
Lecture 3: Introduction to Analytical Mechanics

• Variational approach: presenting differential equations as an optimization problem  

• Principles of analytical mechanics: 
• D’Alembert principle (virtual work)

• Hamiltonian principle (stationary action)

• Generalized coordinates
• Also the corresponding generalized forces, momenta, energy

• Lagrangian and pseudo-potential (dissipation function)

• Euler-Lagrange equations

• Conservation laws

• Spatially-dependent variables (fields)

• Reading: Chapters 3 and 4 in the text
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Mechanics
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• In classical mechanics, a system of any complexity is described as a collection of 
point masses mk located at points xk. Force vectors Fk are applied to these masses

• Under the action of these forces, the acceleration of each mass equals (second 
Newton’s law) 
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• This gives a (possibly large) number of equations for vectors xk(t) for Np particles. 
The forms of these equations change if we use, for example, spherical or 
cylindrical coordinates instead of Cartesian ones, etc.

• How to write all these equations in just one equation, and independently of the 
specific selection of the coordinate system?  

• The answer is: use a variational principle. Formulations of mechanics based on 
mathematical variational principles are called analytical mechanics
• Probably the best and most elegant one is based on “differential forms”, but this may be 

too much for us  



D’Alembert’s principle
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• To obtain a variational formulation, we need to first make an equation with the 
right-hand side equal zero:

• This equation is sometimes called “conservation of momentum” in modeling 
literature, which I think is not a very good idea. There is no momentum here (yet).

• More precisely, this equation simply means the balance of the external and inertial 
forces applied to each particle in its own frame of refence

• Now, let us perform arbitrary infinitesimal (called “virtual”) perturbations of the 
trajectory of each particle:  
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• …and evaluate the virtual work  of all of the above forces:  
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• This is the d’Alembert principle: the correct trajectories xk(t) are such that the 
total virtual work is stationary : W = 0 for arbitrary perturbations xk(t)



Hamiltonian principle
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• The d’Alembert principle is called quasi-variational, because the virtual work W 
is not a variation of any ‘functional’ 
• ‘Functional’ means a function (some real value) attributed to the whole collection of 

trajectories (functions) xk(t) taken at all times

• To obtain a functional of trajectories xk(t), we can integrate W over time t and 
sum over all particles:

• This summation gives a scalar function (‘functional’) of all trajectories xk(t): S{xk(t) }

• This functional S is called the Hamiltonian action

• All Newton’s equations of motion are then contained in the requirement that S = 0 
for an arbitrary perturbation of trajectories xk(t)

• This is the true variational principle of stationary Hamiltonian action
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Note that unlike the ‘correspondence principle’  in the viscoelastic model,  this principle is not a 
phenomenological hypothesis but a very general form of Newton’s laws



and                                , where Uk is the potential (elastic) energy

• For each particle, the two terms in the variation of action are: 
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• Therefore, for an arbitrary mechanical system,  all equations of motion are contained in a 
single variational equation: 

for arbitrary deviations xk(t) from the 
true trajectories 



• The Lagrangian is usually the difference of the total kinetic and elastic energies: 
but it does not have to be only that

• For example, for electric charges qk in a magnetic field (nonconservative, forces 
are not gradients of a potential function), the corresponding part of the 
Lagrangian is 

Lagrangian
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Note that the Lagrangian depends on particle 
velocities instead of coordinates

• The Lagrangian can also be time-dependent

• For example, in the presence of an external force fk(t): 
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• In the variational approach, all elastic forces can be found by evaluating the 
perturbation of the elastic-energy part of  the action. By making arbitrary 
infinitesimal perturbations of xk(t), the time integral of the elastic energy varies as  

Dissipation function (pseudo-potential)
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This factor in front of x (variational 
derivative) is the force

• Similarly, the forces of friction can be obtained by variation of another functional, 
but with respect to perturbations of velocities          :
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• The integrand D here is called the dissipation function, or pseudo-potential

• For example, if each of the bodies is a spherical particle of radius rk moving through 
fluid with viscosity , then it will experience a viscous friction force                             
(Stokes’ law), and the dissipation function for the system is:
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• Often, it is required that the system satisfies additional constraints 
• For example, such constraints can be boundary conditions at the free surface or open or 

closed conditions for pore-fluid flow across various boundaries

• Let us denote the constraint by equation                                             (**)

• Then, we need to find the extremum of action                                            

External forces and constraints
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not for arbitrary functions xk(t) but only for those satisfying eqs. (**). This can be done by 
adding constraint terms to the Lagrangian:
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j is called the Lagrange multiplier. It has the 
meaning of external force required to hold the 
variables at the constraint surface Bj = 0

• Then, variations of xk(t) can again be considered as arbitrary, and parameters j 
selected to make the solution satisfy eqs. (**) 



• The Lagrangian and dissipation function are functions of generalized 
coordinates q and their time derivatives    , and possibly time t:

Generalized coordinates
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• Up to this point, we used Np particles with Cartesian 
coordinates xk to describe the mechanical system (rock)

• However, the variational approach allows much broader 
parameterizations by arbitrary selections of generalized 
coordinates to describe the state of the system
• The generalized coordinates should be some parameters 

which are the simplest, most sensitive, or most 
important for the goals of  analysis 

• For example, the green or red elements of bridges undergoing 
compression and tension, or shearing angles of a rock sample on 
the right)

•  The equation of stationary action is the same in any 
coordinates                                       
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• Adding forces of friction from dissipation function D, this equation becomes:

Euler-Lagrange equations
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• In terms of the generalized variables, the perturbation of action                         equals 
(summation over repeated subscripts ‘i’ assumed) 
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Transforming the second term by integration by parts, so that it contains qi this eq. becomes: 
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• Therefore, for any i, q(t) must satisfy the Euler-Lagrange equation:
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This expression is called the functional derivative of 
functional S with respect to function qi(t)
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Generalized momentum, forces, and energy

Euler-Lagrange Equations 11

• The derivative

     is called the generalized momentum:

• Regular momentum when qi is a coordinate

• Angular momentum when qi is a rotation angle, etc.

• Similarly, the derivatives                   and                    are generalized forces (conservative and 
dissipative  

• Therefore, the Euler-Lagrange equations become just like second Newton’s law:
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• Function                          (if pi is expressed through  q and      ) is called the generalized energy 
(total mechanical energy of the system; again note the summation over repeated subscripts ‘i’) 

• Function H is also called the Hamiltonian if expressed through p and q, or the Helmholtz free energy 
if adding effects of temperature                    
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Conservation laws
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• Conservation laws are obtained by noting the general properties of functions L and D:

• Conservation of mechanical energy: If D = 0 and function L is explicitly independent of time, 
then the total mechanical energy H is conserved: 

( ) ( ) 0i i i i i i i i i i

i i

dH d L L d
p q q q p q p q p q

dt dt q q dt

 
= − − = − − 

 

• Conservation of momentum: If D = 0 and function L is explicitly independent of some qi, then 
the corresponding momentum pi is conserved: 
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• If D  0, mechanical energy varies (dissipates) at rate 
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Spatially-dependent variables (fields)
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• When modeling continuous media, variables qi often represent functions of spatial 
coordinates x. Therefore, in addition to q and time derivatives    , the Lagrangian and 
dissipation functions depend on the spatial derivatives of q:

• For example, this is the common case in the mechanics of solids: qi is the components of 
spatially-variable displacement, and their spatial derivatives are the strain tensor

• Let us denote the spatial derivative with respect to coordinate xj by comma in the 
subscript: 
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• Then, the Euler-Lagrange equations include additional spatial derivatives similar to the 
derivatives with respect to t: 
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