
Lecture 6: Fluid-saturated porous rock (Biot’s model)

• Biot’s poroelastic model as a GLS with N = 2

• Elastic moduli and Skempton coefficients

• Gassmann’s equation

• Waves

• Extensions of Biot’s model

• Reading: Section 5.4 in the text
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• Biot’s model of porous rock is well known from around 1940’s. Its structure and 
approximations can be clearly seen in matrix GLS form:

1. The model is macroscopic, i.e. it contains no notions of internal rock or pore structure 
(pore shapes, distribution, pore connectivity, etc.)

• However, perfectly connected pores are assumed when considering dynamic processes, so that 
the pore pressure can equilibrate within the time span of the experiment

2. The model describes the rock by only two generalized variables: displacement  or the 
whole rock and only one pore fluid. This means that Biot’s model is a GLS with  N = 2.

• Variable number 1 (uJi with J = 1) represents the observable displacement of the whole rock, 
and variable J=2 is the (hard to measure) average displacement of pore fluid

• Accordingly, there is only one pair of stresses: pressure applied to the whole rock and to its 
pore fluid

3. The elastic energy is only due to stresses of the rock and pore fluid, and not to the 
relative displacement between them. This excludes matrix  from the model.

4. The pore fluid affects only bulk deformation. This means that the shear elastic modulus 
matrix  is of a simple form discussed later.

5. The pore fluid is viscous, but this viscosity causes only Darcy type (body-force) friction. 
This constraint means viscous GLS matrices equal zero. 



• Scalar quantity                        is called the fluid content
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• With the above assumptions (simplifications), Biot’s model is a special case of a GLS 
model with N = 2:
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where the ith spatial component of the bivector of variables 
is a vector in 2-D model space (6 variables in total):
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Relations of generalized coordinates to actual displacements
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• Our second GLS variable is often called “fluid content” and denoted :

• From these vectors of displacements and dilatations, the displacements and 
dilatation of the solid and fluid phases are obtained by matrix products:
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Selections of matrix forms for material properties
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• Among the above material-property matrices, only K and  require further comments 
(others are simply definitions of KU, , M, , and m)

• In matrices K and , the off-diagonal elements are negative. Why? 

• The general answer is in the following observations:

• Note the meaning of matrix expressions for energy, for example:

1. The diagonal elements represent the values of energy in the end-member cases u1 = 0 or 
u2 = 0.

2. The variables are defined so that if u1 and u2 are nonzero and of the same sign, then the 
resulting energy is lower  (because of the negative -aM) than the sum of energies due to 
the variables alone.

3. Thus, from energy standpoint, the system will prefer deformations with nonzero values of 
u1 and u2 of the same sign.
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• So, if u2 = 0 (pore fluid not moving relative to the rock),                                    . This means 
that  is the density of the average rock: 

• If u1 = 0 (rock is not moving), then                                                 , and therefore                            
This is the definition of tortuosity a (ratio of the actual kinetic energy in a flow to the 
energy of its averaged macroscopic equivalent) 

• The third coefficient in term                      is merely a Lagrangian representation of the force 
exerted on a solid body with coordinate u1(t) placed within a fluid flowing at velocity        .             

• Elements of the density matrix can be understood as follows:

• This matrix means the following expression for kinetic energy:

Density matrix
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• Elements of the  bulk-modulus matrix                                     can also be understood by 
considering various experiments with porous rock. For static (time-independent) 
experiments, the applied stress   and pore pressure p are related to deformations as:                                

Elastic parameters
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• Under ‘undrained’ compression  (zero pore flow, sealed sample,  = 0),                    ,  and therefore  
KU is the ‘undrained’ modulus

• Under ‘drained’ compression (zero pore pressure variation, pores freely communicating with the 
outside space, p = 0),               , and therefore KD is called the ‘drained’ modulus

• Under the same drained conditions,             , and therefore the Biot-Willis parameter can be 
measured experimentally as ratio                 .
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• Skempton coefficients are important ratios of experimental observations useful for 
obtaining poroelastic moduli

• Skempton A  is the same as Biot-Willis  -- ratio of change of fluid content to rock volume 
change under drained condition:

Skempton coefficients
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• Skempton B  is the ratio of the induced pore pressure to the change of stress loading under 
undrained condition
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• These relations give a way to measure poroelastic modulus M:
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• To find the elastic modulus of the material of solid matrix (“solid grains”), again consider 
drained experiment (p = 0) and look at the expansion of the solid and fluid:  

Elastic parameters
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• Because the fluid exerts no pressure in this experiment, all stress s should be supported 
by the solid frame. Therefore,  the modulus of the material of the frame equals: 
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• … or conversely, the Biot-Willis parameter is determined from the ratio of the modulus of 
the empty porous matrix to the modulus of its material

• From these relations,  must satisfy: 1  



• To find the elastic modulus of the pore fluid in matrix K, consider an experiment in which 
the rock frame and the fluid are held at equal pressures ( = -p).  This is an experiment 
with unjacketed rock sample

• Then, the deformations of the solid and fluid phases are:

Elastic parameters
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• f here should equal                   , and after some simplifications, Kf can be expressed:
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• Gassmann’s equation (next slide) predicts the bulk modulus of fluid-saturated rock (KU) 
from porosity  and the moduli of:

• Solid grains (Ks)

• Drained (empty) porous matrix (KD)

• Pore fluid (Kf)

• Because of the ability to use different Kf with the same rock frame, this equation is often 
used for fluid substitution (modeling the behavior of rock with different saturating fluids)

• Gassmann’s equation KU = KU (  Ks, KD, Kf ) is just one relation satisfied by the static 
(elastic) limit of Biot’s or any other model with single porosity

Gassmann’s equation

Gassmann’s Equation 11



• Gassmann’s equation is simply an identity relation satisfied by the elastic matrix 

• Matrix K contains only three independent elastic constants in (KU, , and M), but four 
empirical moduli KU, KD, Ks, Kf are measured from it in various experiments

• Therefore, the empirical moduli must be mutually related. This relation is the Gassmann’s 
equation

• The simplest form of this relation was given above: 

Gassmann’s equation
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• There are several forms of final relations excluding  and  using Ks and Kf . The following 
one looks most elegant, in the form of a Reuss average of the solid and drained compliances:   
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• One of the commonly used forms 
of Gassmann’s equation is:
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• This equation gives:
• Two P-wave modes (primary wave and a diffusive “slow” secondary wave)  

• One S-wave mode for a given polarization)

• Biot’s characteristic frequency:

• At this frequency, there is a peak of Q-1(f)

• However, fc is usually very high (30 kHz to 1 GHz for water), and therefore,  the attenuation 
and dispersion due to this primary-pore (“Biot’s”, or “global”) flow is usually weak

Waves in porous media (“global flow”)
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• Plane harmonic waves are obtained from the same GLS 
eigenvalue equation (matrix M is real-valued in Biot’s 
model):
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Wave velocity dispersion and attenuation (Q-1)
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Secondary (“slow”) P wave

Primary (“fast”) P wave
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Primary P wave
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• Attenuation (f) scaled by 2 c
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From Bourbié et al., 1987



Secondary P wave
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• Attenuation (f) scaled by 2 c
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S wave (only one)
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• Consider all possible extensions of Biot’s model of poroelasticity without additional 
porosities, nonlinearity, and anisotropy (which were sort of missed by Biot)

• These extensions are seen in the complete GLS model with N = 2:  

Extensions of Biot’s model
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Red shows terms omitted in Biot’s model, or 
matrix  was selected in a too simple form
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• Using N > 2 gives many models of multiple porosities (e.g., “squirt flow” models)

•  Replacing the terms highlighted in red in the case with N = 2 also gives 
interesting extensions:

• Including wettability (capillary forces) effects – elastic term for pore fluid:

• Note that capillary forces are related not to strain (ij) but to relative displacement of 
the pore fluid (u2i)

• Including viscosity of the frame and pore fluid – terms 

•  Partially solid saturation material (bitumen?) – should give a more complete 
structure of the shear modulus matrix  
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