Lecture 4: Applications of Lagrangian Mechanics

* Key examples: Linear oscillator, multidimensional oscillator

* Mass-Stiffness-Damping model

e Oscillation modes and waves

e Attenuation coefficient

* Q-factor: meaning, definitions, resonance and forced-oscillation Q, multiple forms

* Frequency dependence of Q
» Effective viscoelasticity and effective density

* Reading: Chapter 4 in the text

Lecture 4: Applications of Analytical Mechanics



Goals of this lecture

* You have likely heard about the “Q-factor” for Earth materials
* Is Q the same thing as “attenuation” and “energy dissipation”?

e This is not quite so, and we are going to elucidate these concepts




Linear harmonic oscillator with damping

* Linear harmonic oscillator is the simplest mechanical system
containing all key features of laboratory experiments and waves

* This may be a good model of low-frequency mechanical testing of
a rock core in the laboratory

* This is a system with a single observable variable X and elastic
force F proportional to X (‘linear’)

* Three “material properties”: mass m, natural frequency «,, and
damping constant &£

* The Lagrangian (kinetic energy E, minus potential energy E ) is:

maw;
2

* The dissipation function is proportional to the kinetic energy:

L(r,r):%rz—

D =caw,E, :fwo%rz
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Linear oscillator

* From the Lagrangian:
* Momentum:

* Mechanical energy
(denoted H in Lecture 3):

* Elastic force (denoted Q
before):

* From the dissipation function:

* Force of friction (R before):

* Mechanical-energy rate of
change:

p—QE—mr

or

2
Emech = r%_ :m':.Z + M, r2
or 2

f :ﬁz—ma}jr = —kr

or
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fo=——=-(ma,r
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Note that the force is proportional to

velocity (due to linear viscosity)

Note that energy dissipation occurs “from
the kinetic energy” rather than from the

“stored” elastic energy as argued in
seismology or materials-science tgxts



Linear oscillator

* Euler-Lagrange equation gives Newton’s equation of motion:

.e 2 . N
mi = —MaJr —Ma, ¥ At equilibrium
which simplifies to the “damped linear oscillator” equation:
.. . 2 This is why factor ‘m’
I+ é:a)ol" T Wy F = 0 was included in all SN

termsinLand D Displaced

* With £<< 1 (weak damping), the general solution is:

where

and so:

r(t)= Re[Aexp( i, )]

*

Im

—_ X

X

Case &= 1is called “critical damping”

I& :
Wy = Wy (_i_l_ ?j =xTw,—ly ,and y =0, % is the attenuation coefficient (discussed below)

r(t)=Re [A exp (iia)ot)] exp(—xt)  Oscillations at e, with amplitude decreasing with time

Linear Oscillator
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Q of a linear oscillator

* Let us consider two questions:
1. What is the meaning of the Q-factor for an oscillator?
2. Does this quantity apply to forced oscillations?

* The answer to the first question is simple: Q is a positive number
measuring the relative width of the resonance peak in the amplitude

response, taken at ]/\/5 of the peak level \ This is the

* The same width is more directly measured by parameter y meaning of the Q
for oscillator
Equation for Complex response function: (resonator)
displacement: 1
f (o) A(a)) ~ T2 o 2 N 2 !
A(a)):—a)A(a)) W, —2|ZCO—0) s A A
m S [ af.=r@=ym R el
f(w) is the spectrum of Power: 5 hmﬂmmnmmmm
the force, A(a) is the . 1 AT
oscillation amplitude, A(a))‘ =, o\ g
A(w) is the response [wo_wj +1 )
function 2001 0 £/2 f 312 2f0=

Frequency
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Q of a linear oscillator

Thus, the Q-factor is half of the ratio of the frequency of a resonance peak to its spectral
width (which is the attenuation coefficient):

1
X 2x <
Note that this quantity:

* Only refers to the resonance peak. It does not exist for non-resonant systems such as
boundless rock

* |t should not be related to a modification of the spring constant k or mass m

* It cannot be frequency-dependent (because the resonance contains only one frequency ).
The Q of a resonator is simply a constant equal 1/¢.

So, what is meant when measuring a frequency-dependent Q from strain-stress
relations in a forced-oscillation experiment? (answers will be given below)

Linear Oscillator Q



Quiz #1:

* Consider a cylindrical rock sample, of length L and cross-
sectional area A (Figure). The cylinder is mounted on one end,
and force F(t) is applied to the other end. The density of the
cylinder is p, and the Young’s modulus is E. In addition to elastic
modulus, the sample also has extensional viscosity 7.

* Write the equation of motion for variable &.

* Determine the natural frequency of oscillation and Q-factor of
the sample



Attenuation coefficient

When discussing “attenuation,” we need to look at the attenuation coefficient first

Term “attenuation” usually refers to observing a decrease of amplitude with time t (for
oscillation of a finite body) or with travel distance X (for a wave):

A(t) = A(O) e_Zt For a wave, the ‘t’ in the exponent is the travel time:

Parameter y in this relation is the attenuation coefficient

From an observed decay of A(t) with time, y can be obtained in two ways:

1. By measuring the decrease of mechanical energy averaged over a period: E, (t) =E_., (O)e_z"t

therefore:

2. By measuring the displacement-acceleration phase lag:if U (t)

. Emech
2E,

mech

z:

= A(t)e™ = A(0)e ™",  (usually y << o)

where @ =w—iy, then u(t) ——w°U (t) , and its phase advance relative to u(t) equals

this phase lag is viewed as

X
t=2
C

strain-stress phase lag in the
viscoelastic approach

_ O =arctan (Z—Zjﬁ
Q

Attenuation Coefficient

this 2 is usually denoted Q1
o

(but this notation should be understood carefully)
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Definitions and meanings of Q

* |t is always better to use the inverse Q1 (which equals zero when there is no energy dissipation)
instead of the “quality factor” Q. Recall that for a resonance peak (oscillator), the Q! is simply &

4 2y
Q' =£xg

Wy
Physically, this quantity can be understood as the ratio of the energy dissipation rate to the
kinetic energy of oscillation:

_Emech
taken at any time t * %k ok
2w, E, ( Y ) (**%)

Ql=¢=

* However, in seismic and lab applications, different types of Q! are used. Let us consider them

* For waves (Aki and Richards, 2002), the wave-period average energy-dissipation rate are

measured as in eq. (***): Enew = peak(Emech )/2 , but in the denominator, the peak kinetic or
elastic energies are taken. Thus, the definition of seismic Q! is

—E

Q—l . mech where the reference

1
- @E, energy level: Brer = peak(Ek ) N peak( Ep) B 2 peak(EmeCh)

Seismic Q
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Q-factors for forced oscillations F(1)= .F cos( 1)

m

* For forced oscillations at variable frequency, the same definition of
Q7 is used, but o, (fixed) is replaced with the variable frequency @
of the applied force:

Q' =—

a)Eref

* This replacement makes Q! frequency-dependent, and also dependent on how one specifies E,..
Consider several approaches giving different “Q-factors” (graphs on the right):

1. If we think that the kinetic energy is the one which “dissipates”,
then E = peak(E,) and Q increases with oz Q, = EQ
Wy

2. If we consider the potential energy as .
AN : _ %
the dissipating one, then Q decreases with @: Qp = . Q

energy dissipates, and then: Q =

3.  We can also assume that the peak total mechanical {Qp for w < w,,

Q, for w2 w,,

lOgIU(Q/Qtruc)
B WD = O = N W A

4. Also, some people define Q! using
the total mechanical energy averaged over a period.
In this case: Q. +Q,

Q=

Forced-Oscillation Qs 11



M(f) and Q1(f) for an oscillator

Phase-lag Q

* The above Q-factors measured from the
dissipated power come from studies with

157

i=0.100 —ksi=(.100
i£0.500 —ksi=(.500
i=1.000 ksi=] .000
/

10 [

seismic waves (Aki and Richards, 2002), but in 3r :

the laboratory, the stress-strain

(displacement-force) phase-lag Q is typically / 5| J

used: 1 e / |
Q; =tano : / . )

. I
* The complex-valued u(0)= f/m ot (

. 2 . 2
displacement equals: @y —2y0—-o 5t

* Therefore, the phase lag is also
related to the attenuation 0t
coefficient y:

- ZZG) -1 L L ! -15 1 1 I J
_ 2 2 _ ) ] ) -
5 o Arg (a)o —w + ZIZQ)) o arCtan 2 2 ? 1 Ig(FreqL?ency/fO) 1 ? ? 1 Ig(Freqt?ency/fO) 1 2
Wy —
-0 @
* At w<< @y, this Qs close to Q, and inversely proportional to frequency: Q, = 0 ~—9 — Qp
2yw  2yw

* At w>> @, the phase lag is near 180°, and the Q is negative: Q5;< 0 _ o
This low-frequency limit is

used in practice
Forced-Oscillation Qs 12



Systems with many oscillation/relaxation modes:
Mass-Stiffness-Damping (MSD) method

Now let us consider an arbitrarily complex but finite linear
mechanical system

* For example, this system can be a 3-D volume of subsurface gridded on

a regular grid or a variable mesh

All generalized coordinates of the system can be combined in a
single vector of variables:

Then, in the most general linear case, the dynamics of the system is

completely described by three matrices: “mass” M, “stiffness” S,

and “damping” D:

(L :1 'TMq—ququ
2 2

1
D=-¢"Dg,
>4’ Dg

~

These matrices are symmetric and non-negative definite (i.e., for
example, q'Sq =0 forany vector q)

Mass-Stiffness-Damping

The stiffness matrix is often
< denoted K, but we reserve this
symbol for bulk modulus

)
g,
s
44

Oy

13
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MSD equations and solutions

* The Euler-Lagrange equations with external force f:

d oL oJL aD
dt o9 6q oq

=MG+Dg+Sq=f*f

* In full-waveform inversion or modeling forced oscillations of a rock sample in the lab, this
time-spatial domain equation is often transformed into the frequency-spatial (“f-x”) domain
(time derivatives replaced with factors —1w):

(—a)zl\/l — ia)D+S)q =f(w)
* This equation can be solved with some form of matrix inverse:

q = Gf where G = (_a)2|\/| —iwD + S)_l is the frequency-domain response function for the
mechanical system

» At low frequencies and short distances, the effect of M may be negligible compared to D and S
(like when modeling a rock sample in the lab), and the quasi-static approximation can be used:

. -1 B
gq= ("COD + S) f Static equilibrium under force f: =3 f




Effective viscoelasticity and/or effective mass

* In the above equation:
(—a)zl\/l — ia)D+S)q =f(w)

* The term —iwD can be included in one of the other ones, giving two possible, alternate
interpretations:

1. As part of an effective, complex-valued “viscoelastic modulus (stiffness)” matrix: S =S —iwD
e This approach is taken in viscoelastic interpretations

* It works better for lower w. In this case, D gives a small correction to the ‘elastic’ stiffness S.
This modification illustrates the correspondence principle.

2. As part of a complex-valued “effective density”: M™ =M +i P

* This approach is used to explain empirical-modulus relaxation in Biot’s poroelasticity and in
models of oscillations of granular media

* This interpretation seems more appropriate at higher



Oscillation modes and waves

Consider external force f = 0 in the above equation (i.e., homogenous equation):

(—a)ZM —ia)D+S)q =0

This equation describes free oscillations or waves (in a spatially unbounded model). Its
solution consists of multiple mode vectors q™ satisfying a generalized eigenvalue problem:

Mq™ =(S-iw,D)q"™

Vector g here gives the spatial distribution of the oscillation or wave mode,
and a, is its frequency

Because of the matrix character of this equation, it is only satisfied by certain
vectors (" (eigenvectors, or eigenrrw’les), and a above is the eigenvalue
corresponding to the N mode



Mechanical-energy conservation and equipartitioning

* In the absence of friction (D = 0), the spatially-averaged kinetic and elastic energies

equal each other:
®° 1 (using Hermitian conjugate

2 _ 2 . Wt _ At
(_w M +S)q =0 cor @'Mg=5q , or 2 4'Maq = 2 4’59 instead of transpose for
complex-valued Q)
* This equation is known as the equipartitioning of energy

* |t can be used, for example, for determining q'Sq
the frequency of a surface waves from a given wavenumber: @ = q'Mq

a) Time dependence in a body b) Spatial dependence in a wave

* In an elastic body, the energies oscillate Pattern travels

at double frequency. Oscillations of _winfime,

elastic and kinetic energies are phase-

shifted by 180°, and their sum is &

constant in time (plot a)) 2
* In a wave, the energies are in-phase,

and the pattern of total-energy highs B o '

and lows travels in space (plot b)) ° C Timef ' 5 6 ° ‘ Distancs %

Energy Equipartitioning 17



Linked oscillators

A system of interlinked linear oscillators (multidimensional oscillator)
represents a close analogy to the elastic medium

It helps understanding the behavior of a rock sample in the laboratory
or multiple types of waves in the field. Such models can also be viewed
as a simplified (but insightful) approach to “digital rock”

1. ) 1 1
E. ==q'M E =-0'S D=>-g"D¢
With D = 0, the elastic system would show harmonic oscillations satisfying: ~ @’Mg"™ =Sq™

. : = 1. _
The time-averaged total mechanical energy equals E . =§qT(a)zM +S)q

C . = () o .
...the energy dissipation rate: E . :_quiﬂdrz_Tq Dq
0 i
...therefore, attenuation coefficient: y= _gmech _ o’ q'Dg N @’ q'Dq
2E., 20 (o’M+S)q 2 q'Sq
. a . .
...and finally, Q for the mode: Q =— (quasi-static

approximation
2;( Linked Oscillators PP ) 18



Quiz #2

* Taking X and Y coordinates of the masses in the preceding slide

(repeated here) as generalized variables, write elements of matrices
M, S, and D related, for example, to mass m,

7 \‘\\
0000
m, ¢ '— m,
= \‘\l\\\ =
m 0000 m
3 N —<
R 7/

Linked Oscillators



Conclusions about the frequency-dependent Q and y

mode for a complex mechanical system

* A well-defined and meaningful Q-factor only exists for an oscillator (resonator), or oscillation

* For forced oscillations or waves at variable frequencies, values of Q and their frequency
dependencies are sensitive to the adopted definitions and measurement procedures

* Conventionally, the phase-lag Qsis used in laboratory experiments

« When using this quantity, note that with this attenuation Q! contains a built-in increase

proportional to the frequency even for the simplest mechanical system (oscillator)

* |t has a simple frequency dependence
with often nonzero y(0): x ()=~

Y+

Q—l
2

e The measured Q-(f) can be transformed to a more useful and mechanically meaningful quantity -

the frequency-dependent (empirical) attenuation coefficient: -1

* This y(w) directly relates to the rate of amplitude decay in a seismic wave:

A(t)= A(O)exp(— Q. tj ~ A(0)exp[ 1z ()t]

2 T
+0° —+...
2

These first two terms are most important in y(f), but they
are practically lost when looking at the data in Q(f) form

Conclusions

20




Conclusions about the frequency-dependent Q and y

* For example, compare Q(f) and y(f) plots for a Berea sandstone sample at variable temperatures:

O(f) and y(f) for Berea sandstone sample (Mikhaltsevich et al. 2016)
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. [ ® |\ ] j
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] | A ] 4 A//// e
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* Note that the major effects are the variable increases of attenuation with
frequency (seen in y(f) form on the right)

... but presentation of the data by Q(f) (left) misses these effects and only
emphasizes the small bumps in ¥(f)

Conclusions
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Scalability of y or Q1

—

Laboratory
scale

o Attributes ¥(f) and Q(f) also differ in terms of scalability
between laboratory and field experiments

* QI(f) (phase lag) is an attribute sensitive to the phase of
the signal (caused by scattering, layers)

* It downplays the low-frequency parameters y, (. and z,

* Quantity y(f) has the same meaning as attenuation
coefficient for a traveling wave (relative energy decay rate)

* Quantities ¥, g, and 7, should be more reliably scaled from
laboratory to the layering and wavelength scales

(~10 cm)

Layering scale (~0.1 - 1 m)

A T ] :'

Depth [m]

e

Note that Q! of layers represents the differences between
the “unrelaxed” and “relaxed” moduli, but contrasts between
layers are often stronger.

Thus, the Q1(f) seen in field data is mostly controlled by

layering, which is not seen in lab experiments.
Scalability of yand Q

Elastic moduli [GPa]

0 40 80 120
|
0+t ﬂ
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5 14 g
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— P-wave unrelaxed

— P-wave relaxed

— S-wave unrelaxed
S-wave relaxed
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