Lecture 7: Mechanical viscoelasticity

* In this lecture, my goal is to show what part of the viscoelastic model for rocks (with time-
dependent interactions) can be represented by rigorous continuum mechanics

* The answer to this question is: “mechanically-implementable” viscoelastic models (represented by
spring-dashpot diagrams) can be modeled by mechanics

* Such models are likely all that matter among the VE models

* However, there also exist many other mechanical models which cannot be described by spring-
dashpots diagrams or by the VE model
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Lecture 7: Mechanical viscoelasticity

A different meaning of spring-dashpot mechanical diagrams

Lagrangian and dissipation functions for linear solids
Generalized standard linear solid (GSLS)

Extended GSLS

Conclusion of the course

* Reading: Sections 5.5 —-5.7 in the text
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Spring-dashpot diagrams

* In the viscoelastic (VE) theory spring-dashpot diagrams are used to illustrate mechanically-
implementable stress-strain relations.

* Recall that VE diagrams are only designed to implement certain relations between time-
dependent functions &(t) <> o(t). Therefore, the VE mechanical diagrams are limited to a
certain specific form:

* They have a form of chains of elements with one pair of &(t) and o(t) measured at the ends
* They contain only springs or dashpots which are related to stress and strain tensors
 Different diagrams may correspond to the same &(t) <> o(t) relation

* However, it is easier and unambiguous to view springs-dashpot
diagrams as illustrations of the construction of the Lagrangian and K, __
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Maxwell’s body

* Maxwell’s body contains one internal variable, therefore N =1
* There are three material-property constants:
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Maxwell’s and Kelvin-Voigt’s bodies

* Maxwell’s body contains one internal variable, therefore N = 2
* There are three material-property constants:
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* For Kelvin-Voigt’s body, N = 1, and also three material properties:
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Zener’s body (standard linear solid, SLS)

* Two possible diagrams shown here

e The difference is in the movement of the internal
variable

* N =2 and four material-property constants

* For model a) here:
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Wave velocity dispersion and attenuation for SLS)

(M _ (M)
« Eigenmode equation from Lecture #5: P° =7 Mo

gives one wave mode with a characteristic peak in Q-'(f) and K =K +ig
increase in velocity from “relaxed” to “unrelaxed” level:
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Burgers’ body

* For Burgers’ body, N = 3 and three material-property constants:
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Generalized Standard Linear (Zener) Solid (GSLS)

* The GSLS consists of an elastic element (term M, in matrix element My,) and a series of
Maxwell-type 4-element blocks for Maxwell chains
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Waves in a GSLS medium

* Recall from Lecture #5 that plane waves of any

2
o ="MV, where y = (k )

kind are found by solving eigenvalue equation P :
(with the appropriate type of modulus M): @
* Because GSLS contains zero mass densities for
all internal variables, there is only one wave
mode (with finite velocity). Its velocity and Q!
are shown here:
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Waves in a GSLS medium

 If we consider nonzero densities for internal variables, additional wave modes appear

(gray lines):
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Internal densities equal 1%
of the main one

Note the Inverse dispersion
of primary mode (increase
of velocity with frequency)

Internal densities equal
0.5% of the main one

Note the Normal dispersion
of primary mode (decrease
of velocity with frequency)
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Extended GSLS

* Let us extend the GSLS by using lessons from Biot’s theory of porous rock

e Compare elastic moduli matrices with N = 2 for a Zener’s body (SLS) and Biot’s model:
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* Inthe SLS, M, is analogous to Ky, and M, is analogous to M

* Biot’s matrix contains one additional parameter a (¢ < a < 1). For Zener’s model, a=1.

* Therefore, it should be useful to generalize the GSLS by adding parameters ¢; to

Maxwell’s chains

} , where K, =Kg +a*M

* The model becomes more like bulk modulus of porous rock with multiple porosities:
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... and the same diagonal
matrix n as for GSLS

... and matrix p can also be
modified similar to
poroelastic one...

Extended GSLS

This model cannot be
drawn as a spring-dashpot
diagram,

but it appears to correspond
to rocks more accurately
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Conclusion

* Returning to the question of our course:

"How does rock deformation work“?

e Answer:

* It works by means of mechanics!

(also some thermodynamics, electrostatics, magnetics,... etc.)

Conclusion
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