
Lecture 1: Introduction

• Problems and objectives

• Scales: observational and of microstructure, 
• Importance of the macroscopic scale, homogenization

• Types of anelasic phenomena: transient deformations, oscillations, waves

• Key concepts: characteristic times, empirical modulus, Q-factor, attenuation, dispersion

• Two approaches to anelasticity:

• Conventional: the viscoelastic model

• Approach of this course: macroscopic (Lagrangian) continuum mechanics

• Reading: Chapter 1 in the text

• Website: http://seisweb.usask.ca/classes/UPC-2024/WWW/index.html
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Objectives: “How Rock Deformation Works”

• The goal is to describe phenomena occurring within rock during deformations
• Passage of a seismic wave, laboratory experiment (weak)
• Pore-fluid flow
• Tectonic or geotechnical impact on the reservoir (strong)
• Deformations with after-effect (continuing after the impact)

• Explaining the data in any of these experiments empirically is usually not that difficult
• Creep laws
• Viscoelastic laws
• Darcy law, pipe flows, etc.

• The problem is:
• To describe all of the above phenomena consistently
• To identify rock properties which can and should be measured
• To find the driving mechanisms, not just empirical relations

• Knowledge of physics helps achieving these goals

Objectives 2



General approach

• Methods of theoretical 
physics are well 
established

• They allow rigorously 
and completely solving 
all problems in rock 
physics and seismic 
waves

• In this course, I illustrate 
some applications of the 
general principles of 
Lagrangian mechanics 
and thermodynamics  to 
these problems

General 3



Types of deformations and terminology

• Four deformation types are differentiated for rock: Elastic, inelastic, anelastic, plastic

• These types are differentiated by studying the behavior of rock in several experiments

• Usually, we need to pay attention to time dependencies of strain or stress, and dissipation of heat
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Elastic, anelastic, and plastic 
deformations

• Described by empirical behavior under load:

• Burgers’ model contains examples of all three 
of the basic deformation types

• Elastic – the body instantly returns to the 
original state when load is removed

• Anelastic – the body restores its state after 
some time delay

• Plastic – the deformation can extend 
indefinitely 

• Note that different deformations are 
associated with some “internal variables”: 

• Movements of groups of grains

• Pore fluid flows

• Heat flows, etc.

Figure 1.1. 

Burgers’ model of deformation. Stress  is applied to the ends of this 

chaoin of mechanical elements and causes observed deformation 1. This 

deformation includes an anelastic part (involving both elasticity and 

viscosity, 2), plastic part (viscosity only, 3), and pure elastic part (the 

unlabeled deformation of the spring M1). 

Note that anelastic deformations always include movements of some 

internal degrees of freedom (white dots in this plot) which are not 

observed in the mechanical strain-stress testing experiment.

Anelastic

Plastic

Elastic
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Porous rock

• Most work in exploration rock physics focuses on 
porous rock

• Gassmann’s model is the simplest representation 
of porous rock:

• Fluid-filled pores are interconnected so that they have a 
common pressure

• Pore infills have zero shear rigidity 

• Relatively slow deformations are considered: rock frame 
and fluid are at quasi-static equilibrium

• Physically, this means a description of rock by only 
three macroscopic parameters: 

• Two dilatations: of the whole rock and pore fluid

• One shear of the whole rock 

• Gassmann’s equation (relation between four observed 
moduli KU, KD, Ks, and Kf) is an automatic consequence 
of having only three independent parameters

• The microstructure is completely unimportant 
when considering static deformations

• All models should satisfy Gassmann’s equation for near-
static deformations
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Microcrack with  “squirt flow” 
(Murphy et al., 1986 )

Numerical model of 
connected pores 

(Alkhimenkov and Quintal, 
2022 )

Fractal structure with patchy saturation 
(Rubino and Holliger , 2013)

Popular models of pore space

Soft pore (flat)

Stiff pore 
(round)



Scales

Scales

• When considering non-static deformations like waves, 
more detail of microstructure is revealed. This detail is 
often characterized by the notion of spatial scales 

• Four characteristic spatial scales of investigation should 
be recognized:

• Microscopic, mesoscopic, and macroscopic scales of rock 
structure

• These scales correspond to characteristic times (or 
frequencies) of relaxation processes 

• Observational scale at which the equations of deformation 
and motion are written

• This scale is given by the Representative Elementary 
Volume (REV) scale 

• At smaller scales, large numbers of parameters are 
needed to describe rock, for example:

• Sizes or shapes of pores, gas bubbles, patches of 
saturation

• Radii of capillary menisci

• Dimensions and aspect ratios of “squirting” microcracks

• However, this detail is unobservable and unimportant 
in macroscopic experiments 7



Observation scale

• Importantly, only the macroscopic REV 
scale is seen in practical observations in 
laboratory rock physics or in seismic 
waves

• At this scale, we should only use averaged 
material properties:

• Porosity (scalar  and porosity tensor )

• Density 

• Effective elastic moduli 

• Permeability 

• Thermal properties (specific heat, heat 
conductivity)

• Anisotropy

• Elastic wave speeds, impedance

• Other properties to describe anelasticity 
(which ones? This is the big question!) 
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Rock-structure scales

• Here is a model of a rock with spherical pores, 
subjected to oscillating pressure

• Question 1: What is the scale of this 
microstructure? 

• Answer: apparently “microscopic” – the size of the pores. 
However, there are many sizes of pores here (and more in 
real rock).

• Question 2: What is the scale of this pore-fluid flow?
• Answer: the same microscopic, or “local”

• Question 3: Is this Gassmann’s rock?
• Answer: In principle yes, but the “average” pore pressure 

has to be defined in an intricate way

• In Gassmann’s rock, pores should be identical or connected, 
so that they have the same pressure. In this model, smaller 
pores have larger pressures 

• Question 4: Is this Biot’s rock? Biot’s model is known 
as an example of “global” scale pore-fluid flow.

• Answer: No. Biot’s rock requires permeability of the whole 
REV
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Note that this difference is a question of 
pore connectivity but not of scale



Pore-flow scales

• Here is how the Biot’s model look like:

• Note that the difference is not in pore 
shapes or characteristic flow scales but in 
pore connectivity

• The connectivity equalizes the pore pressure, as 
required by Biot’s model

• Thus, the difference is really in the  
permeability of the rock

• The pore-fluid flow is still principally “local” 
(black arrows; expanding pores of various 
sizes)

• Micro- and mesoscopic

• The difference in scales is not that important 
because it is complicated by variations of 
shapes and sizes of pores and other elements 
of structure

• Question 4: So, where is the “global” 
(macroscopic) Biot’s flow in this picture?
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“Global” Biot’s flow

• Answer: There was no global flow in 
that model

• The “global” flow would be observed in 
a different experiment:

• If a macroscopic-scale pressure gradient is 
imposed in some direction, a net flow is 
induced through the conduits between 
pores

• This results in a pore flow in the same 
direction (if the random microstructure is 
isotropic)
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Deformation patterns, variables, and material properties 

• In reality, the difference between different deformation phenomena is not in their apparent 
scales but in different mechanical properties related to certain shapes of deformation

• On the observational scale, these different patterns are described by different types of 
macroscopic variables:

• Deterministic flows are measured by net (average, observable) displacement vectors: 
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netu u

net div   +

• For random divergent movements, there is no net displacement, and the flows need to be measured by 
average strains (divergence or shear). These are basically scalar quantities: 

• The big question is what mechanical parameters can be selected to 
characterize the medium, and not just to describe the resulting flows

• These parameters are not spatial scales of the flows but macroscopic 
mechanical properties. These material properties can be of only three kinds:

• Elastic moduli for each of the above forms of deformation

• Viscosities associated with these deformations

• Inertia of the flows

The question is how to 
identify these material 

properties.
This is what we try doing in 

this course 



Deformations

• Deformation of a material involves numerous 
microscopic-scale physical phenomena

• By their macroscopic (observable) effects, they 
can be classified into four groups:

• Viscosity-type (mechanical friction)

• Thermal (involving temperature variations)

• Kinetic (like chemical interactions, diffusion)

• Scattering (“elastic”, without mechanical energy loss)
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Wave-Induced Fluid Flow (WIFF)

• One specific “coupled-field” mechanism 
(red box ‘j’ in the preceding slide) is 
particularly strong  in porous rock 
containing fluids (brine, gas, oil)

• This mechanism consists in interaction of 
porous solid frame with a relatively mobile 
fluid 

• It produces the so-called “Wave-Induced 
Fluid Flows” (WIFF)

• WIFFs can take on numerous forms and 
occurs on all three spatial scales (figure on 
the right)

• However, on the REV scale, the averaged 
effects of all these WIFFs are similar 

• The different types of WIFF are 
differentiated by the characteristic times 
of relaxation processes 
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Characteristic times 
and frequencies

• Different anelastic mechanisms 
(WIFF or other) are recognized by 
measuring the characteristic 
relaxation times c associated 
with them

• The times are measured by 
methods discussed a little later. 
The frequency-domain method is 
shown on the right 

• Note that different mechanisms 
lead to different  dependencies of 
the attenuation coefficient (f) 
and inverse Q-factor Q-1(f)  on 
frequency f

Figure 1.4
Schematic frequency dependencies of wave energy dissipation for different mechanisms 
of anelasticity in a material without internal variables: a) temporal attenuation coefficient 
 chapter 5), b) inverse quality factor Q-1 . Scaling of the axes is arbitrary. 

For viscosity, two functions are shown, corresponding to linear ‘wet’, gray dotted line), 
and nonlinear (‘dry’, black dotted line). The “wet” viscosity case also represents the 
saturated porous rock. Expressions in the labels in (a) indicate three different regimes of 
thermoelastic dissipation (chapter 6).
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Relaxation time and rock viscosity

• When stress is applied or removed, rock bodies often exhibit time-dependent 
responses with different relaxation times 

• Currently, it is believed that the different times are related to different spatial scales of pore-
fluid flows (WIFF) 

• For example, relaxation of large patches of saturation occurs slower than relaxation of small 
pores 

• The time   gives roughly the size of the part of the body (heterogeneity) 
responsible for this oscillation:

l Fc
(c is the wave speed, and F is some formfactor related to 
the assumed average shape of the pores)

rM  ( is the elastic modulus)

Characteristic times
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• This is how numerous models of WIFF are constructed (“squirt flow”, patchy 
saturation, etc.)

• They basically consist of derivations of factor F for some assumed shapes of the pore (sphere, 
“penny”, “wedge”, “digital rock” structure, etc.)

• However, both l and F are practically impossible to determine for real rock structure

• By contrast, in a general and assumption-independent way, the relaxation time 
simply indicates the characteristic viscosity of rock (without assumptions and 
approximations): 



Observations of elasticity and anelasticity

• Having considered the structure and properties of materials, let us now consider 
observations which help us recognize these properties

• There are three groups of commonly used observations of rock anelasticity:

1) Time-domain measurements in the lab: Transient (time-dependent) 
deformations

2)  Frequency-domain in the lab: Deformations of rock samples by sinusoidal 
(harmonic) oscillating forces 

3) Frequency-domain in the field: Frequency-dependent observations with seismic 
waves

• We will consider each of these groups separately
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Observation 1: Transient deformations
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Figure 1.5
Linear relaxation of strain in a rock sample. After a step in stress  is 
applied at time t = 0, the initial strain becomes U (‘unrelaxed’), and it 
gradually approaches the ‘relaxed’ strain  at t → ∞. After the loading 
stress is removed at time t = T, the relaxation process is repeated in 
the opposite direction. 

Note that with periodic loading and unloading, the pattern of strain 
lags behind the stress. This is an indication of the stress-strain phase 
delay for periodic processes. 

Figure 1.6
Linear relaxation of stress in a rock sample. After a step in strain  is 
applied at time t = 0, the initial stress ‘overshoots’ the equilibrium 
value and becomes U (‘unrelaxed’). With time increasing, the stress 
gradually reduces to the ‘relaxed’ (equilibrium) stress  at t → ∞. After 
the strain is removed at time t = T, the stress relaxation process is 
repeated in the opposite direction. 



Observation 2: Forced harmonic oscillations
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Figure 1.7
An apparatus for Young’s modulus measurements (from 
Mikhaltsevitch et al., 2015). A jacketed cylindrical rock core (yellow) is 
placed in a column with an aluminum cylinder (standard), so that they 
receive a common vertical pressure oscillating in time. The resulting 
axial and transverse strains are measured by a strain gauges attached 
to the sample (yellow) and also to the standard. Confining pressure 
(may also be oscillating) is applied using hydraulic fluid surrounding 
the sample (blue). Pore-fluid pressure is regulated via the fluid line(s) 
connected at the end(s) of the sample.

Principle of torsional phase-lag Q measurements for shear 
deformation (Jackson and Paterson, 1993). From the two shaded 
angles, the ratio of strains in the sample and the aluminum standard 
element is determined. Because the torque within the specimen and 
standard is the same, the shear strain of the standard and its shear 
modulus can be used to determine the  stress/strain ratio within the 
specimen.



• Data (ratio of the strains of the 
sample and aluminum 
standard)are presented as 
“effective modulus” M(f)  

• Young’s or shear moduli in the 
preceding slide

• This ratio is a complex value:

• Real part M  is the ‘empirical 
modulus’ and argument is the 
strain-stress phase lag 

• Arctangent of this phase lag is 
called the inverse Q-factor:

Forced harmonic oscillations
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Figure 1.8
Subresonant measurements of Young’s modulus (from Batzle et al., 2001) 
A sinusoidal axial pressure at frequency 5 Hz is applied to a column 
consisting of an aluminum standard and the rock sample. Vertical strain 
gauges (Figure 1.7, left) measure Young’s modulus deformation (black and 
blue curves), and horizontal gauges give the Poisson’s ratio (green). Note 
the slight phase lag of the black curve relative to the blue one – this is the 
measured Q-1 (equation on the left).def
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• The experiment is repeated at multiple 
frequencies, and observations like shown in 
this figure are often made:

• The modulus (real part of the complex 
modulus M(f)) shows an increase at some 
frequency f0. This increase is called ‘modulus 
dispersion’

• Q-1 shows a peak at the same frequency. This 
peak is called ‘attenuation’ because 
mechanical energy is dissipated when Q-1 is 
large

• However, note that the peak value of Q-1 only 
depends on the elastic moduli MR (‘relaxed’) 
and MU (‘unrelaxed’)

• This follows from the “Kramers-Krönig relations” 
(explained later)

• Frequency f0 is the only true ‘attenuation’ 
observation
• For example, it reduces when more viscous 

fluid in placed in rock pores
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Figure 1.9
Schematic modulus dispersion and attenuation spectra observed in 
experiments with seismic waves and rock samples. The dynamic modulus 
M undergoes a step (“dispersion”) by some amount of “modulus defect” 
M near frequency f0, and the attenuation factor Q-1 shows a peak of 
height proportional to M/M at the same frequency. These particular 
shapes of the dispersion transition and attenuation peak can be modeled 
by the standard linear solid (Zener) model (Lecture 2; chapter 5). 

Dispersion and attenuation of empirical modulus



• For a seismic wave, the effective modulus 
M is related to wave velocity c as  
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Observation 3: Waves

M
c


= ( is the density)

• Because of the complex-valued M(f), c(f) is 
also complex-valued and has a similar 
frequency dependence with a Q-factor 
responsible for imaginary part of slowness:

11 1
1

2

i
Q

c M c

 − 
=  + 

  
(slowness)

• What does this Q-1 mean for a wave? (see 
next slide)
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Figure 1.9
Schematic seismograms showing seismic coda waves from an 
earthquake, with lower and higher attenuation. This is about what 
you see in an Acoustic Emissions experiment.

Higher apparent attenuation is recognized from shorter duration of 
the coda T1/2, which can be described by larger values of Q-1, , or  
(parameters  and  describe the geometrical spreading; I do not 
discuss them in this course).

Q for waves

where

( ) 1

0, exp exp
2

x T
u x t u i t Q

c


 −    

= − − −        

• The Q-1 is seen somewhat differently when 
looking at time and distance dependencies of 
waves

• For time-dependent waves (like free 
oscillations and seismic coda): 

• However, A0 may depend on time too…

• For distance-dependent traveling waves, Q-1 
describes the decrease of amplitude with distance x:

x
T

c
= is the travel time

( ) 1

0 exp
2

t
A t A Q

 − 
= − 

 
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Theories of relaxation (anelastic) phenomena 

• There are two general approaches to explaining the anelastic phenomena 
described above:

1) Conventional and very broadly used: The heuristic viscoelastic model. 
• The key idea is that the time-dependent creep seen in transient experiments 

and frequency-dependent and phase-delayed responses in harmonic-oscillation 
experiments are inherent in the material 

• This approach easily explains the above experiments but has problems with 
physical meanings of material properties and nonphysical wave solutions

• Also has difficulties with porous rock

2) Less known, maybe more difficult, but correct and much more powerful 
approach: Classical continuum mechanics
• It has multiple forms. We will use the Lagrangian form

• It is based on time- and frequency-independent material properties which are 
not so obvious from observations

• All interactions are local and instantaneous but depend on gradients and time 
rates of deformation

This will be 
described in 

Lecture 2

We will 
study this 

later in the 
course
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