
Lecture 5: Lagrangian Mechanics of Continuous Media

• Key concepts of classical mechanics of continuous solids
• Strain, stress

• Elasticity, viscosity

• Lagrangian and dissipation functions

• Hooke’s law, Navier-Stokes law

• Media with internal structure (“General Linear Solid”, GLS)
• Two types of GLS models

• Equations of motion

• Extensions of the model: nonlinearity, thermal effects, anisotropy

• Effective media

• Reading: Sections 5.1 – 5.3 in the text
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Lagrangian approach

Lagrangian Approach 2

• Here, we will consider weak reversible deformations of isotropic solid or liquid 
materials

• Solid and liquids obey generally the same laws in small deformations

• Like with any problem in physics, to determine the motion of a solid body, we 
need to:

1. Identify the generalized coordinates (parameters of deformation)

2. Specify the Lagrangian (L) and dissipation function (D)

3. From functions L and D, Determine the generalized forces, momenta, energies and establish 
the conservation laws 

4. The relations of forces to parameters of deformation (displacements, strains) will give the 
constitutive relations  

5. Write the Euler-Lagrange equations. They will be the equations of motion.

6. Solve the equations of motion with appropriate boundary conditions representing the shape of 
the body, thermal regime, external forces, etc.

• Note that the construction of Lagrangian and dissipation functions is based on 
general principles of linearity, scales, and symmetries 

• Therefore, all possible interactions are included in the obtained equations 



Description of deformation
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• To describe deformation of a continuous body, we use 
several fields (plot on the right):

• Displacement vector u(x) of each point x (blue and red in the 
figure). Its components are the generalized variables for 
deformation.

• To obtain the Lagrangian and dissipation function, additional 
quantities are derived from u(x):

• “Elementary strain” tensor:

• Strain tensor: 

• Dilatational (volumetric) strain  (scalar quantity, relative 
volume change).                                                                         
Several expressions for it: 

•    Deviatoric (shear) strain:  
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Description of forces
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• Two types of forces can act on an elementary 
volume within rock (REV; plot on the upper-right):

• Body force Fb applied to the whole volume and proportional 
to its volume dV (green)

• Surface forces applied to the six faces of the REV, 
proportional to their surface areas dS. The ith component of 
force per unit area applied to the face oriented in the jth 
direction is denoted ij. These components form a Cauchy 
stress tensor  (matrix; bottom right)

• Definition of surface force through the stress tensor 
(middle plot and matrix product in the bottom):

• It can be decomposed to normal component (parallel to 
normal vector n) and tangential (shear, traction) 

• The stress tensor is always symmetric because of the 
invariance of the elastic energy with respect to rotation of 
the frame of reference

• Both of these types of forces can in principle exist for 
both elasticity and friction (viscosity)

• However, body forces do not exist for ordinary material 
without internal structure  

i ij jdF dS n=



You can also use                        ,                 
this would be just a combination of the 
invariants shown here                 

2 ij ijI  =

Forming the Lagrangian and dissipation function

Lagrangian Functions 5

• Here are the general rules for defining the Lagrangian (almost the 
same rules apply to the dissipation function):

1. The Lagrangian of the body is a functional of the displacement field 
u(x,t) and its time derivative (velocity field)  

2. The Lagrangian of the whole body is an integral of the Lagrangian 
density function L:

3. At point x, the density function L depends on the displacement 
vector u, velocity     , and strain tensor 

4. To describe linear interactions, L must be a quadratic function of 
u(x,t) and its derivatives

5. To describe a linear isotropic medium, L should be a function of 
quadratic scalar invariants derived from u and  Such invariants are:

• Square of displacement (or velocity) vector

• Two similar invariants of the strain tensor:

 ,L LdV= u u

( ), tu x

This means that current displacement 
and velocities uniquely determine all 

future motion of the rock

This means that the interactions are local 
within volume dV

u
But it does not depend on stress  or 

derivatives of , for example!
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Lagrangian

Lagrangian Functions 6

• Thus, functions L and D for an isotropic linear solid or fluid are obtained by 
combining all possible quadratic scalar terms satisfying the above requirements:

Material properties d and   equal zero for an 
ordinary material without internal structure.

Thus, there are generally 5 material 
properties in a structureless rock

• Each term in L and D contains a factor, which is the corresponding material property. 
Meanings of these material properties are established by setting up some mechanical 
experiment involving this factor (we discuss them later)

• The unit of L is                                               , and the units for D are                                          . 
Therefore, the units for material properties are: 
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Forces, stresses, and equations of motion
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• Recall the Euler-Lagrange equations from Lecture 3 for generalized variable                            :

• Considering the case  = 0 and d = 0, and taking the derivatives,  this equation turns out to 
be: 

• … and the stress tensor is:
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i iu f = ,   where the force is the divergence of a stress tensor :

( ) ( )2 2ij ij ij K ij ijK       =  + +  +

Hooke’s law  -
Elastic stress 

proportional to 
strain 

Navier-Stokes law - 
Viscous stress 

proportional to 
strain rate ε

In each pair of parentheses 
here, the first term is the bulk 
elasticity or viscosity, and the 

second is the shear one

These are “constitutive relations” in mechanics



Medium with internal structure 
(“General Linear Solid”, GLS)

General Linear Solid 8

• Internal structure of a rock can be described macroscopically by adding additional variables 
(fields) to the observable displacement variable ui(x,t). There are two ways to add such 
variables:

•  Using completely different scalar variables, which I combine in another vector field (x,t)
• Elements of this vector can represent pore volume variations, grain expansions or rotations, 

temperature variations, etc. 

• This variable  will be considered later

• Using variables with meanings of displacements of some internal structures
•  Average displacements of pore fluids, relative displacements of groups of grains, etc.

• These internal-displacement fields can be added to displacement ui(x,t), making it a vector in model 
space, ui(x,t) 

• With this second type of model extension, L and D functions look the same, but all material 
properties become matrix-valued quantities:

First rows and columns in matrices d and  (for 
the observable displacement) must equal zero 

to ensure translational invariance 
(independence of the selection of point          

u1x = u1y =  u1z =  0)
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Other macroscopic variables in a GLS model

General Linear Solid 9

• Additional (arbitrary!) scalar variables of macroscopic internal structure can be combined 
in vector field (x,t)

• Again considering the most general (possible) quadratic terms, functions L and D become 
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θ Pθ Δ Qθ

θ P θ Δ Q θ

L0 and D0 are functions from 
the original GLS model.

Inertia (term with density) is not 
considered in this Lagrangian (it is likely 

negligible)

• Elements of matrices P, Q, P, and Q are the new material properties:
• P contains elastic properties of variables 

• P contains viscous properties of variables 

• Q contains elastic coupling of variables  with u

• Q contains viscous coupling of variables  with u

As you see, different structures  within rock 
can interact with each other elastically and 

viscously (and also inertially). 
All this is easily seen from the general 

forms of Lagrangian functions.



Equations of motion
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• The Euler-Lagrange equations are also similar to those above, but they become matrix

• They also contain body forces from matrices  and d (not only surface stresses as in the 
viscoelastic model):

i i i j ij= − − +ρu ζu du σ
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• With variables , the equations modify to: 

• …and stress tensors become:
• Elastic (Hooke’s law): 

• Viscous (Navier-Stokes law):

2ij ij ij ij = + −σ KΔ με Qθ

2ij K ij ij ij = + −σ η Δ η ε Qθ

This equation with zero mass in the left-
hand side means quasi-static equilibrium 

(and kinetic equations) for variables  

This equation is similar to the 
(matrix) Zener’s equation:

Elastic 
body force

Viscous 
drag

Elastic and 
viscous surface 

forces

T T + = +Pθ P θ Q Δ Q Δ



Examples
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• Let us briefly consider three examples from sections 5.3, 7.1 and 7.2 in the text:
1) Static deformation under gravity or thermal forces

2) Steady-state Darcy flow 

3) Plane P and S waves

• Some more complex cases are described in the text:
• Extensional waves in an infinite rod

• Forced oscillations of a cylinder with thermoelastic effects

• Layered cylinder



• If material properties are constant in space, then these equations give:

Static equilibrium

Static equilibrium 12

• If deformation is independent of time, all time derivatives equal zero, and equations 
become:

,j ij =σ 0 2ij ij ij= +σ λΔ με

( ) i j j j j i+   +   =λ μ u μ u 0 This equation needs to be solved for u with the 
appropriate boundary conditions

• If there is a uniform gravity gi applied to the solid (with fluids and other internal variables 
inside), this equation modifies to 

( ) i j j j j i ig+   +   = −λ μ u μ u ρ

• If there is a nonuniform temperature T, the equilibrium is modified by thermoelastic body 
forces proportional to gradients             in the right-hand side:

( ) i j j j j i i ig+   +   = − + λ μ u μ u ρ Kα T

i T



Static (Darcy) pore flow

Darcy Flow 13

• If some GLS stress (confining, pore pressure, etc.) distribution is created within the rock as 
in the preceding slide, then the resulting pore flow (or another equivalent of internal motion) is 
obtained from the part f equation containing matrix d (mobility):

Boundary conditions are again important for this 
flow to remain steady or to modify the 

distribution u(x)

i j ij− + =du σ 0
i j ij= du σ, or



Plane P wave

P wave 14

• To obtain a plane P wave traveling in the direction X, 
we need to consider displacements in the form:

 is the angular frequency,
k is the wavenumber

 is the spatial attenuation                           

coefficient

M
 = − + +ρu du Mu η u
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• Equations of motion become a matrix 

differential equation for function u(x,t):

• For a harmonic wave, the dependence on 
x and t  consists of harmonic functions:

( )Re exp i t ikx x = − + −  u υ

• …and the final eigenvalue 
equation for nth wave mode is:

4 3 +M K μ 4 3M K  +η η ηis the P-wave modulus matrix, is the P-wave viscosity matrix 
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Plane P wave (cont.)

P wave 15

• From the eigenvalue  obtained for nth mode, 
the phase velocity of the wave is 

• …and inverse Q-factor (from imaginary part of 
complex-valued slowness 1/V*) 

phase
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Plane S wave

S wave 16

• For a plane S wave polarized in the direction of axis Y 
(subscript 2) and traveling in the direction X, the 
displacement and strain components are: 0J =

• Equations of motion become 
differential equation for function u(x,t):

• For harmonic waves,  the 
eigenvalue equation for nth 
wave mode is:

( ) ( ) ( )* *n n n
=ρ υ μ υ

* i  −μ μ η

2Jk J ku u = 12 21 2J J Ju  = =


 = +ρu μu η u

, where   is the effective “viscoelastic” 
shear modulus

• …and the equations for Vphase and Q-1 are the same  as in the P-wave case



Extensions of the linear Lagrangian (GLS) model
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• Above, we only discussed the case of linear interactions 
within an isotropic medium without thermal effects. What 
happens when these restrictions are lifted?



Thermal effects
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• Regarding the effects of temperature, the accuracy of the above approximation is difficult 
to . The equations without temperature are suitable in two limits: 

1. When the deformations are extremely slow, so that the temperature equilibrates by heat 
flows between parts of the body. In this case, the elastic moduli above are the isothermal 
(constant-temperature) moduli 

• However, this limit seems impractical in most laboratory and seismic measurements

2. When the deformations are extremely fast, so that the heat exchange between parts of the 
body is negligible.  In this case, the above moduli are adiabatic moduli. Adiabatic moduli are 
always larger than isothermal ones.

• This limit is close to seismic case; however, at low frequencies and for grainy media with small 
grains, heat flows between grains or pores may cause significant effects on wave propagation 
and on the behavior of rock samples in the lab

• In reality, temperature T is variable during deformation, and it contributes to bulk 
pressure



Thermal effects
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• The elastic energy in the Lagrangian is replaced with the “free energy” equal F = E – TS 

• E is the internal energy (of random particle motions), T is the temperature, S is the entropy 

• F is the energy which can be transformed to mechanical work (product of pressure p and 
volume change dV)

• As the Lagrangian, the free energy is also constructed by identifying the possible second-
order combinations of bulk deformation and temperature variations  T:

( ) ( ) ( )02 2ij ij ij K ij ij ij  = + + + − −σ KΔ με η Δ η ε Kα T T

• Note that temperature variations create additional bulk stress (thermoelastic effect)

• Additional kinetic or diffusion equations for temperature  should also be is added to the mechanical 
equations

T0 is the equilibrium 
temperature

( ) ( ) ( )0 0

1 1

2 2

T T T T

i i ij ijF T F T= + + + − −u ζu Δ KΔ ε με Δ Kα T T

• T is also a model vector, because the different components (pore fluids, grain types) have different 
temperatures during deformation (this variation of temperature is called the thermoelastic effect) 

•  is a diagonal matrix of volume expansion coefficients for the different components

• The resulting equation for stress is:



Nonlinear internal friction

Extensions of the GLS Model 20

• Nonlinear relations between stresses and displacements and strains are described by 
non-quadratic forms of the Lagrangian and dissipation function

• The elasticity laws are likely linear (i.e., the Lagrangian quadratic) likely for weak 
deformations, but dissipation may be nonlinear

• For example,  dry friction (Coulomb’s law) has Ffriction = const, which means dissipation 
function                           (non-quadratic)

• Thus, we proposed, for example, this dissipation function:

( ) ( )1 , 1 ,1 , 1 ,
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1 1
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Δ η Δ ε η ε ,a b a b

l l l   

velocityD 

• It increases with         slower than with power = 2 (i.e., it is partially “dry”)

• However, it increases with the total wave amplitude  as power = 2, so that the friction 
acts equally on waves of different amplitudes

• The nonlinearity is described additional parameters  (different for bulk and shear) 

• This dissipation function (with the usual GLS function L) describes the so-called 
Cole-Cole rheology (next slide)



, where 

notation:



Observations of nonlinear 
internal friction

Extensions of the GLS Model 21

• Cole-Cole spectra predicted by 
nonlinear SLS (Zener) models with 
different parameters  = 2 – 1:

• Fitting lab data for bitumen sand (Spencer, 2013)
• GLS models not only fit data but obtain values of 

moduli and viscosity of the sample (plots c and d)

• Note that nonlinear models can (sometimes) fit data 
using smaller values of N 

Plots from Deng and Morozov (2016)

With  =   = 1, this is the (linear) 
Zener body response

Narrower attenuation peaks for  < 1, 
broader peaks for  > 1



Anisotropic media

Extensions of the GLS Model 22

• For anisotropic media, there are many more inertial, elastic, and viscous constants in the 
model. Each term in the Lagrangian and dissipation function becomes a matrix product 
involving all components of u or  (and not only the rotational invariants)
• For example, the isotropic elastic energy (case N = 1 for simplicity):

becomes

2

2 2
el ij ij ii jj ij ijE

 
     =  +  +

|

1

2
el ij kl ij klE C  =

• The elastic stiffness matrix Cij|kl is a 6 by 6 matrix symmetric with respect to swapping pairs of 
indices ij  kl

• Therefore, there are 21 anisotropic elastic constants, and similarly 21 constants for viscosity

• If there are three axes of rotational symmetry (“orthotropic” medium), then there will remain 9 
independent elements in matrix Cij|kl

• Anisotropic problems are usually easier to consider in coordinate axes of the principal 
directions of the applied stress 



Effective medium
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• The concept of “effective medium” refers to the following (typical) situation:
• Assume we have a rock with known microstructure, such as  pores, inclusions, or a digital-rock model

• This rock is tested in a set of macroscopic mechanical experiments, such as measurement of its drained and 
undrained moduli, coefficient of thermal expansion, etc.

• All detail of the microstructure cannot be constrained from the experiment. Therefore, we want to replace the 
medium with a quasi-homogeneous GLS medium which would account for all of the observations

• This quasi-homogeneous medium is the “effective medium” described by material-property matrices , d, , K, , 
P, Q and similar (here, “Q” is not the Q-factor!):

• For example, Gassmann’s model is the effective matrix K for an arbitrary 
isotropic rock with connected pores under static mechanical testing

The state of effective medium is 
described by average displacement u 
and displacement rate u, which produce 
drag friction force feff and stress eff   

Note that quantities u, , f, and  can 
be multicomponent (include pore flows, 
etc.)

.



Effective medium

Effective media 24

• Let us very schematically see how such effective media are 
obtained for a medium with sparse heterogeneities (typical case)

• First, for a given shape of heterogeneity, its deformation is 
described by appropriate generalized variables, like  in this plot:

• A Lagrangian function                    is constructed for the given shape of the 
inclusions

• Then, considering an arbitrary deformation of the effective 
medium, ueff (and eff), a solution for   is obtained as a function of 
ueff and ueff 

• This is done by classical analytical solutions (Eshelby), variational principles 
(Hashin-Shtrikman), or numerical modeling 

• The change of the Lagrangian due to the inclusion becomes function of the 
effective strain:         

• The additional Lagrangians due to inclusions are summed over 
their locations, types, and orientations, giving the total Lagrangian 
of the effective medium:

.

.

( ),L  

( ), ,eff effL  n

( ) ( ) ( )0 ,, , ,eff eff eff eff eff effL L L      = +  n

Typical end-member problem 
studied in elastostatics – ellipsoidal 

inclusion in a homogeneous 
medium (search for “Eshelby 
problem”, “Eshelby tensor”)
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