
Lecture 4: Applications of Lagrangian Mechanics

• Key examples: Linear oscillator, multidimensional oscillator

• Mass-Stiffness-Damping model

• Oscillation modes and waves

• Attenuation coefficient 

• Q-factor: meaning, definitions, resonance and forced-oscillation Q, multiple forms

• Frequency dependence of Q

• Effective viscoelasticity and effective density

• Reading: Chapter 4 in the text

Lecture 4: Applications of Analytical Mechanics 1



Goals of this lecture

Goals 2

• You have likely heard about the “Q-factor” for Earth materials

• Is Q the same thing as “attenuation” and “energy dissipation”?

• This is not quite so, and we are going to elucidate these concepts



Linear harmonic oscillator with damping

Linear Oscillator 3

• Linear harmonic oscillator is the simplest mechanical system 
containing all key features of laboratory experiments and waves
• This may be a good model of low-frequency mechanical testing of 

a rock core in the laboratory

• This is a system with a single observable variable x and elastic 
force F proportional to x (‘linear’)

• Three “material properties”: mass m, natural frequency 0, and 
damping constant 

• The Lagrangian (kinetic energy Ek minus potential energy Ep) is:
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Linear oscillator

Linear Oscillator 4

• From the Lagrangian:
• Momentum:

• Mechanical energy 
(denoted H in Lecture 3):

• Elastic force (denoted Q 
before):
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• From the dissipation function:

• Force of friction (R before):

• Mechanical-energy rate of 
change:
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velocity (due to linear viscosity)
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Note that energy dissipation occurs “from 
the kinetic energy” rather than from the 

“stored” elastic energy as argued in 
seismology or materials-science texts



Linear oscillator
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• Euler-Lagrange equation gives Newton’s equation of motion:

At equilibrium

Displaced
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which simplifies to the “damped linear oscillator” equation:

This is why factor ‘m’ 
was included in all 
terms in L and D

• With  << 1 (weak damping), the general solution is:
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is the attenuation coefficient (discussed below) 
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Oscillations at 0 with amplitude decreasing with time
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Case  = 1 is called “critical damping”



Q of a linear oscillator
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• Let us consider two questions:
1. What is the meaning of the Q-factor for an oscillator?
2. Does this quantity apply to forced oscillations?

• The answer to the first question is simple: Q is a positive number 
measuring the relative width of the resonance peak in the amplitude 
response, taken at             of the peak level
• The same width is more directly measured by parameter 
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Complex response function:

Power:
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Equation for 
displacement:

f() is the spectrum of 
the force, A() is the 
oscillation amplitude, 
() is the response 

function

This is the 
meaning of the Q 

for oscillator 
(resonator)



Q of a linear oscillator
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• Thus, the Q-factor is half of the ratio of the frequency of a resonance peak to its spectral 
width (which is the attenuation coefficient):

0 0 1

2

f
Q

 

  
= = =

• Note that this quantity:
• Only refers to the resonance peak. It does not exist for non-resonant systems such as 

boundless rock

• It should not be related to a modification of the spring constant k or mass m 

• It cannot be frequency-dependent (because the resonance contains only one frequency 0). 
The Q of a resonator is simply a constant equal 1/

• So, what is meant when measuring a frequency-dependent Q from strain-stress 
relations in a forced-oscillation experiment? (answers will be given below)



Quiz #1: 

Quiz: deformation of a rock sample 8

• Consider a cylindrical rock sample, of length L and cross-
sectional area A (Figure).  The cylinder is mounted on one end, 
and force F(t) is applied to the other end. The density of the 
cylinder is , and  the Young’s modulus is E. In addition to elastic 
modulus, the sample also has extensional viscosity E.

• Write the equation of motion for variable .

• Determine the natural frequency of oscillation and Q-factor of 
the sample



Attenuation coefficient
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• When discussing “attenuation,” we need to look at the attenuation coefficient first

• Term “attenuation” usually refers to observing a decrease of amplitude with time t (for 
oscillation of a finite body) or with travel distance x (for a wave):
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• Parameter  in this relation is the attenuation coefficient

• From an observed decay of A(t) with time,  can be obtained in two ways: 
1. By measuring the decrease of mechanical energy averaged over a period: ( ) ( ) 20 t
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(usually   )

this     is usually denoted Q-1

(but this notation should be understood carefully)

2


this phase lag is viewed as 

strain-stress phase lag in the 
viscoelastic approach



( )peak 2mech mechE E=

• For waves (Aki and Richards, 2002), the wave-period average energy-dissipation rate are 
measured as in eq. (***):                                      , but in the denominator, the peak kinetic or 
elastic energies are taken. Thus, the definition of seismic Q-1 is

Definitions and meanings of Q

Seismic Q 10

• It is always better to use the inverse Q-1 (which equals zero when there is no energy dissipation) 
instead of the “quality factor” Q. Recall that for a resonance peak (oscillator), the Q-1 is simply :
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Physically, this quantity can be understood as the ratio of the energy dissipation rate to the 
kinetic energy of oscillation:

where the reference 
energy level: ( ) ( ) ( )
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(taken at any time t)

• However, in seismic and lab applications, different types of Q-1 are used. Let us consider them

(***)



Q-factors for forced oscillations
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• For forced oscillations at variable frequency, the same definition of 
Q-1 is used, but 0 (fixed) is replaced with the variable frequency  
of the applied force:
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• This replacement makes Q-1 frequency-dependent, and also dependent on how one specifies  Eref. 
Consider several approaches giving different “Q-factors” (graphs on the right):

1. If we think that the kinetic energy is the one which “dissipates”, 
then Eref = peak(Ek) and Q increases with :

2. If we consider the potential energy as                                                    
the dissipating one, then Q decreases with :

3. We can also assume that the peak total mechanical                         
energy dissipates, and then: 

4. Also, some people define Q-1 using                                                   
the total mechanical energy averaged over a period.                           
In this case:
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Phase-lag Q

Forced-Oscillation Qs 12

• The above Q-factors measured from the 
dissipated power come from studies with 
seismic waves (Aki and Richards, 2002), but in 
the laboratory,  the stress-strain 
(displacement-force) phase-lag Q is typically 
used:

• The complex-valued 
displacement equals:

• Therefore, the phase lag is also 
related to the attenuation 
coefficient :
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• At  << 0, this Q is close to Qp and inversely proportional to frequency:  
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• At  >> 0, the phase lag is near 180, and the Q is negative: Q < 0
This low-frequency limit is 

used in practice

M(f) and Q-1(f) for an oscillator



Systems with many oscillation/relaxation modes: 
Mass-Stiffness-Damping (MSD) method

Mass-Stiffness-Damping 13

• Now let us consider an arbitrarily complex but finite linear 
mechanical system
• For example, this system can be a 3-D volume of subsurface gridded on 

a regular grid or a variable mesh 

• All generalized coordinates of the system can be combined in a 
single vector of variables:

• Then, in the most general linear case,  the dynamics of the system is 
completely described by three matrices: “mass” M, “stiffness” S, 
and “damping” D:
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• These matrices are symmetric and non-negative definite (i.e., for 
example,                          for any vector q) 0T q Sq

The stiffness matrix is often 
denoted , but we reserve this 

symbol for bulk modulus
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MSD equations and solutions
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• The Euler-Lagrange equations with external force f:

d L L D

dt
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Mq Dq Sq f

q q q

• In full-waveform inversion or modeling forced oscillations of a rock sample in the lab, this 
time-spatial domain equation is often transformed into the frequency-spatial (“f-x”) domain 
(time derivatives replaced with factors –i): 

( ) ( )2 i  − − + =M D S q f

• This equation can be solved with some form of matrix inverse:
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mechanical system
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• At low frequencies and short distances, the effect of M may be negligible compared to D and S 
(like when modeling a rock sample in the lab), and the quasi-static approximation can be used: 

1−=q S fStatic equilibrium under force f:



Effective viscoelasticity and/or effective mass
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• In the above equation:

( ) ( )2 i  − − + =M D S q f

• The term –iD can be included in one of the other ones, giving two possible, alternate 
interpretations:

1.  As part of an effective, complex-valued “viscoelastic modulus (stiffness)” matrix:

• This approach is taken in viscoelastic interpretations 

• It works better for lower  n this case, D gives a small correction to the ‘elastic’ stiffness S. 
This modification illustrates the correspondence principle.

2.   As part of a complex-valued “effective density”: 

• This approach is used to explain empirical-modulus relaxation in Biot’s poroelasticity and in 
models of oscillations of granular media 

• This  interpretation seems more appropriate at higher 
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Oscillation modes and waves

Mass-Stiffness-Damping 16

• Consider external force f = 0 in the above equation (i.e., homogenous equation):

• This equation describes free oscillations or waves (in a spatially unbounded model). Its 
solution consists of multiple mode vectors q(n) satisfying a generalized eigenvalue problem: 

( )2 i − − + =M D S q 0

( )2 ( ) ( )n n

n ni = −Mq S D q

• Vector q(n) here gives the spatial distribution of the oscillation or wave mode, 
and n is its frequency  

• Because of the matrix character of this equation, it is only satisfied by certain 
vectors q(n) (eigenvectors, or eigenmodes), and   a  above is the eigenvalue 
corresponding to the nth mode 
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Mechanical-energy conservation and equipartitioning
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• In the absence of friction (D = 0), the spatially-averaged kinetic and elastic energies 
equal each other:

( )2− + =M S q 0
2 =Mq Sq

2
† †1

2 2
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=q Mq q Sq

(using Hermitian conjugate 
instead of transpose for 

complex-valued q)

,  or ,  or

• This equation is known as the equipartitioning of energy 
• It can be used, for example, for determining                                              

the frequency of a surface waves from a given wavenumber:

†

0 †
 =

q Sq

q Mq

• In an elastic body, the energies oscillate 
at double frequency. Oscillations of 
elastic and kinetic energies are phase-
shifted by 180, and their sum is 
constant in time (plot a))

• In a wave, the energies are in-phase, 
and the pattern of  total-energy highs 
and lows travels in space (plot b))



Linked oscillators
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• A system of interlinked linear oscillators (multidimensional oscillator) 
represents a close analogy to the elastic medium

• It helps understanding the behavior of a rock sample in the laboratory 
or multiple types of waves in the field. Such models can also be viewed 
as a simplified (but insightful) approach to “digital rock”

• With D = 0, the elastic system would show harmonic oscillations satisfying:
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Quiz #2
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• Taking X and Y coordinates of the masses in the preceding slide 
(repeated here) as generalized variables, write elements of matrices 
M, S, and D related, for example, to mass m1



Conclusions about the frequency-dependent Q and 
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• A well-defined and meaningful Q-factor only exists for an oscillator (resonator), or oscillation 
mode for a complex mechanical system 

• For forced oscillations or waves at variable frequencies, values of Q and their frequency 
dependencies are sensitive to the adopted definitions and measurement procedures

• Conventionally, the phase-lag Q is used in laboratory experiments  

• When using this quantity, note that with this attenuation Q-1 contains a built-in increase 
proportional to the frequency even for the simplest mechanical system (oscillator) 

• The measured Q-1(f) can be transformed to a more useful and mechanically meaningful quantity -  
the frequency-dependent (empirical) attenuation coefficient:

• This () directly relates to the rate of amplitude decay in a seismic wave:

• It has a simple frequency dependence                                                                                         
with often nonzero (0):
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These first two terms are most important in (f), but they 
are practically lost when looking at the data in Q(f) form



Conclusions about the frequency-dependent Q and 
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• For example, compare Q(f) and (f) plots for a Berea sandstone sample at variable temperatures:

• Note that the major effects are the variable increases of attenuation with 
frequency (seen in (f) form on the right)

• … but presentation of the data by Q(f) (left) misses these effects and only 
emphasizes the small bumps in (f) 



Scalability of  or Q-1 

Scalability of  and Q 22

22

• Attributes (f) and Q-1(f) also differ in terms of scalability 
between laboratory and field experiments

• Q-1(f) (phase lag) is an attribute sensitive to the phase of 
the signal (caused by scattering, layers) 

• It downplays the low-frequency parameters , qe and e

• Quantity (f) has the same meaning as attenuation 
coefficient for a traveling wave (relative energy decay rate)

• Quantities , qe and e should be more reliably scaled from 
laboratory to the layering and wavelength scales 

Note that Q-1 of layers represents the differences between 
the “unrelaxed” and “relaxed” moduli, but contrasts between 

layers are often stronger. 
Thus, the Q-1(f) seen in field data is mostly controlled by 

layering, which is not seen in lab experiments.  
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