
Lecture 2: The Viscoelastic Model (VE)

• Mathematical principles: 
• Boltzmann’s after-effect 

• Correspondence principle

• Phenomenology: creep, modulus and velocity dispersion, Q

• Integral and time-differential strain-stress relations

• Causality and Kramers-Krönig relations

• Kinetic equation

• Zener’s and related equations

• Commonly used ‘linear solids’ models
• Time-domain responses and empirical-modulus and attenuation spectra

• Interpretation of frequency-dependent attenuation and dispersion spectra

• Problems, limitations, and applicability of VE model

• Reading: Chapter 2 in the text
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The problem

The Problem 2

• The goal of the viscoelastic model is to provide equations describing linear 
relaxation experiments for stress and strain shown below (plots from Lecture 1)

• This goal is achieved by constructing phenomenological stress-strain relations 
dependent on time. They describe the behavior of deformation (variation of 
strain and stress with time) without considering the physics of deformation.

• This means that the stress-strain  relations are obtained from pure mathematical 
principles and without consideration of physics 
• Later, I will criticize this model for this lack of physics, but now, let us just consider it



Mathematical principle #1: Boltzmann’s (linearity) principle

• Boltzmann’s principle is simply a linear relation between strain and stress time functions

• This principle means that if measure a time-dependent stress (t) and strain (t) in some 
deformation, then one of these time functions can be derived from the other, and vice versa
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• Linearity means that if we have two experiments in which we measure  strain functions 
1(t) and 2(t) and the corresponding stress functions 1(t) and 2(t), then arbitrary linear 
combinations of these functions also give valid experiments:



Mathematical principle #2: Correspondence principle

• What is the difference between an elastic and anelastic material?

• The correspondence principle answers this question in the following way:

1) When anelasticity is “turned on”, the elastic modulus and compliance become functions of time:

2) Instantaneous stress-strain relations become convolutional relations containing all preceding times:
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However, note that this transition ‘’ is 
actually impossible to achieve or verify.
There exist no ‘elastic’ analogs for real 
anelastic materials.



Modulus and compliance functions

• The VE modulus M(t) and compliance function J(t) consist of a singular (instantaneous, elastic) 
response at t = 0 and extended “memory” responses at t ≥ 0

• The memory functions interpolate between the “unrelaxed” response at t→ 0 and “relaxed” 
response at  t→ ∞ 
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Frequency domain

• Fourier transform presents the signal u(t) by a superposition of harmonic oscillations:
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• In the frequency domain, convolutional strain-stress relations are simple ( = 2f):
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• Q-factor is one of the most important measured quantities. 
It only exists in the frequency domain: 
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Phenomenology

• There are two types of observations which are explained by the viscoelastic model (VE):
1) Time-domain – creep (transient deformation)

2) Frequency-domain – modulus (or wave velocity) dispersion and attenuation

• The key observation is that in rock deformation, there is always some characteristic delay 
(“relaxation”) time   or some characteristic frequency  f = 1/

• For example, note the delay times  (strain relaxation time) and  (stress relaxation time) in 
static loading experiments discussed before:
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Note that the overall periodic variation of strain is delayed relative to stress 



Phenomenology #1: Creep

• The basic phenomenology addressed by the viscoelastic model is creep, which is the time-
delayed deformation observed in static loading experiments 
• The viscoelastic theory simply assumes that this transient behavior is also contained in all other 

types of deformation

• Creep is usually described by giving the time-dependent creep function (t). This function is 
the relative deviation of strain from elastic deformation, measured in an experiment with 
static stress loading  =  0(t): 
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Andrade law
Characteristic time 

(for small t):

Lomnitz’s model
From this model, the 
idea of Q-factor for 
materials seems to 
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• Examples:



Phenomenology #2: Absorption (phase-lag) peak or band

• The typical observation is the “absorption peak” and “modulus 
dispersion band”

• The typical absorption peak predicted by the VE model 
(“standard linear solid”, or “Zener’s body”) looks like this:
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(linear scale in Q-1) (logarithmic scale in Q-1)

( )
def

1 arctan stress-strain phase lagQ− =

• Note that for f << fpeak, Q-1  f, and for f >> fpeak, Q-1  1/f



Phenomenology #3: Modulus dispersion

• The frequency band of increased Q-1(f) also “modulus 
dispersion band” – the measured modulus changing from MR 
(“relaxed”) to MU (“unrelaxed”)

• The typical modulus dispersion (in “Zener’s body”) looks like 
this:
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• Note that the shape of ImM(f) is close that of Q-1(f)

• This is because

MR

MU

( )11M M iQ−= −
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Causality

• Regardless of the physical mechanisms, the data measured in any of the above 
mechanical experiments must satisfy causality constraints

• This requirement means that the data (even sine functions recorded in a frequency-
domain experiment) represent a record obtained from some impulsive source

• For example, modulus M(t) recorded 
after a pulse of strain, or compliance J(t) 
recorded from a  pulse of stress:

• This should be the case for any 
mechanical system like rock-physics 
apparatus

• The causality requirement simply means that M(t) = 0 and J(t) = 0 for all t < 0. The 
response cannot appear before the source at t = 0.

• Mathematically, this condition is written as:                                            and 

where (t) is the Heaviside step function:
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Kramers-Krönig (causality) relations

• Simple time-domain properties of recorded signals have 
somewhat more complex forms in the frequency 
domain:

1) The time-domain signal is real-valued.   In frequency 
domain, this means the following symmetry of the real part 
of the complex spectrum and anti-symmetry of the 
imaginary part:

2) Causality ( M(t < 0) = 0 ) means the integral Kramers-Krönig 
relations between the real and imaginary parts of 
M(): 

• For spectra with band-limited attenuation (ImM), the 
integral Kramers-Krönig relation can be approximated by 
a differential one: 
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Kinetic equation
• Now let us look for a phenomenological differential equation that can 

describe  the shapes of relaxation processes like (t) again shown on the 
right:

• A simple and general law of this kind is given by the kinetic equation
• This equation is commonly used to describe diffusion, heating, or variations of 

concentrations of elements during chemical reactions

• For a given (thermodynamic) variable   (such as strain), assume that there 
exists some equilibrium (‘relaxed’) value      depending on some external 
factors like  (stress) and temperature T: 
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• Then, if   is currently shifted from this equilibrium, then  the kinetic equation expresses its rate of 
change:

which means that (t) approaches the equilibrium at a rate proportional to  the deviation from it.

• If                    stays constant with time, then this approach to the equilibrium is exponential: 
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Note the characteristic time r
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Zener’s (Standard Linear Solid) equation

• The kinetic equation can also be written as:

• Zener’s equation generalizes this relation to   being strain and stress:

( ),r T    + =

( )RM      + = +

• With constant stress (            ), this is a kinetic equation for strain (taking                      ), with 
relaxation time  

• Vice versa, with constant strain           , this is a kinetic equation for stress (t), with relaxation 
time  
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• Another useful way to write this equation is by using differential operators:
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• For a harmonic oscillation with                            and                           ,  this equation becomes 
very simple and directly gives the complex modulus:
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Zener’s Equation 15

Generalized Zener’s equation

• Zener’s equation can be generalized using additional time derivatives:
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• … and the derivatives can be further generalized as fractional (non-integer orders)…

• These equations describe “viscoelastic bodies” with spectra M() being (almost) arbitrary 
rational functions of (-i) with real coefficients: 
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Interpretation of MR, MU, , and  in Zener’s equation 

• As you see, it is often useful to first write the most general equation and then look for the 
meanings of its parameters. The same approach will be taken in Lagrangian mechanics.

• What are the meanings of “material-property” parameters in Zener’s equation?

• MR is the relaxed modulus (modulus observed at equilibrium, when both            and          )

• The unrelaxed modulus is “hidden” but still present there. If we consider very fast deformations, 
then the time-rate terms will dominate, and therefore the unrelaxed modulus

0 = 0 =

U RM M 





 
= =

• Therefore, MU  is contained in the ratio of the two taus: 
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




=

• And so, it turns out that Zener’s equation contains only one characteristic relaxation time:

r    =

Note that therefore always  > 
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Spring-dashpot diagrams

• Graphical spring-dashpot diagrams give a convenient way for representing equations of the 
kinetic or Zener’s type

• The elements are combined to achieve:

• Desired low-frequency response (MR)

• Desired high-frequency response (MU)

• Desired frequency (or a broader band) of transition from MR to MU 



Spring-Dashpot Diagrams 18

Rules for spring-dashpot arrangements

• For elements connected in series, the stress is common to all of them. Therefore, the stress 
can be used as an independent variable, and the strains derived from it.

• For elements connected in parallel, the strains are equal, and they can be used for 
parameterizing the deformation.

• For a spring element, the strain and stress on it are related by   

• For a dashpot element, the strain rate and stress are related by 

M =

 =

• Therefore, any stresses is generally represented by linear combinations of strains and strain 
rates in the various elements:

springs dashpots 

i i j j

i j

M   = + 

• Let us consider several standard diagrams known as linear bodies (or linear solids)
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Maxwell’s body

• Maxwell’s body consists of a spring and a dashpot connected in 
series:

• Using   (common to both elements) as an independent variable, 
Zener’s type equation for this body is obtained (try this!): 

M


  + =

• Thus, comparing to Zener’s equation:

• MU = M

• MR → 0 (plastic deformation)

• Strain relaxation time → ∞ as  

• Stress relaxation time  

• Complex modulus  

M
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Kelvin-Voigt’s body

• Kelvin-Voigt’s body consists of a spring and a dashpot connected in 
parallel:

• The strain   (common to both elements) can be used as an 
independent variable, and Zener’s type equation for this body is 
(verify this!): 

• Comparing to Zener’s equation:

• MU = ∞

• MR = M (elastic deformation)

• Strain relaxation time is finite: 

• Stress relaxation time  = 0 

• Complex modulus  

M



 =

M  = +
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Zener’s body (Standard Linear Solid, SLS)

• The Zener’s body has two graphical forms:

• Both forms lead to the same Zener’s equation 
for the observed strain and stress:

• …but different relations for internal variables

• For diagram a):
•                  (from basic relation and  and  below)

• MR = M1 (only this spring is deformed in relaxed state)

• Strain relaxation time: 

• Stress relaxation time 

• Complex modulus  
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Properties of the Standard Linear Solid

• Let us write the Zener’s equation with constant stress  at t ≥ 0:

• This is a kinetic equation (see above), with solution:  

• Constant C here is selected so that the initial strain is “unrelaxed”:

• and therefore:                                                          (note that C < 0) 

•  Creep function (defined by                                          )    is then: 
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Properties of the Standard Linear Solid (cont.)

• From the complex modulus spectrum:

• Attenuation factor:  

• where the angular frequency of the peak in Q-1(f):   
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Note that the peak frequency is inversely proportional to 
Thus, frequency of the peak is a true indicator of viscosity 

(internal friction).
The magnitude (height) of the Q-1() peak is an elastic property 

(next slide, and recall the Kramers-Krönig relations)
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• The elastic and anelastic parameters of a rock can be obtained by approximating the measured 
ReM(f) and Q-1(f) spectra by the spectra of an SLS and estimating MR, MU, , and  :
• Plateaus in the ReM(f) spectrum give MR and MU  (elastic properties)

• From MR and MU, you can obtain the ratio of  and  (convenient to denote by 2)

• Then,  verify that the height of the SLS Q-1(f) peak equals     

• The frequency 0 = 2f0 of the peak in Q-1(f) gives  and  (only one anelastic property): 

Interpretation of M(f) and Q-1(f) data

Young’s modulus dispersion 
and attenuation (Q-1) 

measurements in glycerol-
saturated Berea sandstone 

at three temperatures  
and their approximation by 

an SLS (lines)
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= = (so, the height of the peak does not 
add much to the interpretation!)
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To improve data fitting,  nonlinear 
models can be used (Cole-Cole, etc.) 
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Dispersion and 
attenuation spectra

• Normalized ReM(f) and Q-1(f) 
spectra for the three basic linear 
bodies

• Frequency scaled to make f0 = 1 
for SLS (Zener)

• ReM scaled to make the average    

                         in this plot, with      
   = 1.5

• Viscosity  in Maxwell’s and 
Kelvin-Voigt (K-V) bodies taken 
the same as in the SLS

• MR in K-V body is taken the same 
as in the SLS

1R UM M M= =

Q-1 here is multiplied 
by 0.01 for Maxwell’s 

and Kelvin-Voigt’s 
bodies
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Cross-plots

Complex plane of M
Cross-plot of Q-1 with ReM
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Burgers’ body

• This is a Zener’s body with an additional dashpot 
connected in series for plastic deformation:

• This system contains two internal degrees of freedom and 
therefore does not reduce to Zener’s equation
• Example of the “generalized Zener’s equation” 

• Complex modulus can be simply obtained by viewing this 
system as a Maxwell’s and Kelvin-Voigt bodies connected 
in series: 
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• Note that this M() is a ratio of second-order polynomials of (-i) 

Second-order polynomials because of 

the two internal variables
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Exercise

• Write a Matlab or Octave program to plot the spectra of 
ReM(f) and Q-1(f) for Burgers body using this equation:
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Generalized Linear Solids

Generalized Maxwell solid 
(with  = 0, this is also the Wiechert, 
Generalized Standard Linear Solid, or 

Generalized Zener body)

Generalized Voigt solid 

• These systems are constructed to provide broad 
attenuation (Q-1(f)) and dispersion frequency 
bands
• Broad bands are achieved by using multiple internal 

variables

• Each of these variables is activated (starts moving) 
at different characteristic frequency c = k/ 
(k denotes moduli M in this figure)

Attenuation spectrum is a 

superposition of peaks for 

individual modes  
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Problems of the Viscoelastic model in seismology

• The VE model is broadly used and considered good for describing real media (rock 
samples, subsurface, Earth’s mantle, and the whole Earth!)
• It reasonably well explains most data

• It works well for quasi-homogeneous media or for whole rock samples tested in the laboratory

• However, as a theory of seismic waves, this model suffers from several important 
problems:
• In physics, there exists no definite strain-stress relation. Equations of physics are for 

acceleration, not for strain rates like in kinetic or Zener’s equations

• Also specific problems summarized in the next slides:

•  The VE model is quasi-static, and so it is designed only for slow deformations of samples in the 
laboratory. It is therefore unknown how accurate this model is for seismic waves.

• It replaces effects of heterogeneity with those of time dependences, which is not always sufficient;

• It does not include body-force friction (only surface stress was denoted  above and called “stress”). 
Such body forces come, for example, from primary-pore fluid friction;

• It disregard boundary conditions between internal variables;

• It is also known to produce some nonphysical wave solutions in layered media.
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VE problem #1: Quasi-static character

• The VE model attributes zero mass to the internal variables, like 
the one shown by the white dot in Maxwell’s body here
• This results, for example, in the absence of additional wave modes in 

media with complex structures, such as the Standard Linear Solid

• However, in physics, all  components of materials (matter) must 
have mass
• Additional wave modes should also appear in media with internal 

structures

• The internal masses can be small, but this is not guaranteed

• For example, in porous rock, there exists the so-called (Biot’s) 
secondary P wave.  This wave disappears when the rock is 
approximated by a VE model
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VE problem #2: Time dependence instead of Heterogeneity 

• The viscoelastic model was originally designed for explaining quasi-static 
deformations with negligible spatial variations, such as creep of the whole 
rock sample in a lab experiment (preceding section). In this case, the time is 
the only significant independent variable, and there exists only one complex-
valued function M(t) or J(t) describing the whole system.  

• However, in physics, heterogeneous deformations are always driven by spatial 
gradients of pressure, which lead to multiple types of waves and material and 
heat flows. 

• For example, stress  at point x and time t is affected by the deformations of 
adjacent points at earlier times, and not by the earlier strain values at the same 
point x. 

• At time t after an application of stress, the strain at point x is affected by 
boundaries and material-property contrasts at distance ct from this point, where 
c is the wave or some flow velocity within the medium.
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VE problem #3: Non-surface stress forces

Pimienta et al. (2015)

• Dispersion and attenuation effects can 
be caused by “global” pore-fluid flows 
within rock

• An example of a “drained-to-undrained 
transition” is shown here. This transition 
is caused by pore fluid flowing across the 
entire sample and into the tubes of the 
measurement apparatus (“dead 
volume”)

• Effects of this flow lead to body-force 
friction which is not described by a 
stress tensor 

•  Therefore, they cannot be described by 
the VE theory

• Nevertheless, the shapes of the 
observed M(f) and Q-1(f) are generally 
close to those of Zener’s body

• But this body is the whole apparatus 
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VE problem #4: Missing boundary conditions

• Imagine two layers of rock in a welded contact, for example two 
layers of brine-saturated and oil-saturated sandstone. Let us 
approximate each of these layers by an SLS (Zener’s) rheology 
(figure on the right)

• Question: Do there exist mechanical elements connecting across 
the boundary? In particular,  elements connecting the internal-
variable points (red here)?
• This is the big question. The VE model contains no connections like 

this and assumes all internal variables quasi-static and non-
interacting.
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VE problem #5: Nonphysical wave solutions

• Another serios problem with application of the viscoelastic model to 
seismic waves is in producing nonphysical wave solutions in layered 
media, or upon reflection from interfaces. Such nonphysical solutions 
have to be avoided by special mathematical conventions. For more on 
this subject, see, for example, Ruud (2006), Krebes and Daley (2007), 
and Vavryčuk (2010).
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Thus, to what cases can the VE model be 
safely applied in seismic applications? 

1) To model laboratory experiments in which only a single pair of                             or                            
relations needs to be explained
• However, these relations may be different for the same rock in in-situ conditions

2) To model waves in heterogeneous rock in situ under certain conditions. These 
conditions should ensure that the material can be viewed as locally homogeneous, 
and the non-VE wave modes are weak:

• The scale of observation  LREV >> Lstructure (scale or micro- or meso-structure of the rock)

• Simultaneously, distance from any boundaries D >> non-VE_waves (lengths of secondary 
waves not accounted for by the VE model, such as Biot’s slow waves)

• However, this conditions is difficult to satisfy in practice (~20-m long waves, ~10-cm scale 
layering) 

• “Global” pore-fluid flows (unidirectional or divergent pore flows across the entire REV are 
insignificant

• This condition may also be difficult to enforce in laboratory experiments with “dead volumes” 
of pore fluids outside of the sample

This question is not 
easy to answer

( ) ( )t t  ( ) ( )f f 
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