
Lecture 7: Mechanical viscoelasticity

Lecture 7: Mechanics of Viscoelasticity 1

• In this lecture, my goal is to show what part of the viscoelastic model for rocks (with time-
dependent interactions) can be represented  by rigorous continuum mechanics

• The answer to this question is: “mechanically-implementable” viscoelastic models (represented by 
spring-dashpot diagrams) can be modeled by mechanics

• Such models are likely all that matter among the VE models

• However, there also exist many other mechanical models which cannot be described by spring-
dashpots diagrams or by the VE model 



Lecture 7: Mechanical viscoelasticity

• A different meaning of spring-dashpot mechanical diagrams

• Lagrangian and dissipation functions for linear solids

• Generalized standard linear solid (GSLS)

• Extended GSLS

• Conclusion of the course

• Reading: Sections 5.5 – 5.7 in the text
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Spring-dashpot diagrams

Lagrangian Approach 3

• In the viscoelastic (VE) theory spring-dashpot diagrams are used to illustrate mechanically-
implementable stress-strain relations. 

• Recall that VE diagrams are only designed to implement certain relations between time-
dependent functions (t)  (t). Therefore, the VE mechanical diagrams  are limited to a 
certain specific form:

• They have a form of chains of elements with one pair of (t) and (t) measured at the ends

• They contain only springs or dashpots which are related to stress and strain tensors

• Different diagrams may correspond to the same (t)  (t) relation

• However, it is easier and unambiguous to view springs-dashpot 
diagrams as illustrations of the construction of the Lagrangian and 
dissipation functions  

• Each connector is an internal variable

• Each element is an elastic term in L or viscous term in D

• The end connector (black here) is the kinetic-energy term in L



Maxwell’s body

Maxwell’s Body 4

• Maxwell’s body contains one internal variable, therefore N = 1

• There are three material-property constants:
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Maxwell’s and Kelvin-Voigt’s bodies

Maxwell’s and Kelvin-Voigt’s Bodies 5

• Maxwell’s body contains one internal variable, therefore N = 2

• There are three material-property constants:
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• For Kelvin-Voigt’s body, N = 1, and also three material properties:

 =ρ  M=M  =η



Zener’s body (standard linear solid, SLS)

Zener’s Body 6

• Two possible diagrams shown here

• The difference is in the movement of the internal 
variable

• N = 2 and four material-property constants

• For model a) here:
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• For model b):
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See the text for hints to 
obtain relations between 
parameters of the two SLS 
models



Wave velocity dispersion and attenuation for SLS)

Zener’s Body 7

• Eigenmode equation from Lecture #5:                                      
gives one wave mode with a characteristic peak in Q-1(f) and 
increase in velocity from “relaxed” to “unrelaxed” level:
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Burgers’ body

Burgers’ Body 8

• For Burgers’ body, N = 3 and three material-property constants:
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Generalized Standard Linear (Zener) Solid (GSLS) 

GSLS 9

• The GSLS consists of an elastic element (term M1 in matrix element M11) and a series of 
Maxwell-type 4-element blocks for Maxwell chains
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Waves in a GSLS medium

GSLS 10

• Recall from Lecture #5 that plane waves of any 
kind are found by solving eigenvalue equation 
(with the appropriate type of modulus M):

• Because GSLS contains zero mass densities for 
all internal variables, there is only one wave 
mode (with finite velocity). Its velocity and Q-1 
are shown here:  
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GSLS is commonly used in 
waveform modeling 

software to produce such 
attenuation spectra



Waves in a GSLS medium

GSLS 11

• If we consider nonzero densities for internal variables, additional wave modes appear 
(gray lines):

Internal densities equal 1% 
of the main one
Note the Inverse dispersion 
of primary mode (increase 
of velocity with frequency)

Internal densities equal 
0.5% of the main one
Note the Normal dispersion 
of primary mode (decrease 
of velocity with frequency)



Extended GSLS 

Extended GSLS 12

• Let us extend the GSLS by using lessons from Biot’s theory of porous rock

• Compare elastic moduli matrices with N = 2 for a Zener’s body (SLS) and Biot’s model:
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• In the SLS, M1 is analogous to KD, and M2 is analogous to M

• Biot’s matrix contains one additional parameter  (    1). For Zener’s model,  = 1.

• Therefore, it should be useful to generalize the GSLS by adding parameters J to 
Maxwell’s  chains
• The model becomes more like bulk modulus of porous rock with multiple porosities: 
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This model cannot be 
drawn as a spring-dashpot 
diagram, 
but it appears to correspond 
to rocks more accurately

… and the same diagonal 
matrix  as for GSLS

… and matrix  can also be 
modified similar to 
poroelastic one…



Conclusion

Conclusion 13

• Returning to the question of our course:

"How does rock deformation work“?

• Answer:

• It works by means of mechanics!

(also some thermodynamics, electrostatics, magnetics,… etc.) 
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