Lecture 6: Fluid-saturated porous rock (Biot's model)

- Biot's poroelastic model as a GLS with N = 2
- Elastic moduli and Skempton coefficients
- Gassmann's equation
- Waves
- Extensions of Biot's model

• Reading: Section 5.4 in the text

Biot's poroelasticity

- Biot's model of porous rock is well known from around 1940's. Its structure and approximations can be clearly seen in matrix GLS form:
 - 1. The model is macroscopic, i.e. it contains no notions of internal rock or pore structure (pore shapes, distribution, pore connectivity, etc.)
 - However, <u>perfectly connected</u> pores are assumed when considering dynamic processes, so that the pore pressure can equilibrate within the time span of the experiment
 - 2. The model describes the rock by <u>only two generalized variables</u>: displacement or the whole rock and only one pore fluid. This means that Biot's model is a GLS with N = 2.
 - Variable number 1 (u_{Ji} with J = 1) represents the observable displacement of the whole rock, and variable J=2 is the (hard to measure) average displacement of pore fluid
 - Accordingly, there is only one pair of stresses: pressure applied to the whole rock and to its pore fluid
 - 3. The elastic energy is only due to stresses of the rock and pore fluid, and not to the relative displacement between them. This excludes matrix ζ from the model.
 - 4. The pore fluid affects only bulk deformation. This means that the shear elastic modulus matrix μ is of a simple form discussed later.
 - 5. The pore fluid is viscous, but this viscosity causes only Darcy type (body-force) friction. This constraint means viscous GLS matrices equal zero.

Biot's poroelasticity

• With the above assumptions (simplifications), Biot's model is a special case of a GLS model with N = 2:

$$\begin{cases} L = \frac{1}{2} \dot{\mathbf{u}}_i^T \boldsymbol{\rho} \dot{\mathbf{u}}_i - \left(\frac{1}{2} \boldsymbol{\Delta}^T \mathbf{K} \boldsymbol{\Delta} + \tilde{\boldsymbol{\varepsilon}}_{ij}^T \boldsymbol{\mu} \tilde{\boldsymbol{\varepsilon}}_{ij}\right), \\ D = \frac{1}{2} \dot{\mathbf{u}}_i^T \mathbf{d} \dot{\mathbf{u}}_i, \end{cases}$$

where the i^{th} spatial component of the bivector of variables is a vector in 2-D model space (6 variables in total):

• Scalar quantity $\xi = \operatorname{div} u_2$ is called the <u>fluid content</u>

$$=$$
 $\begin{pmatrix} u_{1i} \\ u_{2i} \end{pmatrix}$ and

$$u_{2i} = -\phi \left(u_{\text{fluid}} - u_{1i} \right)$$

 $\boldsymbol{\rho} = \begin{bmatrix} \rho & -\rho_f \\ -\rho_f & \frac{a}{\phi}\rho_f \end{bmatrix}$

Density matrix

matrix

Shear modulus

matrix

 \mathbf{u}_i

 $\mathbf{d} = \begin{bmatrix} 0 & 0 \\ 0 & \eta/\kappa \end{bmatrix}$ Inverse mobility

matrix

Relations of generalized coordinates to actual displacements

- Our second GLS variable is often called "fluid content" and denoted ξ : $\begin{pmatrix} \Delta \\ \xi \end{pmatrix} = \begin{pmatrix} \Delta_1 \\ \Delta_2 \end{pmatrix} = \begin{pmatrix} \partial_i u_{1i} \\ \partial_i u_{2i} \end{pmatrix}$
- From these vectors of displacements and dilatations, the displacements and dilatation of the solid and fluid phases are obtained by matrix products:

$$\begin{pmatrix} u_{si} \\ u_{fi} \end{pmatrix} = \mathbf{U}\mathbf{u} \equiv \mathbf{U} \begin{pmatrix} u_{1i} \\ u_{2i} \end{pmatrix}, \qquad \begin{pmatrix} \Delta_s \\ \Delta_{fl} \end{pmatrix} = \mathbf{U} \begin{pmatrix} \Delta \\ \xi \end{pmatrix} \quad \text{, where matrix} \quad \mathbf{U} = \begin{bmatrix} 1 & -1 \\ 1 & -1/\phi \end{bmatrix}$$

Selections of matrix forms for material properties

- Among the above material-property matrices, only **K** and ρ require further comments (others are simply definitions of K_U , μ , M, α , and m)
- In matrices **K** and ρ , the off-diagonal elements are negative. Why?
- The general answer is in the following observations:
 - Note the meaning of matrix expressions for energy, for example:

$$\frac{1}{2}\boldsymbol{\Delta}^{T}\mathbf{K}\boldsymbol{\Delta} = \frac{1}{2}K_{U}\Delta_{1}^{2} - \alpha M\Delta_{1}\Delta_{2} + \frac{1}{2}M\Delta_{2}^{2}$$

- 1. The diagonal elements represent the values of energy in the end-member cases $u_1 = 0$ or $u_2 = 0$.
- 2. The variables are defined so that if u_1 and u_2 are nonzero and of the same sign, then the resulting energy is lower (because of the negative -aM) than the sum of energies due to the variables alone.
- 3. Thus, from energy standpoint, the system will prefer deformations with nonzero values of u_1 and u_2 of the same sign.

Density matrix

•

- Elements of the density matrix can be understood as follows:
 - This matrix means the following expression for kinetic energy:

$$E_{k} = \frac{1}{2} \dot{\mathbf{u}}_{i}^{T} \boldsymbol{\rho} \dot{\mathbf{u}}_{i} = \frac{\rho}{2} \dot{u}_{1i} \dot{u}_{1i} + \frac{a}{\phi} \frac{\rho_{f}}{2} \dot{u}_{2i} \dot{u}_{2i} - \rho_{f} \dot{u}_{1i} \dot{u}_{2i}$$

• So, if $u_2 = 0$ (pore fluid not moving relative to the rock), $E_k \frac{1}{2} \dot{\mathbf{u}}_i^T \rho \dot{\mathbf{u}}_i = \frac{\rho}{2} \dot{u}_{1i} \dot{u}_{1i}$. This means that ρ is the density of the average rock: $\rho = (1-\phi)\rho_s + \phi\rho_f$

If
$$u_1 = 0$$
 (rock is not moving), then $u_{2i} = \phi (u_{1i} - u_{fi}) = -\phi u_{fi}$, and therefore $E_k = \phi a \frac{\rho_f}{2} \dot{u}_{fi} \dot{u}_{fi}$
This is the definition of tortuosity a (ratio of the actual kinetic energy in a flow to the energy of its averaged macroscopic equivalent)

• The third coefficient in term $(-\rho_f \dot{u}_{1i} \dot{u}_{2i})$ is merely a Lagrangian representation of the force exerted on a solid body with coordinate $u_1(t)$ placed within a fluid flowing at velocity \dot{u}_{2i} .

Elastic parameters

• Elements of the bulk-modulus matrix $\mathbf{K} = \begin{bmatrix} K_U & -\alpha M \\ -\alpha M & M \end{bmatrix}$ can also be understood by considering various experiments with porous rock. For static (time-independent) experiments, the applied stress σ and pore pressure p are related to deformations as:

$$\begin{pmatrix} \sigma \\ -p \end{pmatrix} = \mathbf{K} \begin{pmatrix} \Delta \\ \xi \end{pmatrix} \text{ , and inverse } \begin{pmatrix} \Delta \\ \xi \end{pmatrix} = \mathbf{J} \begin{pmatrix} \sigma \\ -p \end{pmatrix} \text{ , where compliance } \mathbf{J} = \mathbf{K}^{-1} = \frac{1}{K_D} \begin{bmatrix} 1 & \alpha \\ \alpha & K_U/M \end{bmatrix}$$

where
$$K_D = \frac{\det \mathbf{K}}{M} = K_U - \alpha^2 M$$

- Under 'undrained' compression (zero pore flow, sealed sample, $\xi = 0$), $\sigma = K_U \Delta$, and therefore K_U is the 'undrained' modulus
- Under 'drained' compression (zero pore pressure variation, pores freely communicating with the outside space, p = 0), $\Delta = \frac{\sigma}{K_D}$, and therefore K_D is called the 'drained' modulus
- Under the same drained conditions, $\xi = \alpha \Delta$, and therefore the Biot-Willis parameter can be measured experimentally as ratio $\alpha = \frac{\xi}{\Delta} \Big|_{n=0}$.

Biot's poroelasticity

Skempton coefficients

- Skempton coefficients are important ratios of experimental observations useful for obtaining poroelastic moduli
 - Skempton A is the same as Biot-Willis α -- ratio of change of fluid content to rock volume change under drained condition:

$$A = \alpha = \frac{\xi}{\Delta} \bigg|_{p=0}$$

• Skempton B is the ratio of the induced pore pressure to the change of stress loading under undrained condition

$$B = \frac{p}{\sigma} \bigg|_{\xi=0} = \frac{\alpha M}{K_U}$$

• These relations give a way to measure poroelastic modulus *M*:

$$M = K_U \frac{B}{\alpha}$$

Elastic parameters

• To find the elastic modulus of the material of solid matrix ("solid grains"), again consider drained experiment (*p* = 0) and look at the expansion of the solid and fluid:

$$\begin{pmatrix} \Delta_s \\ \Delta_{fl} \end{pmatrix} = \mathbf{U} \begin{pmatrix} \Delta \\ \xi \end{pmatrix} = \frac{\sigma}{K_D} \begin{pmatrix} 1 - \alpha \\ 1 - \alpha / \phi \end{pmatrix}$$
, and therefore $\Delta_s = \frac{\sigma}{K_D} (1 - \alpha)$

• Because the fluid exerts no pressure in this experiment, all stress s should be supported by the solid frame. Therefore, the modulus of the material of the frame equals:

$$K_s = \frac{K_D}{1 - \alpha}$$

• ... or conversely, the Biot-Willis parameter is determined from the ratio of the modulus of the empty porous matrix to the modulus of its material

$$\alpha = 1 - \frac{K_D}{K_s}$$

• From these relations, α must satisfy: $\phi \le \alpha \le 1$

Elastic parameters

- To find the elastic modulus of the pore fluid in matrix K, consider an experiment in which the rock frame and the fluid are held at equal pressures (σ = -p). This is an experiment with <u>unjacketed</u> rock sample
 - Then, the deformations of the solid and fluid phases are:

$$\begin{pmatrix} \Delta_s \\ \Delta_f \end{pmatrix} = \mathbf{U}\mathbf{J} \begin{pmatrix} -p \\ p \end{pmatrix} = \frac{p}{K_D} \begin{pmatrix} 2\alpha - \frac{K_U}{M} - 1 \\ \alpha - \frac{K_U}{\phi M} - 1 + \frac{\alpha}{\phi} \end{pmatrix}$$

• Δ_f here should equal $\Delta_f = \frac{-p}{K_f}$, and after some simplifications, K_f can be expressed:

$$\frac{\phi}{K_f} = \frac{1}{M} - \frac{\alpha - \phi}{K_s}$$

Gassmann's equation

- Gassmann's equation (next slide) predicts the bulk modulus of fluid-saturated rock (K_U) from porosity ϕ and the moduli of:
 - Solid grains (K_s)
 - Drained (empty) porous matrix (K_D)
 - Pore fluid (K_f)
- Because of the ability to use different K_f with the same rock frame, this equation is often used for fluid substitution (modeling the behavior of rock with different saturating fluids)

• Gassmann's equation $K_U = K_U(\phi, K_s, K_D, K_f)$ is just one relation satisfied by the static (elastic) limit of Biot's or any other model with single porosity

Gassmann's equation

- Gassmann's equation is simply an identity relation satisfied by the elastic matrix K
- Matrix **K** contains only three independent elastic constants in $(K_U, \alpha, \text{ and } M)$, but four empirical moduli K_U, K_D, K_s, K_f are measured from it in various experiments
 - Therefore, the empirical moduli must be mutually related. This relation is the Gassmann's equation
 - The simplest form of this relation was given above:

$$K_D = \frac{\det \mathbf{K}}{M} = K_U - \alpha^2 M$$
 , therefore $K_U = K_D + \alpha^2 M$

• There are several forms of final relations excluding α and M using K_s and K_f . The following one looks most elegant, in the form of a Reuss average of the solid and drained compliances:

$$K_{U}^{-1} = \frac{K_{s}^{-1} + \phi' K_{D}^{-1}}{1 + \phi'} \text{, where} \qquad \phi' \equiv \phi \frac{K_{f}^{-1} - K_{s}^{-1}}{K_{D}^{-1} - K_{s}^{-1}}$$

• One of the commonly used forms of Gassmann's equation is:
$$K_{U} = K_{D} + \frac{\left(1 - \frac{K_{D}}{K_{s}}\right)^{2}}{\phi\left(\frac{1}{K_{f}} - \frac{1}{K_{s}}\right) + \frac{1}{K_{s}}\left(1 - \frac{K_{D}}{K_{s}}\right)}$$
Gassmann's Equation

Waves in porous media ("global flow")

- Plane harmonic waves are obtained from the same GLS eigenvalue equation (matrix M is real-valued in Biot's model):
- This equation gives:
 - Two P-wave modes (primary wave and a diffusive "slow" secondary wave)
 - One S-wave mode for a given polarization)
- Biot's characteristic frequency:

$$f_c = \frac{\phi \eta}{2\pi \rho_f \kappa}$$

Note that the frequency increases with viscosity

 $\boldsymbol{\rho}^*\boldsymbol{\upsilon}^{(n)} = \boldsymbol{\gamma}^{(n)}\mathbf{M}\boldsymbol{\upsilon}^{(n)}$

- At this frequency, there is a peak of $Q^{-1}(f)$
- However, f_c is usually very high (30 kHz to 1 GHz for water), and therefore, the attenuation and dispersion due to this primary-pore ("Biot's", or "global") flow is usually weak

$$\rho^* \equiv \rho + i \frac{\mathbf{d}}{\omega}$$
$$k^* \equiv k + i\alpha$$
$$\gamma \equiv \frac{\left(k^*\right)^2}{\omega}$$

 m^2

Wave velocity dispersion and attenuation (Q^{-1})

Waves

Secondary P wave

• Attenuation $\alpha(f)$ scaled by

Waves

S wave (only one)

• Attenuation $\alpha(f)$ scaled by $\alpha_s = \frac{2\pi f_c}{V_s}$

Extensions of Biot's model

- Consider all possible extensions of Biot's model of poroelasticity without additional porosities, nonlinearity, and anisotropy (which were sort of missed by Biot)
- These extensions are seen in the complete GLS model with N = 2:

$$\begin{cases} L = \frac{1}{2} \dot{\mathbf{u}}_i^T \boldsymbol{\rho} \dot{\mathbf{u}}_i - \left(\frac{1}{2} \mathbf{u}_i^T \boldsymbol{\zeta} \mathbf{u}_i + \frac{1}{2} \boldsymbol{\Delta}^T \mathbf{K} \boldsymbol{\Delta} + \tilde{\boldsymbol{\varepsilon}}_{ij}^T \boldsymbol{\mu} \tilde{\boldsymbol{\varepsilon}}_{ij}\right), \\ D = \frac{1}{2} \dot{\mathbf{u}}_i^T \mathbf{d} \dot{\mathbf{u}}_i + \left(\frac{1}{2} \dot{\boldsymbol{\Delta}}^T \boldsymbol{\eta}_K \dot{\boldsymbol{\Delta}} + \dot{\tilde{\boldsymbol{\varepsilon}}}_{ij}^T \boldsymbol{\eta}_\mu \dot{\tilde{\boldsymbol{\varepsilon}}}_{ij}\right). \end{cases}$$

Red shows terms omitted in Biot's model, or matrix $\boldsymbol{\mu}$ was selected in a too simple form

- Using *N* > 2 gives many models of multiple porosities (e.g., "squirt flow" models)
- Replacing the terms highlighted in red in the case with N = 2 also gives interesting extensions:
 - Including wettability (capillary forces) effects elastic term for pore fluid:
 - Note that capillary forces are related not to strain (ε_{ij}) but to relative displacement of the pore fluid (u_{2i})
 - Including viscosity of the frame and pore fluid terms $\left(\frac{1}{2}\dot{\Delta}^T \eta_K \dot{\Delta} + \dot{\tilde{\epsilon}}_{ij}^T \eta_\mu \dot{\tilde{\epsilon}}_{ij}\right)$
 - Partially solid saturation material (bitumen?) should give a more complete structure of the shear modulus matrix µ Extensions of Biot's model

