section along the custom line passing through all wells.  Line shows a least-squares regression 

of porosity values with as a function of the AI. 
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5. CHAPTER 5: Classification of Seismic Facies 

In this chapter, I continue the study of pseudo-log prediction in Mansuri data to 

classification of seismic facies. Seismic facies are defined as generally 3-D units composed of 

certain groups of seismic reflections, which are different from adjacent groups. Geologically, 

seismic facies represent sedimentary facies and/or certain structural and stratigraphic 

characteristics recognized within the patterns of seismic amplitudes, phases, or dips (Baaske et 

al., 2007). Broadly, these localized patterns in seismic data are represented by seismic attributes, 

which are secondary records extracted from seismic data by various mathematical transformations. 

When wisely extracted using specifically targeted techniques, seismic attributes can highlight 

specific geological and petrophysical characteristics (Amendola et al., 2017; Hampson et al., 

2001). Examples of such complex transformations leading to attributes with the meanings of 

acoustic impedance and porosity were discussed in chapter 4. Seismic attributes were successfully 

applied in characterizing and evaluating reservoir properties in many studies (e.g., Ashraf et 

al., 2019; Du et al., 2015; Farzadi, 2006; Riedel et al, 2013a, 2013b; Roy et al., 2013; Wrona et 

al., 2018; Zhang et al., 2019; Zhao et al., 2015, 2018).  

In modern practice, some form of quantitative interpretation of seismic attributes represents 

the only way to classify the facies of the reservoir. Since seismic data are continuous and contain 

a considerable amount of data, manual interpretation is a time-consuming and demanding task 

even for an experienced interpreter, and it can still be impractical for detailed interpretation of a 

3-D survey. Therefore, automation and machine learning could be a proper solution to this 

problem. Recently, there has been a tremendous increase in the number of studies using 

multivariate regression and ANN applications for automating the more challenging tasks in 

seismic interpretation and seismic pattern recognition. (e.g., Baaske et al., 2007; Bagheri and 

Riahi, 2015; Col´eou et al., 2003; Feng et al, 2018a, 2018b; Linari et al., 2003; Liu et al., 2018; 

Marroquín, 2014; Roden et al., 2015; Saggaf et al., 2003; Sayago et al., 2012; Zahraa et al., 2017; 

Zahmatkesh et al., 2021). 

In this chapter, I use the 3-D stacked seismic volume to characterize the rock facies 

distribution within the Mansuri reservoir described in chapter 3. In section 5.1, I describe the 

seismic attributes used for the classification and select an optimized set of attributes using a 
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conventional and a novel method described in chapter 2. Using these optimal attributes and a 

selected ANN structure, in section 5.3, I discuss selection of the regularization parameters for its 

training. In section 5.4, I present three forms of the resulting classification and discuss their 

statistical properties and significance. 

For consistency with the previous study (Zahmatkesh et al., 2021), the seismic facies 

targeted in these classifications are the electrofacies EF1 to EF4 described in chapter 3. 

Electrofacies are identified by their distinctive physical and chemical characteristics related to a 

certain rock type, and also by fluid content within the volume assessed by the well-log analysis.  

Electrofacies are traditionally calibrated on the laboratory analysis of the core plugs in order to 

confirm their consistency based on geological and reservoir characterization (Zahmatkesh et 

al, 2021). Accordingly, they are used as training samples to predict the geological (or reservoir) 

facies based on the wireline logs where the core is not available (Euzen et al., 2010; Roslin and 

Esterle, 2016). In this chapter, I similarly use the electrofacies EF1 to EF4 identified within the 

well logs, and then extend this classification to the entire reservoir volume using 3-D seismic data. 

An important part of the present study consists in comparing several supervised pattern 

recognition methods to determinate lateral and vertical differences in Asmari reservoir in terms of 

the seismic facies. The methodology outlined in this chapter can be viewed as a workflow using 

multiple seismic attributes to classify seismic facies for reservoir-scale characterization. I compare 

the three premier supervised classification methods and explore their differences and similarities 

with the same dataset. After careful comparisons using different quality control techniques, I 

conclude that the proposed ANN with targeted attribute selection (chapter 2) results in an improved 

classification compared to the conventional methods. Most importantly, the interpretation of these 

classifications changes significantly if we also visualize the statistical significance of the results. 

5.1 Seismic attributes 

Seismic attributes were already utilized for porosity estimation in chapter 4 in this thesis, 

but here, I analyze them more closely with regard to their contribution to classification of seismic 

facies. Generally, a seismic attribute is some local quantity extracted from seismic data, obtained 

by a mathematical transformation or an algorithm enhancing and quantifying features of 

interpretational interest. The classic attributes from which the modern culture of visualization has 
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started were the instantaneous amplitude (envelope), phase and frequency of the seismic signal 

(Taner et al., 1979). Hundreds of seismic attributes are in routine use today, which can be divided 

into several groups based on their usage. For example, there are attributes helping us to quantify 

the morphological component of seismic data (similarity, curvature, spectral decomposition, dip 

and variance) and those that help quantifying the reflectivity component of seismic data (amplitude 

envelopes, frequencies, acoustic impedance).  

This study uses an integrated practice of combining multiple seismic attributes with four 

well-log electrofacies in order to evaluate the study area's lithofacies and reservoir quality 

distribution patterns (chapter 3; Zahmatkesh et all, 2021). To achieve this task, the relevant input 

attributes must be carefully selected out of the multitude of available transformations of the 3-D 

seismic data. Determining the optimal set of input attributes is one of the main challenges of the 

classification procedure. Clearly, selecting attributes with some geophysical and geologic values 

would be the best strategy compared with testing various pure mathematical transformations. 

However, in this project, I attempt a more abstract, “machine-learning” approach to selecting the 

final attributes based on evaluation of their metrics and sensitivity to the intended classification of 

seismic facies.  

In the first pass of the above attribute selection, I extracted 23 attributes from the reflection 

seismic image plus the estimated acoustic impedance (AI) and porosity from chapter 4. These 

attributes with summaries of their meanings are listed in Table 5.1. Values of these attributes 

within the cross-section passing through eight wells are shown in Figure 5-1. This cross-section 

will be discussed in detail in section 5.4. 

As Figure 5-1 shows, the attributes are broadly variable in terms of their correspondence 

to geological layering, depth resolution, and noise levels and patterns. In particular, the similarity 

attribute (number 4 in Table 5.1; Figure 5-1) contains a banded pattern which is likely to be an 

artifact of the algorithm. In addition, several of these attributes are derived from the AI by similar 

transformations, and therefore they may be mutually related. Nevertheless, I did not attempt 

reducing this list by analysing the algorithms or performing signal processing. Instead, I start with 

the entire 25-dimensional space of input data (Figure 5-1) and develop procedures for reducing 

this dimensionality to new 7 or 9 attributes, which are used in the final classifications. Two  
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Figure 5-1: Seismic attributes within the selected line section. 
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Figure 5-1, continued. 
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Figure 5-1, continued. 
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Figure 5-1, continued. 
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Figure 5-1, continued. 
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Figure 5-1, continued. 
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Figure 5-1, continued. 
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Table 5.1: Seismic attributes used in this study 

Number Name Description Reservoir and geological 

implications 

1 FFT spectral amplitude at 20Hz 

 Signal amplitudes at the 

specified frequencies  

- Useful for sequence 

boundaries and thin bed 

tuning  

- Correlates with lithology 

& porosity 

2 FFT spectral amplitude at 40Hz 

3 FFT spectral amplitude at 60Hz 

4 Similarity seismic full block 
Value indicating how much two 

or more trace segments look 

alike 

-Lateral variable lithofacies, 

- Visualize channels, reef 

edges, karst features, 

fracture zones 

5 RMS Energy with time-gate of (-12 

+12) 
Calculate the squared sum of the 

sample values in the 

specified time-gate divided by 

the number of samples in the 

gate 

-Highlight hydrocarbons 

and thick sands 

- Identify stratigraphic 

features which are isolated 

from background features, 

like channels and bright 

spots 

6 RMS Energy with time-gate of (-24 

+24) 

7 Fingerprint Seismic & AI Measure the similarity between 

the seismic signal and AI (or 

also NHI) taken at each sample 

position inside the cube, 

calculated by the normalized 

Euclidean distance between the 

two vectors. Values range from 

0 (vectors are not identical at all) 

to 1 (vectors are 100% identical) 

-Useful to find similar good 

reservoirs as encountered in 

certain wells 

8 Fingerprint Seismic & AI & NPHI 

9 Amplitude-Weighted Cosine Phase 

AI 

Product of the amplitude 

envelope and the cosine of the 

instantaneous phase of the AI 

 

10 Amplitude-Weighted Frequency AI Product of the amplitude 

envelope and the instantaneous 

frequency of the AI 

 

11 Amplitude-Weighted Phase Product of the amplitude 

envelope and the instantaneous 

phase (of the seismic signal or 

AI) 

 12 Amplitude-Weighted Phase AI 

13 Average Frequency AI Average of the amplitude 

spectrum of the AI over a small 

window 

around the time sample. 

 

14 Cosine Instantaneous Phase 
Cosine of the instantaneous 

phase 
Highlight bedding very well 

15 Cosine Instantaneous Phase AI 

16 Derivative Instantaneous Amplitude AI Derivative of the amplitude 

envelope of the AI 
 

17 Derivative Seismic Derivative of the input trace, 

calculated as the difference 

between adjacent samples 

 

18 Dominant Frequency Seismic Maximum of the amplitude 

spectrum over a small window 

around the time sample 
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19 Filter 5-10-15-20 AI 5/10 - 15/20 bandpass filter of 

the AI or seismic record 

 

20 Filter 5-10-15-20 Seismic 

21 Seismic Stacked seismic record  

22 Instantaneous Frequency AI Time derivative of the phase of 

the AI  

Abnormal attenuation and 

thin bed tuning, fluid 

content 

23 Integrated Absolute Amplitude Integration of the amplitude 

envelope of the input trace 

Show bedding continuity, 

lithology, fluid content 

24 AI Acoustic Impedance derived 

from inversion of amplitude 

seismic data 

Indicate lithological and 

porosity changes, 

discontinuities, 

unconformity surface, 

sequence boundaries and 

fluid content in the reservoir 

25 Estimated Porosity Porosity estimated in chapter 4 Primary petrophysical 

property of rock 

 

approaches to this attribute selection procedure are described in the following section. Also, the 

physical units and ranges of values are different for most of these attributes, and therefore 

normalization and preconditioning are necessary for feeding them into classification algorithms.  

5.2 Preconditioning and selection of optimal attributes  

The procedure for optimizing the data inputs is called feature selection or dimensionality 

reduction in machine-learning applications. The goal of this procedure is to select a subset of 

extracted features that do not duplicate each other and provide the best predictive power. In this 

study, I tried several conventional approaches to feature selection described in subsection 5.2.1 

and also a more complete data preconditioning procedure described in chapter 2. The distinctive 

property of all these approaches is in only using the statistical distributions of the data for feature 

selection, regardless of the target classes. In the subsection 5.2.2, I also apply a more advanced 

feature reduction method considering the target classes.   

5.2.1 Standard approach 

The commonly used approach to feature reduction is based on their pairwise correlation in 

the data (Riedel et al., 2013a, 2013b). By considering the Pearson’s correlation matrix R between 

all features (time series of seismic attributes near well locations), a correlation matrix is obtained 
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(Figure 5-2). If any two features are highly correlated, i.e. shown by purple or red colors in Figure 

5-2, they are expected to contribute similarly to any predictor, and therefore one of them can be 

viewed as redundant and dropped from the classification model. For example, some of the 

attributes with the strongest pairwise correlations are (Figure 5-2): 

1) Attribute #9 (Amplitude-Weighted Cosine Phase AI) has a very high correlation of 

0.99 and 0.8 with attributes #24 (AI) and #25 (porosity), respectively;  

2) Attributes #5 (RMS –12 +12) and #6 (RMS -24 +24) show a very high correlation 

of 0.93. The same level of correlation is between attributes #10 (Amplitude 

Weighted Frequency AI) and #22 (Instantaneous frequency AI); 

 

Figure 5-2: Correlation matrix of 25 input seismic attribute volumes. A correlation of ±0.7 or higher 

may indicate redundancy. 
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3) Attribute #1 (FFT 20 Hz) also has correlation coefficients 0.84 and 0.86 with 

attributes #5 and #6, respectively; 

4) Attribute #14 (cosine of the instantaneous phase) has a high correlation of 0.87 with 

attribute #21 (seismic record).  

5) Attribute #24 (AI) and #25 (porosity) are highly correlated with of R  –0.8. 

In each of these cases, the correlated attributes are either closely related mathematically or arise 

from a common inversion procedure (such as the estimated porosity and AI in Table 5.1).  

One standard approach to feature selection consists in dropping from each pair of correlated 

attributes the one with lower correlation with the target and less relevance to the objective 

classification (Haykin, 2009). This approach was tried, but the final results were not acceptable 

since the performance of the algorithm was not good enough due to deleting some attributes 

without even using the smallest portion of the information that they might maintain. The second 

approach is applying a preconditioning step to keep all attributes set and make the most use of all 

input datasets. In each of these cases, the correlated attributes are either closely related 

mathematically or arise from a common inversion procedure (such as the estimated porosity and 

AI). 

Another standard approach to feature selection consists in dropping from each pair of 

correlated attributes the one with lower correlation with the target and less relevance to the 

objective classification (Haykin, 2009). This approach was also tried, but the final results were not 

acceptable since the performance of the algorithm was not good enough because of deleting some 

attributes without even using the smallest portion of the information that they might maintain. The 

second approach is applying a preconditioning step to keep all attributes set and make the most 

use of all input datasets. 

Figure 5-3 shows the distributions of each of the 25 attributes and Pearson's correlation 

coefficients between them (labels). Each of the off-diagonal subplot contains a scatterplot of a pair 

of variables with a least-squares regression line (red), with slope equal to the displayed correlation 

coefficient. The diagonal blocks of the plots contain histograms of the corresponding variable. 

Some of the histograms in Figure 5-3 have bell-like shapes similar to the normal 

distribution, but others and particularly scatter plots show truncated distributions of the features 
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(seismic attributes). Bulb-shaped scatterplots with almost horizontal correlation lines (pink) 

represent uncorrelated features which should be suitable for their use in classification. However, 

several attributes show significant correlations and complex distribution shapes (Figure 5-3). 

Therefore, careful data selection and preconditioning is required (next section). 

To assess the feasibility and estimate accuracy of the expected classification, it is useful to 

plot histograms of the key attributes within each class for near-borehole locations. Figure 5-4 

shows such histograms of neutron porosity within the four classes EF1 to EF4. This figure shows 

that class 1 and class 3 can be differentiated by porosity level   21%. However, these 

distributions also show that a location with porosity 19% <  < 21% can still belong to class 1 with 

probability of about 15%. Despite the location of class 3 in the medium and lower parts of the 

porosity range, this class still represents high reservoir quality because fractures within these rocks 

create high permeability and high effective porosity of the formation.  

 

 

Figure 5-3: Cross-plots of pairs of the raw attributes. Attribute numbers are shown along the bottom 

and left of the grid of panels. Histograms of the distribution of the attributes are shown on 

the diagonal of the grid. Red lines indicate the correlations between pair of attributes. 
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Figure 5-3, continued.  

 
Figure 5-3, continued.  
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Figure 5-3, continued.  

 

Histograms in Figure 5-4 also show the differences in the available statistics within the 

four classes. Classes 1 and 3 contain more data points and show the highest peaks in this plot, and 

class 2 is represented by the fewest number of readings in the dataset. 
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above.  Classes 1 and 2 are at the upper-left of the cross-plot, which means that they have low 

acoustic impedance and high porosity. Classes 1 and 3 could be separated easily (again with about 

15% uncertainty), but classes 1 and 2 are thoroughly mixed. From these attributes, a class 2 zone 

might be predicted as class 1 and vice versa.    
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Figure 5-4: Histograms of porosity values for each target class in the wells (legend). Mean values of 

porosities are labeled in the legend. 

 

Figure 5-5: Cross-plot of attributes #24 (AI) and #25 (estimated porosity) within each class (legend). 
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5.2.2 Feature selection using target classes 

In this subsection, I apply the optimal feature selection procedure from section 2.6 of 

chapter 2. As explained there, the advantage of this procedure is in constructing composite features 

which are uncorrelated, normalized, and have the strongest contributions to the desired 

classification. The application of this procedure to the Mansuri reservoir data near boreholes is 

summarized in the following tables.  In these tables, column ‘accuracy’ contains the proportion of 

data points correctly predicted by the corresponding logistic regression, and the bold underlined 

accuracy values indicate lower-accuracy attributes excluded from the final classification process.   

Table 5.2 shows the attributes most sensitive to one selected class. Table 5.3 shows the 

attributes obtained by removing one of the classes from the labels (targets) and the corresponding 

samples from the input (observations). 

Table 5.2: Accuracy score of new attributes. 

Attribute Number Description Accuracy 

1 Class 1 =1   and other classes=0 80.3 

2 Class 2 =1   and other classes=0 89.3 

3 Class 3 =1   and other classes=0 78.2 

4 Class 4 =1   and other classes=0 82.5 

5 Class 1 & 2=1   and other classes=0 84.1 

6 Class 1 & 3=1   and other classes=0 72.3 

7 Class 1 & 4=1   and other classes=0 68.8 

 

Table 5.3: Accuracy score of new attributes in absence of classes. 

Attribute Number Removed Class Description Accuracy 

8 Class 1 Class 2 =1   and other classes (3 & 4) =0 87.8 

9 Class 1 Class 3 =1   and other classes (2 & 4) =0 71.2 

10 Class 1 Class 4=1   and other classes (2 & 3) =0 74.1 

11 Class 2 Class 1 =1   and other classes (3 & 4) =0 86.1 

12 Class 2 Class 3=1   and other classes (1& 4) =0 77.3 

13 Class 2 Class 4=1   and other classes (1& 3) =0 80.56 

14 Class 3 Class 1 =1   and other classes (2 & 4) =0 78.2 

15 Class 3 Class 2=1   and other classes (1& 4) =0 84.62 
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16 Class 3 Class 4=1   and other classes (1& 2) =0 88.36 

17 Class 4 Class 1 =1   and other classes (3 & 4) =0 77.9 

18 Class 4 Class 2=1   and other classes (1& 3) =0 85.8 

19 Class 4 Class 3=1   and other classes (1& 2) =0 86.7 

20 Class 1 and Class 2 Class 3=1   and other classes (4) =0 71.3 

21 Class 1 and Class 3 Class 2=1   and other classes (4) =0 86.7 

22 Class 1 and Class 4 Class 2=1   and other classes (3) =0 84.3 

23 Class 2 and Class 3 Class 1=1   and other classes (4) =0 88.7 

24 Class 3 and Class 4 Class 1=1   and other classes (2) =0 77.7 

25 Class 2 and Class 4 Class 1=1   and other classes (3) =0 85.2 

 

To reduce the dimensionality of the feature space and possible overfitting while having 

good representation of all four classes, I dropped the attributes with accuracy below 80% 

(underlined in Table 5.2 and Table 5.3). The resulting dataset then contains 16 attributes. After 

orthogonalization and preconditioning, I further used the singular value decomposition to obtain 

the eigenvalues (variances) and eigenvectors (principal components), which represent the final 

new set of attributes. The cumulative sum of data variances (Figure 5-6) shows that the first three 

 

Figure 5-6: Relative cumulative data variance among the new attributes. 
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of the new attributes retain more than 98% of the total data variance. Figure 5-7 shows the 

distribution of our classes versus the highest eigenvectors in our new dataset. These two new 

features explain more than 93% of the data variation. 

The third standard approach to feature reduction is by using the principal-component 

analysis (PCA) (Haykin, 2009). This approach consists in finding the eigenvectors and eigenvalues 

of the covariance matrix of the data, or equivalently, by the singular value decomposition of the 

data matrix itself. The key output of the PCA is a set of eigenvectors ei in the feature space (called 

principal components) and their variances 
2

i . The variances are sorted in descending order, so 

that the first principal component is dominant in the data. The principal components are 

uncorrelated, and therefore if we select N first principal components, then they will account for the 

total variance in the data equal 
2 2

1

N

N i

i

 
=

=  . A ratio of this cumulative variance to the total variance 

2 2

25N N  =  is shown as a function of N in Figure 5-8. This figure shows that by keeping only the 

first 10 eigenvectors in the data, we can account for almost 90% of the total data variance. By 

 

Figure 5-7: Distribution of the classes with respect to two new features. 
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selecting the first three or seven principal components, 50% and 80% of the data variation would 

be retained, respectively. If using the first three principal components, a good visual separation 

between the four classes can be obtained in the 3-D space (Figure 5-8). 

 

Figure 5-9: Relative cumulative sum of the variances for the 25 principal components of data. 
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Figure 5-8: Distribution of classes in the space of the first three principal components of the data. 
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Finally, the preferred data preconditioning approach in this study was the complete feature 

othogonalization procedure described in chapter 2. This procedure includes the PCA and 

optionally, it can also include the correlation-threshold based feature rejection described above. 

After this preconditioning, the resulting features become mutually uncorrelated and orthogonal 

combinations of all original features, sorted in reverse order of their impact on the data. Similarly 

to PCA, the feature reduction consists only in selecting the desired number of final features. Figure 

5-10 illustrates the fact that these new features are uncorrelated and bulb-shaped, which is 

indicated by the absence of average slope in the distribution of data points. This plot can be 

compared to Figure 5-5. The uncorrelated features make it easier to evaluate the separation 

between the target classes. Figure 5-11 shows the most important original features contributed to 

the most dominant principal component. As expected, the AI and porosity with “Amplitude weight 

cosine phase AI” attribute have the highest contributions compared to other original features.  

 

 

 

Figure 5-10: Distribution of classes using the transformed features #24 and #25 (legend). 
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Figure 5-11: Importance of each original attribute to the dominant PCA. 
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the optimal number of features is seven, and the optimal lambda (factor in the regularization term) 

is 0.5 (Figure 5-14). 

 

Figure 5-12: Training accuracy and validation accuracy using 16 principal components. 

 

Figure 5-13: Training and validation accuracies versus regularization parameter  for ANN training 

using seven principal components. 
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Figure 5-14: Training and validation accuracies vs. parameter  using seven principal components of 

the data. 

The next analysis is to investigate the optimal number of neurons or hidden-layer size. This 

selection can also be done based on the validation and training scores.  Figure 5-5 shows these 

scores versus the hidden layer size from 7 to 100 neurons, determined by using the 7 selected 

features and  = 0.5.  As shown in this figure, the peak validation score just above 70% is attained 

with 30 neurons in the hidden ANN layer, but with 20 or 50-60 neurons, the validation performance 

is only slightly lower.  Thus, the final algorithm parameters for the present project include seven 

input attributes, an ANN with the hidden-layer size of 30, and the regularization parameter  = 

0.5.  

The regularization term () is necessary to avoid overfitting. Although setting a high value 

for , causes a significant overdamping of the solution. With such strong regularization, the 

inversion is mostly focused on minimizing the ANN weights and not achieving accurate data 

prediction. On the other hand, selecting λ = 0 may still cause an ANN with highly variable weights 

causing overfitting the training data.  

In all presented graphs, when =0, the training accuracy is 100%, which means the model 

is too complex and will learn too much about the data including noises, and it will not be able to 
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generalize to unseen samples. By increasing the value of , the training accuracy will decrease 

gradually, but validation accuracy will increase at some point and decrease again. Thus, the 

optimal value of lambda will be at some point when the validation score is at the highest. After 

finding the optimal number of features, the optimal number of lambda and also the optimal number 

of neurons (size of hidden layer), the model will be trained based on optimal parameters and will 

be applied to unseen data. 

5.4 Results 

Using parameter selections described above, I derived three classifications for Asmari 

reservoir summarized in Table 5.4. The classifications are referred to as the “regular ANN” (using 

an ANN with conventional feature selection), the “proposed ANN”, or P-ANN (an ANN with 

improved feature selection described in section 5.2), and the Probabilistic Neural Network (PNN) 

in Hampson-Russell software (section 5.5). Table 5.4 shows the parameters of these algorithms 

and the key statistics of their training and validation errors using two validation wells 91 and 96. 

 

Figure 5-15: Searching for the optimal hidden layer size using seven principal components of the 

data. 
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Table 5.4: Application of three different neural network on test data (Well 91 and 96). 

 Proposed ANN (P-ANN) Regular ANN PNN 

Number of 

features 

7 principal components 7 principal components 9 original features 

Type of 

preconditioning 

and feature 

selection 

Orthogonalization, relevant 

features to classes, singular 

value decomposition 

Orthogonalization, singular 

value decomposition 

Step-wise regression 

Lambda value 0.5 1 - 

Validation 

score 

73 67 57 

 Training 

score 

Test score Training 

score 

Test score Training 

score 

Test score 

Well 91 77.5 68 63.5 62.5 95 56 

Well 96 77 72.5 74 66.6 86 50 

 

5.4.1 Validation tests using blind wells 

Figure 5-16 and Figure 5-17 show the results of application of the three methodologies to 

classification of the test data (blind wells 91 and 96). These images show that misclassifications 

mostly occur within short time intervals, which are likely due to the high-frequency noise present 

in seismic attributes. Near the bottom of the wells (particularly 96), the performance of PNN is 

poorer than that of the P-ANN.  

Plots in Figure 5-18 and Figure 5-19 show the estimated confidence levels Pk (chapter 2, 

eq. (2.33)) for the class k identified at each sample in the preceding figures. The average level of 

confidence is the highest using the proposed ANN (P-ANN) and lowest when using the PNN 

algorithm. The confidence levels are moderate when the ANN is applied to the blind wells. Overall, 

P-ANN appears to be superior compared to the ANN and PNN algorithm, in terms of validation 

accuracy and also considering the confidence of classification. At the same time, interestingly, the 

classification predictors using PNN in well 91 (right panel in Figure 5-18) are dominated by low-

frequency variations on about 100-ms scale, which are different from ANN-based results. The 

confidence estimates when using P-ANN and ANN reveal similar patterns with depth.  

 



86 

 

 

 

Figure 5-16: Results of classification of the blind well 91. The panels are, from left to right: 1) known 

classification in the well, 2) results by using the P-ANN, 3) ANN, 4) PNN algorithms. 

Green, orange, blue and purple color represent classes 1, 2, 3 and 4, respectively. The best 

match is between the label classes (far left) and the P-ANN (far right). 

 

Figure 5-17: Results of classification of the blind well 96. The panels are, from left to right: 1) known 

classification in the well, 2) results by using the P-ANN, 3) ANN, 4) PNN algorithms. 

Green, orange, blue and purple color represent classes 1, 2, 3 and 4, respectively. The best 

match is between the label classes (far left) and the P-ANN (far right). 
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Figure 5-18: Probability of finding the class identified at each point of the subsurface of three different 

ANN on test data (well 91). The left panel is the results of PANN, the middle panel is the ANN 

algorithm, and the right panel is the results of PNN. Notice that the overall probability for 

proposed ANN is higher than ANN and PNN. 

 

Figure 5-19: Probability of finding the class identified at each point of the subsurface of three different 

ANN on test data (well 96). The left panel is the results of PANN, the middle panel is the ANN 

algorithm, and the right panel is the results of PNN. Notice that the overall probability for 

proposed ANN is higher than ANN and PNN. 
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To summarize the classification confidence values, the pie chart in Figure 5-20 shows the 

distribution of confidence levels Pk (chapter 2) for classification of the validation dataset using the 

P-ANN approach. I consider class probabilities Pk > 0.7 as high confidence and Pk < 0.4 as low 

confidence. Note that in observational statistics, the range P > 0.95 is usually considered as high 

confidence, but such stringent requirement is impractical for the present application. With the P 

> 0.7 criterion, the increase of validation accuracy from my previous attempts from 67% to over 

73% represents a significant rise in validation accuracy in machine-learning techniques.  

For a more detailed assessment of the accuracy of class predictions, confusion matrices are 

often used (Haykin, 2009). The confusion matrix visualizes the performance of the classification 

model by comparing the actual and predicted classes. The jth element of the kth row of the confusion 

matrix represent the percentage of cases in which a data point from class k is classified by the 

algorithm as class j. Thus, the diagonal of the confusion matrix represents the percentages of 

correctly classified classes, and the off-diagonal values are the percentages of various 

 

Figure 5-20; Confidence values for validation set using P-ANN. 
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misclassifications. Ideally, a perfect classifier would result in a confusion matrix equal identity 

matrix, i.e. have values equal one only on the diagonal. 

Various metrics can be derived from confusion matrices to quantify the performance of 

machine learning algorithms. The overall accuracy is the most common performance metric used 

in classification problems. This metric is defined as the ratio of the number of correctly predicted 

examples to the total number of examples. Figure 5-21, Figure 5-22, and Figure 5-23 show 

confusion matrices for applications of the three algorithms to the validation set, and the overall 

accuracies are summarized in Table 5.5. The overall accuracy when using PNN is about 57%, 

which means that the fractional classification error is 43% for this dataset (Figure 5-21). This 

algorithm has the highest performance in finding class 1 with almost 63% accuracy and the lowest 

 

Figure 5-21: Confusion matrix for PNN algorithm. 
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performance for class 4 (45% accuracy). Class 4 is mainly classified as class 3, apparently because 

they are lithologically close and therefore difficult to differentiate in seismic data. 

 

Table 5.5: Summary of validation accuracy for three classification algorithms. 

Algorithms Proposed ANN (P-ANN) Regular ANN PNN 

Overall validation score 72.3 66.9 56.6 

Class 1 accuracy 87.9 87.4 62.6 

Class 2 accuracy 42.6 1.9 51.9 

Class 3 accuracy 75 73.1 59.4 

Class 4 accuracy 58.2 57.3 45.5 

 

Figure 5-22: Confusion matrix for ANN algorithm. 
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For the ANN algorithm (Figure 5-22), the overall accuracy is almost 67%. (Table 5.5). 

This ANN algorithm has higher performance than PNN for sandstone and carbonate classification 

(classes 1 and 3) with almost 80% accuracy. It has a very low performance in classifying class 2 

(2%) and mostly misclassifies it as class 1 (Figure 5-22). Since class 4 is non-reservoir, it is also 

crucial to classify this class carefully. With regard to this class, the ANN is more efficient than the 

PNN algorithm (Table 5.5). 

The P-ANN algorithm (Figure 5-23) achieved the highest accuracy for validation data. The 

overall accuracy is about 72.3%, which is the highest among the techniques used in this study. 

This algorithm could be decisive in classifying class 1 with 88%, class 3 with 75%. The P-ANN 

also failed to classify class 2 with 43% correct predictions which is again higher than the ANN but 

a bit less than the PNN (Table 5.5). The main advantage of P-ANN could be its ability to classify 

class 4 with 58% accuracy compared to 45% for PNN.   

 

Figure 5-23: Confusion matrix when using P-ANN. 
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Based on the above confusion matrices and overall statistics, the above comparison shows 

that the P-ANN algorithm outperformed the PNN, and the regular ANN almost approaches P-ANN 

in terms of its ability to achieve the maximum discrimination accuracy for blind wells. Thus, the 

P-ANN supervised classification analysis provided a convenient and robust method, which can 

classify the reservoir to known classes which numerically is superior to the two other machine 

learning techniques.  

5.4.2 Application to seismic data 

To compare applications of the three classification algorithms to all seismic data, I use a 

cross-section of the 3-D model volume along the line shown in Figure 5-24. This selected seismic 

line goes through seven training and one blind well, which allows detailed evaluation of the 

 

Figure 5-24: Selected line to compare the classifications in Table 5.5. 
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classification accuracy for each algorithm. The previously interpreted rock facies classes available 

at the eight well locations along this line are shown in Figure 5-25, and the resulting classifications 

by the three methods are shown in Figure 5-26.  

Generally, the ground-truth (Figure 5-25) and all three classified seismic datasets (Figure 

5-26) show two distinctive groups of classes within the upper and lower halves of the reservoir. 

They also show similar spatial relations between classes 1 and 2 within the upper half and classes 

3 and 4 within the lower half of the reservoir. However, there are also some differences in the 

resulting classifications. Based on the known labels, we expect to see a near-continuous layer of 

class 3 at the top of the selected line (yellow in these figures), and also a continuous layer of class 4 

(brown) at the bottom of the cross-section in Figure 5-26. The PANN and ANN successfully  

  

Figure 5-25: Known class labels (colors) at eight well locations. The X axis represents well numbers 

and Y axis is the two-way seismic reflection time in milliseconds. 
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Figure 5-26: Classification cross-sections along the selected line using the P-ANN, ANN and PNN algorithms (headings of the panels). Color bar 

represents class numbers, as in Figure 5-25. 
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classify these zones with high accuracy (top and bottom panels in Figure 5-26), but the PNN results 

show neither continuous layer of class 3 at the top nor continuous class 4 at the bottom of the 

section (middle panel in Figure 5-26). At the same time, layering of seismic facies 1 and 2 within 

the upper half of the reservoir appears to be more pronounced and contiguous in the PNN 

classification. 

To compare the predicted classes with known classifications in more detail, Figure 5-27 

shows an overlay of the classification of well 004 with a small segment of the image around this 

well (Figure 5-26). For P-ANN results, this comparison shows a reasonable match the known and 

the surrounding predicted classes, although with some mismatches within the bottom part of the 

section. For PNN, there also is a reasonable match at this location, although the pattern of predicted 

 

Figure 5-27: Zoom-in of the P-ANN and PNN images in Figure 5-26 near well 004 with known classes 

at this well location inserted (black rectangles). 
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layering appears to be of higher frequency than the one within the well. A layer of class 1 (cyan) 

is predicted at the bottom of the imaged zone, which is nevertheless absent in the well. In addition, 

the final classifications in Figure 5-26 consist of integer numbers determined from the estimated 

probabilities Pk of each of the classes and confidence levels C of the prediction (chapter 2). These 

probabilities contain important additional information which is, unfortunately, rarely utilized for 

characterizing hydrocarbon reservoirs. Nevertheless, this information may have a critical impact 

on interpretation. Figure 5-28 shows the confidence levels of the three classifications (Figure 

5-26), also plotted in the form of continuous pseudo-log cross-sections.  

As shown in these plots, the confidence values show clearer and more consistent layering 

within the reservoir than the images of interpreted classes (Figure 5-26). The confidence levels for 

P-ANN are higher than for PNN and particularly for ANN algorithms. However, the meanings of 

predictors Pk in the PNN algorithm are significantly different from outputs of an ANN, and 

therefore the confidence thresholds should likely be interpreted differently for these methods.  

The estimated confidence levels can also be used to create enhanced and easier to interpret 

images of the data, any seismic attributes, of the classification. For example, to emphasize the 

subsurface areas with reliable classification, I create a filter (mask) for the image displaying the 

data only in areas with confidence C ≥ 70% when using the ANN-based methods or C ≥ 50% when 

using the PNN. The filtered displays of classifications are shown in Figure 5-29. This image 

emphasizes the layered character of the subsurface.  Compared to Figure 5-26, the filtered section 

allows making several significant observations. The filtered classifications for P-ANN and ANN 

are not showing class 2, which means that all of its identification lies below the 70% confidence. 

For PNN, the 50% confidence threshold allows seeing all four classes nicely, except at the bottom 

of the section. Also, a significant observation with PNN is that class 4 at the bottom of the plot is 

intermittent due to lower confidence.  

Also, notably in the filtered PNN image (Figure 5-29, middle), class 2 at the top and bottom 

of the section shows high confidence, but it is misclassified instead of the expected classes 3 and 

4, respectively. This misclassification with high probability shows that despite the PNN algorithm 

creating images which look more geologically realistic, it still fails to classify the electrofacies 

properly. 
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Figure 5-28: Confidence interval for three algorithms; P-ANN (top), PNN (middle) and ANN (bottom). 
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Figure 5-29: Filtered seismic facies classification using probability of the predicted class (The threshold for probability for ANN and proposed ANN 

is 70% and for PNN is 50%). 
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6. CHAPTER 6: Porphyry Prospectivity in Quesnel Terrane, British 

Columbia 

This chapter describes a different application from the rest of the thesis application of 

machine learning to applied geology and geophysics. I use an Artificial Neural Network to explore 

the mapped occurrences of mineral deposits within the Quesnel Terrane (British Columbia) and to 

extend the prospectivity predictions to adjacent areas. To form the predictions, geophysical data 

are combined with time-constrained geological, structural, and tectonic data to produce 

quantitative estimates of the probability for the target mineral.   

This chapter is based on my contribution to the report by the University of Saskatchewan 

“4-D Integration” team for the 2022 Frank Arnott - Next Generation Explorers Award by the 

Prospectors and Developers Association of Canada as the geophysicist and data analysis 

(https://www.pdac.ca/members/students/faa/2022-challenge). Our team received the Grand prize 

after competing in the finals against five teams from Canada, France, Peru, and Great Britain. In 

this project, Dène Tarkyth applied mineral systems expertise to simplify the categories of mineral 

occurrences and geological features in a manner appropriate for machine learning and assisted 

with geospatial information systems (GIS) and plotting tasks. My contribution to this project 

consisted in data integration and machine-learning data analysis and prospectivity modeling, as 

described in this chapter. 

In the following section 6.1, I briefly describe the geology of the study area and its relation 

to economic prospectivity for minerals. In section 6.2, I outline the methodology of this project, in 

section 6.3, I describe the data, and in section 6.4, I assess the data for mutual correlations and 

relations to the target prospectivity. After feature analysis, in section 6.5, I apply neural-network 

based pattern recognition to evaluate a probability-type estimator for potential occurrences of 

porphyry, classify the data into ‘prospective’ and ‘non-prospective’, and produce a predictive 

prospectivity map. Further in section 6.5, I measure the classification accuracy and discuss the 

performance of the algorithm. 

https://www.pdac.ca/members/students/faa/2022-challenge
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6.1 Geology background and goals of this project 

The study area covers an about 400-km long segment of the Quesnel Terrane, in 

the Cariboo area of the Cariboo Chilcotin Coast region of British Columbia (BC), Canada (Figure 

6-1).  This terrane is rich in gold porphyry deposits, which are locally covered by dense layers of 

glacial deposits. In 2007, the BC Geological Survey started a major program of developing a 

modern geoscience data base over the Quesnel Terrane in order to facilitate the discovery of 

additional resources. This program contributed several geological, geophysical, and economic 

datasets on which innovative methods of discovery and data integration could be tested within the 

framework of the Next Generation Explorers competitions. An example of such data integration is 

presented in this chapter. My goal in this project is to utilize machine learning for evaluation of 

economic prospectivity for porphyry-related minerals using all available data.  

The Quesnel Terrane (also called Quesnel Trough, or Quesnellia) and the Stikine Terrane 

(also called Stikinia) extend for about 2,000 km along the axis of the Canadian Cordillera and 

represent two Mesozoic-age volcanic arcs preserved within western Canada. These terrains are 

joined at their northern ends, but within the study area, they are separated by the Cache Creek 

Terrane consisting of relics of the Tethyan ocean basin and oceanic arc rocks. 

The calc-alkalic and alkalic porphyry Cu-(Mo-Au) and Cu ± Au‐Mo‐Ag deposits occur in 

the Stikine‐Quesnel arc terranes, which constitute the most significant economic metal deposits in 

British Columbia.  Most of the economic metal endowment was emplaced during the mineralizing 

epoch is a 6‐m.y. pulse centered on 205 Ma. There are several active mines in the study area, with 

the mines at Mt Milligan in the north and Mt. Polly in the south shown in Figure 6-1. 

In the central part of the terrane, the quaternary cover is extensive and is estimated to reach 

over 50-m thicknesses locally. This sedimentary cover complicates geological mapping and 

sometimes reduces the effectiveness of geochemical techniques. For these reasons, it is important 

to integrate structural geology and geophysical data in order to evaluate the economic potential of 

ore deposits.  

Tertiary surficial placers in Quesnel may be evidence of eroded orogenic gold. The Cariboo 

and Barkerville gold districts in the southern part of the Quesnel have a historical production of 

https://www.travel-british-columbia.com/cariboo-chilcotin-coast/cariboo/
https://www.travel-british-columbia.com/cariboo-chilcotin-coast/
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approximately 1.2 million ounces of gold from lode deposits and 3.8 million ounces gold from 

placer deposits. 

 

Figure 6-1: Study area in British Columbia, Canada. The map axes are the UTM northings and 

eastings in kilometers. 
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Figure 6-2; Regional geology of the central and northwestern British Columbia, with known porphyry 

mineral deposits (legend). Major tectonic units are labeled. 

Figure 6-2 shows the porphyry-related mineral deposits in the study area. The porphyry 

deposits dominate the area of interest, and porphyry-related mineral systems express the best 

targets for explorers aiming for economic deposits with attractive size and grade potential. 

The ages of mineralization are important for estimation of the potential mineral types and 

prospectivity. The principal porphyry Cu ± Au–Mo deposit formation occurred was happened in 

Quesnel and Stikine terranes from 210 – 175 Ma, and the major gold deposits appeared in Stikinia 

at around 190 Ma, during the switching from tectonic compression to extension. These time 
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relations are incorporated in the analysis by creating the relevant structural and tectonic data to 

feed into ANN.  

The geophysical data in this study is provided by the Advanced Geophysical Interpretation 

Centre at Mira Geoscience. Maps of 3-D density contrasts, magnetic susceptibility, and inverted 

subsurface conductivity are the main geophysical data used in this study. These data were derived 

from multiple airborne gravity, airborne total-field magnetic, and airborne electromagnetic (EM) 

surveys, respectively. The data were collected as part of the Geoscience BC's QUEST Project, 

which was a program of regional geochemical and geophysical surveys designed to attract the 

mineral exploration industry to an under-explored region of British Columbia between Williams 

Lake and Mackenzie (https://www.geosciencebc.com/major-projects/quest ). 

6.2 Methodology 

Ore prospectivity is an old and immensely important subject in geology, and a vast 

literature on this subject exists. In this chapter, I do not intend to provide a comprehensive review 

of this literature but only give a brief summary related to applications of artificial neural networks 

(ANN) to data-driven mapping of mineral prospectivity.  

In areas with large numbers of prospects, the weights of evidence (WofE) modeling method 

is often applied to map the mineral potential (Carranza, 2004). The WofE method is based on a 

probabilistic model of prospectivity, which is also used in the present study. The area of interest 

is subdivided into equal-area cells, and probability of prospectivity P for some deposit D is sought 

for each cell. The estimation starts by measuring the prior probability as ( )prior cP N D N= , 

where Nc is the number of randomly selected cells and N(D) is the number of observations of D 

among them. This prior probability is updated based on statistical correlations between the 

occurrences or non-occurrences of D (denoted N(D) or ( )N D , respectively), and similarly 

occurrences or non-occurrences of some additional evidence B (N(B) or ( )N B ). This evidence 

can be, for example, proximity to a fault or gravity anomaly. The update of probability is based on 

the positive and negative weights of evidence defined as logarithms of likelihood ratios: 

https://www.geosciencebc.com/major-projects/quest
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.     (6.1) 

The spatial pattern of weight W+ shows how an observation of B increases the likelihood of D in a 

given area, and W- shows how B  increases the likelihood of non-observation D . Carranza (2015) 

suggested that a modification of this approach called the evidential belief modeling achieves 

similar performance for smaller sample sizes but is more stable with respect to missing data. Ford 

et al. (2016) further compared these two methods with fuzzy logic models. 

Machine-learning (ML) methods attempt estimating the posterior probabilities P(D) 

directly from geochemical, geophysical, and other evidence data without evaluating the likelihood 

ratios (eq. 6.1). Harris and Pan (1999), Rodriguez-Galiano et al. (2015), and Ghezelbash et 

al. (2019) reviewed several ML techniques to obtain predictive maps for potential mineral 

deposits: ANN and probabilistic neural networks (PNN), generalized regression neural network 

(GRNN), radial basis function networks (RBFN), logistic regression, random forest (RF) 

algorithms, regression trees, discriminant analysis and support vector machines (SVM), and fractal 

models (Haykin, 2009). Based on examples of epithermal gold prospectivity in Spain, Rodriguez-

Galiano et al. (2015), suggested that the RF methods the other ML techniques in terms of stability 

and success rates. At the same time, these authors suggested that when the ore deposit evidences 

are scarce, all ML techniques perform comparably. Maepa et al., (2021) combined the spatial 

statistical methods such as the WofE, SVM, and RBFN (chapter 2 in this thesis) for mapping gold 

deposits in Ontario. Yin and Li (2022) reported application of statistical techniques called 

Bayesian optimization and ensemble learning aimed at deriving of the probability distribution from 

mapped geological, geochemical, and geophysical data. Qin et al. (2021) used RF methods for 3-

D modeling of ore prospectivity in eastern China. 

As noted with regard to GRNN, PNN, and RBFN in chapter 2, many of the algorithms 

called neural networks in the preceding paragraph actually represent interpolation, spatial filtering 

and correlation analysis methods. Cluster analysis of the prospective and no-prospective points is 

a key part of the GRNN method (Haykin, 2009). Abedi and Norouzi (2012) directly used cluster 

analysis to prepare copper prospectivity maps. 



105 

 

6.3 Data  

Similar to chapter 5, to perform data classification using an ANN, I used ten input features, 

which included values extracted from four geophysical maps, two types of geological data, and 

four measurements of the crustal structure. The geophysical attributes from Mira Geoscience BC 

Modelling Report (2009) were:  

1) TMI (total-field magnetic intensity),  

2) Electric conductivity,  

3) Magnetic susceptibilities at the sea level, and  

4) Density contrast at the sea level. 

These data are shown in Figure 6-3. 

The density at the sea level was extracted from 3-D inversion of terrain-corrected QUEST 

airborne gravity data acquired by Sander Geophysics AIRGRAV system. Flight lines spaced 2 km 

apart were oriented east-west across the survey area. Some more detailed data were acquired using 

1-km flight-line traverses in the areas of the Gibraltar, Cariboo Bell and Mount Milligan deposits. 

The QUEST airborne magnetic data were collected from multiple surveys by Mira 

Geoscience. The data were processed to the total magnetic field (TMI above), which was further 

inverted for a 3-D susceptibility model of the earth on a 500  500  250 m grid using the UBC-

GIF MAG3D inversion code (Mira Geoscience BC Modelling Report, 2009).  

Therefore, although the magnetic susceptibility is estimated from TMI data, it can be 

viewed as a different attribute emphasizing the lateral variation of the deeper geology. This use of 

secondary attributes is analogous to deriving 25 attributes from seismic reflection records in 

chapter 5. 

The magmatic rocks are categorized by different ages (Tertiary, Cretaceous, younger 

Jurassic, Triassic Jurassic), as shown in Figure 6-4. These data were taken from multiple studies 

focusing on intrusive and volcanic rocks (Yousefi and Carranza, 2015; Pazand and Hezarkhani, 

2015). Intrusive rocks are among of the key features of finding porphyry-Cu prospects because 

intrusive rocks provide the heat sources for this type of porphyry mineralization 
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Density contrast 

 

 

Figure 6-3: Geophysical data used in this study (Mira Geoscience report, 2009). 
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Electric conductivity 

 

 

Figure 6-3; Continued. 



108 

 

 

Magnetic susceptibility 

 

 

Figure 6-3: Continued. 
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The two geological features were related to age attribution:  

5) Intrusive age classes ranked from youngest to oldest, and  

6) Volcanic age classes ranked from youngest to oldest.  

Combining age attribute to intrusive and volcanic classes is a new way to perform data integration.  

Total magnetic field 

 

 

Figure 6-3: continued. 
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The remaining four structural features are calculated based on tectonic switches. At a 

regional scale at which there exist reasonable paleo-reconstruction models, an explorer could look 

for brief tectonic switches, considering the hypothesis that magmatism of this age would be most 

prospective for significant porphyry deposits. These switches are the tectonic triggers often 

invoked as critical factors in diverse mineral system models. Thus, in Quesnel area, a quick switch 

from compression, extension and again compression happened between 190 ma and 180 ma which 

 

Figure 6-4. Outcrops of volcanic and intrusive rocks with age constraints. 
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approximately coincident with highest Cu and Au endowment. Therefore, the structural features 

input into the ANN are:  

7) Distance in metres to the nearest fault in the regional fault database (all faults are 

part of database); 

8)  Direction (relative azimuth between 0 and 180 degrees) with respect to the 

orientation of the nearest fault;  

9) Distance in metres to the nearest fault in the subset of faults that go from 

compression to extension and back into compression at ~190 Ma;  

10) Direction (similar to 9)) from cell centroid to the nearest fault in the subset of faults 

that go from compression to extension and back into compression at ~190 Ma. 

The faults used to evaluate these structural features are shown in Figure 6-5. 

With regard to the prediction of porphyry at depth, different geophysical measurements 

give different depths of investigation. The depths of the estimated density contrast and magnetic 

susceptibility reach to about 2500 m below the sea level, but 3-D conductivity models are limited 

to about 700 m depths of investigation.  

The combined observed data were geographic locations for which the attributes 1) 

through 10) above are evaluated and class labels, which were assigned values equal one for known 

porphyry-related mineral occurrences and label = 0 for no mineralization. The total number of data 

points (rows in this spreadsheet and selected cells on the map) was 455 including: 

I. 142 non-prospective points which contain some kind of metallic mineral 

occurrences (Figure 6-2).  Some geological processes or features characteristic of 

porphyry deposits may occur at these locations. Geophysical or geochemical 

evidence at these locations may look like potentially porphyry-related, although 

caused by different or unknown deposit styles. Therefore, target label = 0 was 

assigned to these points but false positive predictions are not ruled out at these 

locations. 

II. 86 non-prospective points at which no mineralization of any kind has been 

observed or reported. I treated these points as a mix of true negatives and no data 

and assigned label = 0.  
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III. 227 prospective points with known porphyry deposits (Figure 6-2). These points 

were assigned label = 1.  

A part of the resulting spreadsheet of input and output data is illustrated in Figure 6-6. 

 

Figure 6-5: Mapped faults used for evaluating structural parameters. 
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The use of a mesh with unique grid ID values (first column in Figure 6-6) facilitated 

collaboration between the team members working in Matlab and those working with ArcGIS and 

preparing input data. As shown in Figure 6-7, grid IDs allow converting the map data into 

spreadsheet forms such as Microsoft Access and other databases. Thus, after collecting the input 

data and selecting the mineral occurrences for training and validation step, a spatial grid was 

created relating points in the available rasters of geophysical data to vector data on plausible 

influences on prospectivity. 

 

Figure 6-6: A sample of the input and output spreadsheet of the machine learning algorithm. 

 

 

Figure 6-7: Example of mesh cells on the map with assigned grid IDs. 
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Figure 6-8: Procedure of applying machine learning techniques to mapping. 

The procedure of using machine-learning techniques to find the best potential spots of 

porphyry related deposits is shown in Figure 6-8. The first steps consist in collecting the data and 

creating a spatial grid described above. Then, I test and select a subset of features with greatest 

correlation to porphyry-related mineral occurrences and normalize the data ranges to facilitate 

comparison. After this, the data are subdivided into training, validation, and testing datasets. The 

samples are randomly subdivided into three categories: 70% of the points were assigned to 

training, 15% to validation, and 15% to test data. In the validation step, the trained model is 

evaluated for accuracy of prediction, and parameters of the algorithm are adjusted to achieve the 

expected performance of the trained model. 

          Datasets 

Multidimensional Grid 

Machine Learning and Classification 

       Validation 

Feature Selection and Normalization 
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6.4 Feature engineering 

To examine the training dataset, I perform the Pearson correlation test in order to identify 

any linear correlations between the ten input features (Figure 6-9, Figure 6-10, and Figure 6-11). 

This test consists in evaluating the Pearson correlation coefficient R for each pair of input features 

and removing the features which are highly correlated, i.e. have an absolute value or R exceeding 

a certain threshold. In most studies, the cut-off threshold value on |R| is taken equal 0.9 or 0.85 

(Haykin, 2009). However, the map attributes used in this study come from significantly different 

observations and should therefore be not highly correlated. The highest correlation coefficient 

R = 0.51 among the geophysical features is between the TMI (feature 1) and magnetic 

susceptibility (feature 3; Figure 6-9). The strongest data correlation across the entire dataset equals 

R = 0.79 and occurs between the distances to the faults of different ages (features 7 and 9). These 

levels of correlation are insufficient for discarding the data in Pearson test. 

 

 

Figure 6-9: Correlation between the four geophysical features 1 to 4. Plots on the diagonal of this grid 

show the histograms of the distribution of the respective features (shown by rows and columns 

of this grid), and off-diagonal plots show scatterplots of pairs of features. Pink lines indicate 

the least squares regressions relating these pairs of features. Numbers in the upper-left corners 

of plot boxes are the Pearson’s correlation coefficients. 
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Figure 6-10: Correlation coefficients between geological features 5 and 6. Plotting style the same as in 

Figure 6-9. 

The increased correlation R = 0.79 between features 7 and 9 (Figure 6-11) largely occurs 

because segments of the same or closely spaced faults are apparently listed as these features (and 

also as 8 and 10) in the database. These pairs of faults produce close distances and direction values, 

which can be seen by the distributions of dots on diagonal lines in the cross-plots (Figure 6-11), 

the located in generally the same area. In summary of the correlation analysis, Figure 6-12 shows 

the correlation-coefficient matrix between all ten features in the form of a heatmap plot. 

 

Figure 6-11: Correlation coefficients between the four structural features 7 to 10. Plotting style the same 

as in Figure 6-9. 
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Figure 6-12: Heatmap for the Pearson correlation matrix for all input data features. 

6.5 Results 

Using the assembled dataset, I performed prediction of a ‘prospectivity’ property, or 

probability of porphyry deposits P ranging from zero to one. I used a two-layer feed-forward ANN 

with 30 neurons in the hidden layer. Sigmoid activation functions were used in the hidden and 

output layers (chapter 2).  

During ANN training, the weights and bias values were updated using the scaled conjugate 

gradient backpropagation method. Although the validation and test set are kept away from training 

data, the validation set is used for tuning model parameters and the test set is used to evaluate the 

final tunned model performance. The training continued until the validation error stopped 

decreasing for six iterations (this selection is called the validation stop).  

The result of the application of neural network is shown in Figure 6-13 in the form of a 

prospectivity map with similar approach as a case study in Iran (Asadi et al., 2016). In this figure, 

black dots are the known porphyry occurrences , light blue dots are no-identified occurrences, dark 

blue dots are Non-porphyry occurrences and colors in the map represent different categories of  
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Figure 6-13: Predicted prospectivity map (plot courtesy of Dène Tarkyth). Colours show intervals of 

prospectivity values, and blue and black dots show the data labels (legend). 
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potential porphyry mineralization (ranges of P). The predicted porphyry class is the area that the 

probability is larger which means larger than 0.5. Thus, the yellow, orange and red areas are the 

potential spots for porphyry-related deposits. From red-color to blue-color regions, the probability 

of porphyry deposits decreases. As this figure shows, known deposits Quesnel area are 

concentrated in or around the red areas (P ≥ 80%), which suggests good quality of the prediction. 

At the same time, some of the red areas are not sampled by black dots, which suggests that 

additional exploration may be recommended in these areas. 

As for all data-driven methods, the results shown in Figure 6-13 may contain a limitation, 

which is the exploration bias due to the nonuniform area for sampling exploration sites and mineral 

deposits (Bonham-Carter, 1994; Coolbaugh et al., 2007; Ford et al. 2016). In mappings by 

supervised algorithms, the final model is often biased toward known mineral occurrences, because 

such occurrences are reported more frequently than non-occurrences (Harris and Pan, 1999; 

Carranza, 2004, 2008, 2015; Carranza and Laborte, 2016). In the present case, the exploration bias 

should be moderate because a half of the database consists of non-prospective cases (228 vs. 227 

prospective; section 6.3). Knowledge-driven methods (unsupervised, based on deterministic 

geological models) are not subject to such exploration bias, but their efficiency of prediction and 

success rate are usually much lower than for data-driven methods (McKay and Harris, 2016). 

To analyze the performance of the algorithm in more detail, a confusion matrix for the 

dataset is shown in Figure 6-14. The confusion matrix contains the counts of data points correctly 

and incorrectly predicted by the ANN. As noted in section 6.3, 142 of these non-prospective cases 

may have prospective-like geophysical signatures, and therefore we might expect a bias toward 

false positive predictions for these cases. However, the confusion matrix is nearly symmetric 

(Figure 6-14) and shows no such bias. 

Four useful summary metrics arising from the confusion matrix are shown in Table 6.1 

(Haykin, 2009). Each of these metrics is defined within the range of [0,1].  

Table 6.1: Validation scores of the applied neural network. 

Precision Accuracy Recall F1 Score 

0.79 0.78 0.77 0.78 
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In Table 6.1, the precision is the ratio of the number of true positive to the total of positive 

cases and the accuracy is the ratio of the number if true positive or negative cases to the total 

number of data (Haykin, 2009). The recall value (also called sensitivity, hit rate) is the ratio of the 

number of true positive to the number of real positive cases in the data. A system with high recall 

but low precision returns many results, but most of its predicted labels are incorrect when 

compared to the training labels. A system with high precision but low recall is just the opposite, 

returning very few results, but most of its predicted labels are correct when compared to the 

training labels. An ideal system with high precision and high recall will return many results, with 

all results labeled correctly.  If we want to be very confident about predicting prospective cases, 

we try to get high precision, but if we want to avoid missing many prospective cases, we should 

try obtaining a higher recall. High scores for both show that the classifier is returning accurate 

results (high precision), as well as returning a majority of all positive results (high recall). The F1 

score is defined as the harmonic mean of the precision and recall rates. A high F1 score means 

good prediction of both known positive and negative outcomes. 

All confusion matrix-statistics are remarkably close to 0.78 for the present dataset and 

algorithm (Table 6.1). This suggests that the prediction algorithm contains no bias, and the 0.78 

represents its level of confidence for any type of prediction. The remaining error probability 0.22 

should be due to the errors and limitations of the data. By using statistical methods like cokriging 

or probabilistic neural networks (e.g., Din and Hongbing (2019), Ekone et al. (2020)) this estimate 

of statistical confidence can be improved in future studies. 

 

Figure 6-14: Confusion matrix of porphyry prospectivity prediction neural network. 
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7. CHAPTER 7: Conclusions 

In this chapter, I summarize key results of the two case studies of this thesis (sections 7.1 

and 7.2). The discussion is close to the sequence of the study objectives in chapter 1. In section 7.3, 

I outline some outstanding questions, limitations of the present work, and suggest 

recommendations for future research. 

7.1 Results of reservoir characterization study 

Using machine learning methodologies, three groups of reservoir characterization results 

were obtained from the well-log and 3-D seismic dataset from Mansuri oil field in Iran: inversion 

for acoustic impedance (AI), porosity estimation, and classification of the reservoir into four 

classes corresponding to electrofacies  EF1 to EF4 identified in a previous study (Zahmatkesh et 

al, 2021). 

AI inversion was performed using the industry-standard constrained model-based method 

in Hampson-Russell software and showed good accuracy in matching the seismic data and 

correspondence with well logs. The inverted impedance variations were at 98% level of those 

obtained within 13 well logs, with 86% statistical correlation. These levels of accuracy are 

considered good in AI inversion practice. 

A feasibility study for porosity estimation showed that porosity has an about 73% 

correlation with the AI in the available well logs. Porosity estimation was performed using the 

inverted AI combined with additional seismic attributes. Feature selection using stepwise 

regression reduced the this set of seismic features to nine principal attributes. The resulting 

porosity volume is consistent with well logs and correlates with geological layering. 

After confirming a meaningful relationship between reservoir parameters through 

feasibility study at the beginning, inversion analysis was implemented, and different inversion 

methodologies were checked to obtain the best estimated acoustic impedance. Seismic-well-tie 

was performed using 13 wells, and a set of different wavelets was tested to obtain the highest 

accuracy of seismic-well-tie. The initial model was created to be used in model-based inversion 

analysis. The results of estimated acoustic impedance using constraint-model-based inversion 
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were compared to other inversion algorithms and found to be the best after a series of quality 

control. 

Porosity estimation was successfully implemented using seismic attributes and estimated 

acoustic impedance. The best seismic attributes were selected using stepwise regression, and 

different machine learning techniques such as PNN, MLFN and RBFN were used, and the final 

results were compared to pick the best methodologies based on performing a complete quality 

control process. 

Using the inverted AI and porosity volumes combined with additional 23 seismic attributes, 

a classification of the reservoir into classes EF1 to EF4 was performed using three algorithms: the 

probabilistic neural network (PNN), the standard artificial neural network (ANN), and an ANN 

with optimized data inputs proposed in this thesis (P-ANN). The P-ANN algorithm showed the 

best performance in validation and training scores compared to the other algorithms. The PNN 

results showed a more continuous layered structure within the reservoir. The P-ANN results also 

revealed a continuous layered structure with some intermixing of other classes, particularly within 

the upper half of the reservoir. Thus, multiple algorithms still need to be used for classification of 

reservoirs. 

In addition to class numbers (labels), probabilities of the classes and statistical confidence 

estimates were obtained from the classification algorithms. Plotting of these quantities as seismic 

sections or volumes is useful for reservoir characterization and interpretation. Cross-sections of 

classification confidence exhibit layered patterns related to those of AI and porosity. The P-ANN 

algorithm showed the largest and PNN the lowest confidence estimates; however, this difference 

was likely due to the strongly different models for class probabilities. 

Analyzing the confidence levels allows enhancing many types of interpretations of seismic 

data. With a given classification algorithm, it is useful to use the confidence volumes for plotting 

class labels or other types of seismic data. By plotting zones with confidence levels above 0.7 (for 

P-ANN) or 0.5 (for PNN), I obtained images of reliable classifications of the reservoir.  

After applying these three algorithms to the new samples from a selected seismic line, the 

PNN results show a more continuous layered structure through the Asmari reservoir in the Mansuri 

Oilfield. The results of the proposed ANN also show a continuous layered structure with some 
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intrusion from other classes rather than the dominant class, especially at the top half of the 

reservoir. I used a probability filter based on the probability of the selected class and applied that 

filter to the classification section made by the proposed ANN algorithm, and the classes with low 

confidence level were removed. Accordingly, these classes were mostly related to uncertain 

classes or were related to the selected classes with almost the same probability as the unpicked 

classes. The result of the applied probability filter on the PNN classification section shows a 

section that has lost most of the data at the bottom of the section, which implies a more uncertain 

classification in that part of the section. 

7.2 Results of porphyry prospectivity study 

In the mineral prospectivity study in central and northwester British Columbia (chapter 6), 

geophysical, geological mapping, and structural data were combined in an integrated ANN-based 

interpretation. Feature engineering showed that all ten types of data could be used in the 

interpretation.  The result if this study was a new prospectivity map of porphyry deposits within a 

part of the Quesnel Terrane. The predicted prospectivity showed good correspondence with 

existing data, and the predicted porphyry deposits were considered geologically reasonable. In 

several areas, the estimated probability of prospectivity suggested directions for further field 

exploration. 

7.3 Recommendations for future research 

In this study, a variety of inversion, statistical, and machine learning approaches were 

applied and compared. Although these applications were successful and led to practical results 

such as cross-sections of acoustic impedance, porosity (chapter 4), classifications of seismic facies 

(chapter 5), or a map or porphyry perspective (chapter 6), the study also suggested a number of 

ways for further enhancements of the approaches and results. Both the geophysics and machine-

learning parts of the work can be continued to enhance lateral continuity of the images.  

This can be achieved by filtering the noise, improving the algorithms for attribute 

extraction, and also by changing the ANN optimization algorithms to honour lateral 

continuity. These enhancements can be subdivided into three categories: 1) improvements in the 

specifically geophysical aspects of inversions, and 2) improvement of the machine-learning 
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techniques, and 3) further use of these datasets for extraction of additional information and method 

development. 

7.3.1 Geophysics aspects 

In this thesis, the emphasis was placed on machine-learning methods whereas the input 

geophysical features were obtained by standard techniques. However, some limitations of these 

techniques were also revealed which affected the accuracy of the results. In particular, as noted 

chapter 4, the inversion for the AI from seismic data underestimated the seismic-frequency 

variation of the impedance within the wells by about 16%. Although this underestimation does not 

affect the classification of seismic facies (chapter 5), it is still a significant deviation of the AI from 

reality. This deviation also caused an underestimation of the reflectivity and porosity. 

To overcome the above inaccuracy of the AI, different inversion methods need to be used. 

In particular, the method by Morozov and Ma (2009) is explicitly formulated to obtain an AI which 

would reproduce the spectral amplitude of reflectivity within the well logs. This method also uses 

a Delaunay triangulation method for spatial interpolation, which is free from the ‘bull’s eye’ 

artifact mentioned in chapter 2.  

In the study of mineral prospectivity (chapter 6), the geophysical aspect can also be 

enhanced in potential future studies by deriving maps of additional geophysical attributes. For 

example, pseudo-gravity, analytic signal, spatial derivatives, Euler derivatives, curvature and other 

attributes can be derived from the magnetic and gravity maps and used as inputs into 

classifications. These transformations enhance the spatial gradients, and they could be useful for 

detecting mineralized zones. 

7.3.2 Machine-learning aspects 

Regarding possible improvement of machine-learning techniques, it would be useful to use 

more complex for application of ANN to the data, such as convolutional or and recurrent neural 

networks. The ANN used in this study were applied to only one sample at a time (one time sample 

in a seismic record in chapter 5 or one grid cell in a map in chapter 6). This choice was made in 

order to keep the approach simple and tractable in this thesis. However, for seismic or geological 
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mapping applications, a more appropriate and accurate approach is to apply the ANN to a broader 

vicinity of the sample, i.e. to treat the ANN as a temporal or spatial convolutional filter. This type 

of ANN application is referred to as the convolutional in machine learning (Haykin, 2009).  

In application of machine learning techniques to geological mapping (chapter 6), the 

present study was somewhat limited by the small number of proven porphyry deposits, and the 

known labels are available only at a small number of locations compared to the vast study area. 

Perhaps a larger and more complex dataset containing not only porphyry but other minerals such 

as gold could be used to constrain the target mineralizations better. Potentially, mutual relations 

between occurrences of different minerals could be developed and used for improving the 

confidence in their predictions. 

A significant enhancement of the machine-learning results, and also of the AI and porosity 

inversions of this thesis could consist in producing more detailed and accurate estimates of their 

uncertainties. Such estimates can be obtained by inversions with randomized parameters, known 

as bootstrapping inversion or the Random Forest Decision Trees in machine learning 

(Haykin, 2009). These randomized methods could be used for feature ranking to find the most 

critical features in our 10-dimensional feature space, and also to test for the impacts of the 

algorithm regularization parameters. In addition, it would be interesting to obtain the so-called 

Naïve Bayes classifier and compare its results to the pattern recognition classifier in chapter 5.  

7.3.3 Further use of the datasets 

The potential of the datasets in this thesis is also not exhausted, and Since the Mansuri oil 

field has a relatively simple structure of a gentle anticline and its seismic data is of high quality, it 

would be a good case study to use different deep learning techniques and perform classification or 

other types of reservoir parameter estimation. 

The proposed approach to constructing the optimal of attributes (chapters 2 and 5) could 

be used in other studies and could be compared to the results of other machine learning techniques. 

In particular, if using more geophysical attributes and convolutional neural networks in the mineral 

prospectivity mapping study, using optimized and orthogonal attributes could improve its results.  
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