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1 Introduction 

 

At the beginning of this and each of subsequent chapters, I list their key points: 

• Main problems and objectives 

• Scales of measurement and microstructure, importance of the macroscopic 

scale, homogenization 

• Types of anelasic phenomena: transient deformations, oscillations, waves 

• Two approaches to anelasticity: 

o Conventional: the viscoelastic model 

o Approach of this course: macroscopic continuum mechanics 

 

1.1 Scope and objectives 

In this course, I attempt giving a unified and rigorous, and yet simple and practical, 

approach to analyzing many problems in rock physics and seismology. The scope of 

problems will include: 

1) Static and quasi-static deformations of bodies of arbitrary shapes; 

2) Pore-fluid flow through rock: Darcy law and poroelasticity;  

3) Linear creep and stress relaxation within rock; 

4) Deformation of media with complex internal structures, such as compounds 

and multiple porosities;  

5) Elasticity and anelasticity; 

6) Attenuation of seismic waves; 

7) Thermal effects during rock deformation.  

As all other physical phenomena, these effects can be described by methods of mechanics 

and thermodynamics. I will focus on methods using strictly macroscopic-scale material 
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properties and laws. These macroscopic laws correspond to the scales of all observations 

in the laboratory and field. 

1.2 Physical terminology 

There exists a broadly used but somewhat intricate terminology related to 

classification of deformations of solids (e.g., Cooper, 2002). This classification is usually 

illustrated on the example of a body undergoing an instantaneous (step-function) loading 

from zero stress followed by a similar unloading after certain amount of time. Such 

experiments are described in section 0. However, I try describing materials not just by their 

behavior in certain specific experiments but in terms of universal physical properties which 

should be active in any experiments. 

Assume that the body and its surrounding environment does not change its 

composition, microstructure, etc., and returns to the original state after one 

loading/unloading cycle. Based on the dissipation of mechanical energy into heat, such 

deformations can be elastic (with zero dissipation) or inelastic (with positive dissipation) 

(Table 1.1). Thermodynamically, such processes are classified as reversible and 

irreversible, respectively, because processes with net zero loss of heat (and presumably no 

other changes) can typically be performed in reverse time order.  

TABLE 1.1 Classification of viscoelastic behavior of materials  

(modified after Cooper, 2002)  
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From the viewpoint of the viscoelastic model (Chapter 2), the distinctive property of 

a viscoelastic body is the delayed stress-strain response for inelastic processes (Table 1.1). 

However, from the mechanical argument further in this course, the delay in the observed 

strain response is only a consequence of internal friction within the material. Moreover, as 

also shown below, there exists no definite strain-stress response within rock at all. 

Among the inelastic deformations, anelastic and plastic processes are differentiated 

(Table 1.1). For anelastic deformations, the body returns to its original shape after each 

loading/unloading cycle (maybe after some time after the stress is removed). Plastic 

deformations are characterized by material flows, i.e. permanent changes in the shape of 

the body after the end of the loading/unloading cycle. Note that the term “not recoverable” 

in Table 1.1 may not be rigorously accurate, because practically any creep can in principle 

be “recovered” by additional reshaping of the body. What is meant here is “deformation 

recovered by itself.” This is a phenomenological description of the expected result of some 

experiment but not a specification of its mechanism. 

Peeking ahead in our discussion of continuum mechanics, the difference between 

anelastic and plastic effects can be illustrated in Figure 1.1. Plastic behavior always 

requires some internal variable, which is additive to the strain and has zero elastic energy 

 

FIGURE 1.1.  

Burgers’ model of deformation. Stress  is applied to the ends of this sequence of 

mechanical elements and causes observed deformation 1. This deformation includes an 

anelastic part (involving both elasticity and viscosity, 2), plastic part (viscosity only, 3), 

and pure elastic part (the unlabeled deformation of the spring M1).  

Note that anelastic deformations almost always include movements of some internal 

degrees of freedom (white dots in this plot) which are not observed in the mechanical 

strain-stress testing experiment. 
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(i.e., no elastic spring connected in parallel). The middle segment (3) in Figure 1.1 is an 

example of such “plastic” variable. For very slow deformations, this variable will be the 

only one varying continuously and creating the plastic flow. In other words, plastic 

behavior requires some “flowing” structure present the system; this is not just a matter of 

selecting effective strain-stress laws. By contrast, the anelastic element (2 in Figure 1.1) 

shows zero deformation at zero stress, and its deformation is reversible.  

Because plasticity implies a certain construction of the medium rather than just a 

constitutive law, we do not significantly differentiate between the anelastic and plastic sub-

types in Table 1.1. The major distinction lies between:  

• Conservative deformations (elastic deformations of solids, frictionless flows 

in fluids) and  

• Inelastic processes dissipating the mechanical energy. 

1.2.1 Energy, attenuation, phase lags, and Q 

When talking about wave “attenuation” and “energy dissipation,” it is important to 

clearly understand the meanings of these terms. These concepts are often interpreted 

empirically and intuitively, but in reality, they may not be easy to specify for a given 

experiment, and they may mean not what you think. Let us consider these concepts 

separately and in most general terms. 

First, “attenuation” is often equated with the Q-factor not just the inverse Q-factor 

for a wave or a stress-strain phase lag measured in a subresonant lab experiment. Q-factors 

differ for different shapes of oscillating bodies (like a drum or string) and different wave 

modes. As it will be further explained in the course, the notion of a Q-factor is extremely 

tricky when applied to traveling waves or materials like rock. The Q-factor is also often 

explained through the strain-stress phase lag observed in a rock-physics experiment. 

However, in porous rock, there exist multiple types of strains, such as the strain of the 

average rock frame, different types of mineral grains, and of different parts of the pore 

volume and fluids. Each of these strains has a counterpart stress and consequently the 

corresponding phase lags and Qs. Because of heat flows between grains and pore fluids, 
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there is also a strain-stress phase lag related to thermoelasticity (coupling between 

deformations and temperature variations) In addition, within aseismic wave in a reservoir 

or in a deforming rock sample, there exist multiple types of waves: primary (“fast”) waves 

and secondary (“slow”) waves, P and S waves, and also waves related to boundary 

conditions like tube and surface waves. All these waves also have (generally) different 

strain-stress phase lags and Q-factors. Consequently, phase lags and Q-factors only 

describe certain types of experiments, and it is difficult to view them as material properties. 

Similarly, by the law of energy conservation, the total energy is constant and does 

not dissipate. The energy also comes in multiple forms (kinetic, elastic, heat, chemical, 

surface adhesion, electric, etc.) which are extremely difficult to measure in rock. This is 

why I specifically emphasize the mechanical energy in the definition of inelastic processes 

above. Mechanical energy is a sum of the potential and kinetic energies associated with 

movements of grains and patches of gas or fluid within rock (but not, for example, their 

heat and electric or chemical energy). However, this energy is also impossible to measure 

in a real experiment, and we always observe only a part of the total mechanical energy. 

This observable mechanical energy is, for example, the work of the loading force applied 

to the end platen of a rock sample in a laboratory experiment. The measured work of the 

loading force is not the complete mechanical energy – it does not include the individual 

energies of deforming pores and pore fluids. 

Thus, when explaining rock-physics observations, we should not rely on intuitive 

analogies but need to always use rigorous physical terminology and look for correct 

physical properties of the materials. 

1.3 Porous rock 

Porous rock  

1.4 Heterogeneities and scales 

Rock bodies contain internal structures with different characteristic spatial 

dimensions called scales. As above, when considering scales, it is important to clearly 
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define this term.  In particular, we need to differentiate between the observational scale of 

bodies used in the experiments and scales of the rock structure itself.  In this regard, there 

exist only two scales: 

• Observational scale, at which is any distance understood deterministically 

(e.g., dimensions of bodies or rock samples). Thus, this scale is only 

dependent on the  

• Sub-observational scale, which is not covered by current deterministic 

equations. For example, such scale includes random layering between 

reflectors identified within a reservoir, distances between fractures, grain 

sizes, sizes of pores and patches of saturation. Any detail of the experiment 

at this scale must be described in terms of some averaged properties, which 

will vary on the observational scale. For example, when studying seismic 

responses of variable saturation within a rock cylinder, the shapes and sizes 

of saturation patches must be reduced to variations of average saturation or 

saturation tensor (below). This procedure of reducing the detail of sub-

observational scale to observable properties is called creation of an effective-

medium model, or homogenization. 

Three characteristic scales are recognized for seismic properties (Figure 1.2): 

• The longer, macroscopic scale of investigation or engineering application. 

This scale covers distances from several centimeters to meters and given by 

seismic wavelengths, thicknesses of key layers, dimensions of identifiable 

scatterers in the subsurface, and dimensions of samples in the laboratory 

testing.  

• The shorter, microscopic scale of about a micrometer or smaller. At this scale, 

the rock represents an extremely complex arrangement of grains, volumes of 

pore fluids, bitumen, crystals of minerals, etc.  

• The mesoscopic scale intermediate between the scales above (typically 

about 1 cm). At this scale, grains are not recognized but groups of grains, 

fractures and larger cavities are viewed as the structure. 

For laboratory measurements on rock cores or ultrasonic measurements with centimeter-
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long waves, the mesoscopic scale may overlap with the macroscopic one. In such cases, 

we will only talk about the macroscopic scale. 

For laboratory and field observations with oscillations and waves or deformations of 

reservoirs, the differentiation of scales is somewhat different. We are only able to see the 

macroscopic scale, which is much larger than the size of the representative elementary 

volume (REV) (Figure 1.2, top). Usually, the REV is larger than the mesoscopic scale 

unless a small rock sample is being studied. Therefore, it is better to always look for REV-

scale material properties summarizing the mesoscopic and microscopic-scale rock 

structure. 

The REV is described by relatively few averaged medium properties and ‘effective 

medium’ equations of continuum mechanics discussed further in this course. These 

parameters and equations are obtained by averaging the complex structures and 

deformation patterns at the microscopic and mesoscopic scales. This procedure of 

approximating the heterogeneous by effective-medium properties and equations is often 

 

FIGURE 1.2.  

Scales of structures within rock (modified after Müller et al., 2010) 
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called homogenization of micro- and meso-structures. 

In the following subsections, I summarize the microscopic/mesoscopic scale 

phenomena and how they generally appear in REV-scale effective media. 

1.4.1 Microscopic and mesoscopic deformations  

At the microscopic and mesoscopic spatial scales, the rock structure is extremely 

complex, and deformation occur by numerous physical mechanisms.  Lakes (2009) gave a 

classification of microscopic mechanisms that can be responsible for inelastic behavior of 

solids (Table 1.1). I added dislocation-based (q) and scattering (r) mechanisms to Lakes’ 

classification. In this table, the asterisks indicate the most fundamental mechanisms which 

arise due to the most inherent properties and observed even in ideal perfect crystals.  

Columns in Table 1.1 show check marks for the different mechanism contributing to 

macroscopic (observable on the scale of our experiments) physical phenomena: 

• Column Viscosity indicates the microscopic or mesoscopic phenomena that 

create average viscous forces, similar to the viscosity of a fluid. This 

mechanism is not considered in conventional approaches, but in will be 

principal mechanism of anelasticity in chapter 5. 

• Column Thermal indicates effects causing variation of temperature and heat 

flows between parts of the medium (chapter 6). 

• Column Kinetic marks phenomena due to random vibration of particles, 

similar to the Brownian motion and reversible chemical reactions. This is the 

principal mechanism used in the viscoelastic model (chapter 2). 

• Column Scattering indicates a special group of ‘elastic’ relaxation processes 

which occur without loss of the total mechanical energy. This mechanism is 

controlled by the shapes of heterogeneities and sometimes by the shape of the 

whole body studied. We will not consider this mechanism in this course. 

Wave-induced fluid flows 

The pore-fluid related mechanism (p) in Table 1.1 is the most important in 
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exploration seismics and called the wave-induced fluid flow (WIFF) there. This term is not 

particularly accurate because such flows occur not only in waves but in practically any 

types of deformations. For example, a steady-state pore-fluid flow during a permeability 

TABLE 1.1 Mechanisms of internal mechanical friction in materials 

 



ZB01305M  1. Introduction 

17 

measurement in a rock sample is also such as flow. However, WIFF is usually used to 

explain the variations of attenuation and velocities of harmonic waves, and consequently 

this name has become customary and broadly used. 

Figure 1.3 shows several types of WIFF phenomena. Note that these phenomena can 

occur on all three of the structural scales (microscopic, mesoscopic, or macroscopic scales) 

and depend on the shape of the pore space within rock and sometimes on the size and shape 

of the whole rock body (e.g., case (d) in Figure 1.3). 

The “wave-induced fluid flows” are often modeled in detail, by simulating some 

micro- and/or meso-scale structures (Figure 1.3) and using computer modeling to simulate 

 

FIGURE 1.3.  

Several types of microscopic, mesoscopic, and macroscopic-scale effects of pore fluids 

within rock. These effects called the wave-induced pore-fluid flow (WIFF) modify the 

velocities and attenuation of seismic waves. Effects (b) and (f) can occur for fluids or 

solid grains. 

Note the complexity and variability of possible effects. The detail of these effects in a 

given rock are likely impossible to constrain, but the averaged macroscopic properties 

(pressures p, electric potentials , temperature variations T, etc.) can be used to 

characterize the rock. 
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the detailed fluid flow through it. By also measuring the average stresses and strains or 

energies within the modeled body, macroscopic ‘effective-medium’ relations are derived. 

However, although providing a complete detail, this approach contains a major difficulty: 

the modeled structure is always only an example of a possible rock structure. The modeled 

structure does not accurately represent any rock sample, and a myriad of other 

microstructures produce practically identical effects on a wave traveling through this 

medium. The results of modeling do not allow differentiating between the individual cases 

in Figure 1.3, and only averaged properties of the models can be constrained from 

experimental data.  In particular, the ‘type-I, ‘type-II’ and ‘laboratory-scale’ WIFF are 

differentiated simply based on the sizes of the structures involved (much less than grain 

size (~1 m), grain size, and over 1 cm, respectively) and their aspect ratios (like planar 

cracks vs. spheres).   

In this course, we try obtaining an effective-medium description of WIFF (as well as 

of any other process in Table 1.1) directly, by starting from observable macroscopic 

properties of the material and performing modeling strictly in terms of these properties.  

1.4.2 Macroscopic picture 

The micro- and mesoscale structures shown Figure 1.3 can be described by 

macroscopically- (REV-scale) averaged material properties. Some of these properties are 

well known, and some of them may be difficult to obtain but are in principle measurable: 

• Density and porosity, mass fraction of various minerals and fluids 

(saturation). 

• Structural parameters: distributions of sizes and shapes of grains and pores, 

fractures, microcracks and micropores. 

• Permeability parameters: tortuosity, shapes and connectivity of pores. 

• Elastic moduli measured under various conditions (bulk, shear, Young’s, 

drained, undrained, unjacketed for porous rock, isothermal, adiabatic). The 

General Linear Solid (GLS) model discussed further in this course shows that 

there exist many more types of such averaged elastic properties. 

• Average effects of viscosity (bulk or shear) of fluids in primary and 



ZB01305M  1. Introduction 

19 

secondary pores. Similar to elastic properties, there exist many material 

properties of this type. 

• Surface tension parameters: surface tension, average contact angles, 

wettability, average radii of capillary menisci. 

• Electrical and magnetic properties. 

• Average properties of thermal microstructure: specific heat and heat 

conductivity between grains, pores, fluids, etc.. 

Our ultimate goal is to learn constraining the above macroscopic parameters from 

laboratory observations and wave velocities measured in the field and to apply these 

parameters to modeling seismic waves and interpreting reservoir conditions. 

Characteristic times and frequencies 

How do we recognize each of the “relaxation mechanisms” in Table 1.1 and 

Figures 1.2 and 1.3 within real rock? Unfortunately, these mechanisms only represent 

hypotheses explaining frequency dependencies of attenuation ((f), Q–1(f)) and modulus 

dispersion observed in forced harmonic-oscillation mechanical testing (Figure 1.4). These 

spectra do not allow identification of the precise micro- or microscopic mechanisms (rows 

in Table 1.1, but they provide relatively clear distinction between groups of mechanisms 

given by the columns of that table (Figure 1.4).  

In the attenuation spectra, the most valuable information constraining the 

mechanisms is the frequency (or multiple frequencies, or sometimes broader bands) of 

absorption peaks (Figure 1.4). From an observed characteristic frequency fr, the 

characteristic “relaxation times” of the system is obtained as r  = 1/2fr. Values of these 

relaxation times and frequencies are used, for example, for differentiating between the 

type I, type II, and the ’global-flow’ (‘laboratory-scale’) WIFF in Figure 1.3. The 

characteristic time can be related two types of phenomena: 

• Elastic scattering (for example, free oscillations or wave reflections). In such 

cases, a characteristic time r indicates the presence of structure (e.g., 

layering, or pores) with characteristic dimension l:  
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                                                                        rl c , (1.1) 

where c is the characteristic wave velocity. For rock, these elastic resonances 

occur at extremely high frequencies (Gigahertz). However, in laboratory 

testing, seismic-range frequencies fr may occur due to resonances within the 

measurement apparatus.   

• Anelastic relaxation due to internal friction within rock. In this case, the 

measured characteristic time r suggests the presence of characteristic 

viscosity  of the mechanical system: 

                                                                         rM  , (1.1) 

where M is the characteristic value of the elastic modulus. Unfortunately, a 

part of this viscosity may also occur within the measurement apparatus. 

 

FIGURE 1.4 

Schematic frequency dependencies of wave energy dissipation for different mechanisms 

of anelasticity in a material without internal variables: a) temporal attenuation 

coefficient  (chapter 5), b) inverse quality factor 1 2Q  − = . Scaling of the axes is 

arbitrary.  

For viscosity, two functions are shown, corresponding to linear ‘wet’, gray dotted line), 

and nonlinear (‘dry’, black dotted line). The “wet” viscosity case also represents the 

saturated porous rock. Expressions in the labels in (a) indicate three different regimes of 

thermoelastic dissipation (chapter 6). 
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These parameters l and  are largely empirical are sensitive to numerous parameters of the 

micro- or meso-scale structure. The magnitudes of  can be reasonably estimated from first 

principles only for thermoelastic mechanisms. Note that in the viscoelastic model (next 

subsection and chapter 2), the dissipation strength and the relaxation times for kinetic 

processes are also totally empirical characteristics. 

Note that for a material without internal deformation variables (Figure 1.4), the 

scattering, thermoelastic dissipation, and kinetic processes are the only mechanisms 

predicting the characteristic absorption peak in Q-1(f) (Figure 1.4b). Peak in Q–1(f) are 

indeed often observed, and from them, frequencies fr are identified and material 

parameters l or  estimated. By contrast, the common viscosity without internal 

deformation variables leads to Q–1(f) monotonically increasing with frequency. This 

comparison shows that for real rock, there are (disregarding scattering) three general 

groups of mechanisms that can explain observations: 

1) Kinetic effects (generalized to the viscoelastic model; this will be discussed 

in chapter 2); 

2) Viscosity with internal deformations (like pore-fluid flows; chapter 5); 

3) Thermoelastic effects (chapter 6). 

1.5 Observations of elasticity and anelasticity 

One of the key tasks in rock physics consists in explaining the anelastic relaxation 

phenomena, as defined in Table 1.1. Generally, relaxation means some observable property 

of a rock body apparently changing with time, such as a deformed body gradually returning 

to its original shape after the load is removed. Relaxation phenomena are observed in three 

forms:  

• Time-delayed responses of strains and stresses in mechanical loading 

experiments; 

• Frequency-dependent and phase-shifted (M(f)) and attenuation (Q-1(f)) under 

time-harmonic loading at varying frequencies;  

• Variations of wave velocities and attenuation with frequency. These 
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variations also cause changing shapes of wave packets with propagation time 

(dispersion). 

Let us briefly consider these three types of phenomena. 

1.5.1 Transient deformations 

Consider, a rock sample subjected to mechanical testing in the laboratory or a volume 

of rock on which a seismic wave pulse is incident. If a sudden increase of stress  is applied 

to the body, its deformation will first jump to a certain initial level U (Figure 1.5). This 

initial strain is called ‘unrelaxed’, and the modulus (stiffness) associated with this initial 

deformation equals 
def

U UM  = . If the applied stress  is kept constant at t > 0, internal 

flows occur within the body, and the strain increases further until ‘relaxed’ strain R is 

achieved, and the rock is equilibrated.  In this limit, a weaker, ‘relaxed’ stress-strain 

response will be obtained: 
def

R RM  = . The process of relaxation depends on time as 

( )exp t − , where  is the relaxation time for strain If the load is suddenly  removed at 

 

FIGURE 1.5.  

Linear relaxation of strain in a rock sample. After a step in stress  is applied at time 

t = 0, the initial strain becomes U (‘unrelaxed’), and it gradually approaches the ‘relaxed’ 

strain U R  at t → ∞. After the loading stress is removed at time t = T, the relaxation 

process is repeated in the opposite direction.  

Note that with periodic loading and unloading, the pattern of strain lags behind the stress. 

This is an indication of the stress-strain phase delay for periodic processes.  
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time T , the process is repeated with opposite polarity of strain variations (Figure 1.5). As 

a result, the pattern of strain variations (t) is delayed in time relative to the stress (t) 

(Figure 1.5). 

Another way to assess relaxation phenomena in rocks is to conduct a stress relaxation 

experiment (Figure 1.6). Such experiments are somewhat more difficult to implement 

because they require maintaining a fixed strain and accurately measuring significant 

pressure. However, such experiments are important because they observe the constant-

deformation regime, in contrast to the constant-pressure regime in Figure 1.5. In this 

experiment, a sudden increase of strain  is created at time t = 0 and maintained constant 

after that. At t = 0, the stress in the body will jump to the unrelaxed level U UM = , and 

then it will gradually decrease to the relaxed level R RM = (Figure 1.6). If the strain is 

returned to  = 0 after time t = T, the stress “overshoots” in the opposite direction and 

eventually relaxes to the zero level (Figure 1.6). The relaxation processes also 

exponentially depend on time, but with a different (stress) relaxation time , which turns 

out to be smaller than  If the deformation pattern is repeated, the “sawtooth” pattern of 

stress (t) is advanced relative to (t) in this case (Figure 1.6). 

 

FIGURE 1.6.  

Linear relaxation of stress in a rock sample. After a step in strain  is applied at time 

t = 0, the initial stress ‘overshoots’ the equilibriun value and becomes 
U (‘unrelaxed’). 

With time increasing, the stress gradually reduces to the ‘relaxed’ (equilibrium) stress 

R U  at t → ∞. After the strain is removed at time t = T, the stress relaxation process 

is repeated in the opposite direction.  
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In the constant-loading experiment (Figure 1.5;  = const), the output measured 

quantity is the compliance of the rock sample 

                                                     ( )
( )t

J t



= . (1.1) 

From the constant-strain experiment (Figure 1.6;  = const), the empirical (effective) 

modulus is measured: 

                                                     ( )
( )t

M t



= . (1.2) 

From these figures, note the two general properties of the empirical modulus and 

compliance (Figures 1.5 and 1.6): 

• J(t) increases from the level of JU = 1/MU at t = 0 to JR = 1/MR at t → ∞ (1.3a) 

• M(t) decreases from M = MU at t = 0 to MR at t → ∞ (1.3b) 
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1.5.2 Forced harmonic oscillations 

In the second type of manifestation of anelastic relaxation, Figure 1.7 schematically 

shows a laboratory experiment measuring shear-wave attenuation in a rock sample. An 

harmonically oscillating loading torque (shear stress) ( ) ( )0 cos 2t ft  =  is applied to 

the upper face of the cylindrical rock specimen, and phase-delayed shear 

strain ( ) ( )0 cos 2t ft   = +  is measured by measuring the shearing angles of the 

specimen and the aluminum standard (Figure 1.7). Such experiments are the primary rock-

physics tool in laboratory studies of reservoir rock. The typical results are schematically 

         

FIGURE 1.7 

Left: An apparatus for Young’s modulus measurements (from Mikhaltsevitch et 

al., 2015). A jacketed cylindrical rock core (greenish yellow) is placed in a column with 

an aluminum cylinder (standard), so that they receive a common vertical pressure 

oscillating in time. The resulting axial and transverse strains are measured by a strain 

gauges attached to the sample (yellow) and also to the standard. Confining pressure (may 

also be oscillating) is applied using hydraulic fluid surrounding the sample (blue). Pore-

fluid pressure is regulated via the fluid line(s) connected at the end(s) of the sample. 

Right: Principle of torsional phase-lag Q measurements for shear deformation (Jackson 

and Paterson, 1993). From the two shaded angles, the ratio of strains in the sample and 

the aluminum standard element is determined. Because the torque within the specimen 

and standard is the same, the shear strain of the standard and its shear modulus can be 

used to determine the  stress/strain ratio within the specimen. 
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shown in Figures 1.8 and 1.9. The resulting empirical modulus (Fourier transform of M(t) 

above) M(f) is complex-valued and frequency-dependent, and its complex argument is the 

phase delay (f) of the cosine function (t) with respect to (t). The stress-strain phase 

delay  (Figure 1.8) is the key measured quantity, and it is usually presented in the form of 

another quantity denoted Q (“quality factor”): 

                                                  
def

1 Im
arctan

Re

M
Q

M
− = − = . (1.4) 

Therefore, the complex-valued M() can be expressed through its real part 
def

ReM M =

and the Q–1: 

 

FIGURE 1.8.  

Subresonant measurements of Young’s modulus (from Batzle et al., 2001, The Leading 

Edge) A sinusoidal axial pressure at frequency 5 Hz is applied to a column consisting of 

an aluminum standard and the rock sample. Vertical strain gauges (Figure 1.7, left) 

measure Young’s modulus deformation (black and blue curves), and horizontal gauges 

give the Poisson’s ratio (green). Note the slight phase lag of the black curve relative to 

the blue one – this is the measured Q-1 (eq. 1.4). 
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                                                  ( )11M M iQ−= − . (1.5) 

The real part M  of the viscoelastic modulus and its Q–1 are usually reported from seismic-

frequency laboratory experiments (Figure 1.9). 

The Q is usually associated with a material property summarizing the tendency of 

the material to dissipate the mechanical energy into heat, and thereby to cause seismic wave 

attenuation. However, the existence of such a material property is actually difficult to 

establish1.  

The relaxation times  and  (Figures  1.5 and 1.6) represented in the frequency 

domain by another pair of characteristic features (Figure 1.9): 

 
1 Note that although denoted by Q and associated with a “quality factor” like the Q of a resonator, in 

this experiment, this quantity is only a transformation of the phase angle between strain and stress. This phase 

angle is not automatically related to mechanical-energy dissipation or seismic wave attenuation. The relation 

of this phase angle to attenuation needs to be established by accurate modeling of the specific deformation 

experiment. Methods of such accurate modeling are described in this course. 

 

 

FIGURE 1.9.  

Schematic modulus dispersion and attenuation spectra observed in experiments with 

seismic waves and rock samples. The dynamic modulus M undergoes a step 

(“dispersion”) by some amount of “modulus defect” M near frequency f0, and the 

attenuation factor Q-1 shows a peak of height proportional to M/M at the same 

frequency. These particular shapes of the dispersion transition and attenuation peak can 

be modeled by the standard linear solid (Zener) model (chapter 5).  

• The characteristic frequency f0. With increasing attenuation (that is, 

viscosity of the material), f0 reduces. 

• Ratio MU/MR of the high- and low-frequency limits of modulus M(f). 
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The existence of the relaxation frequency f0, the different MR, MU, the frequency 

dependent (f) with phase delays (f) and Q-1(f) are indicators of modulus-dispersion and 

attenuation phenomena. These parameters give a phenomenological description of the 

process of relaxation. Generally, these parameters are also sensitive to the details of the 

specific experiments, such as sizes of rock samples or boundary conditions2. Our goal in 

this course is to explain this phenomenology by the laws of physics and identify the true 

physical properties of the material and the physical laws governing the process. 

 With regard to selecting the physical properties and laws describing rock 

anelasticity, there exist two general approaches outlined in the following subsections. 

These approaches differ fundamentally: in the first approach postulates purely 

mathematical principles and modifies mechanical laws specifically for modeling anelastic 

deformations in solids, and the second approach relies entirely on standard physics. 

1.5.3 Seismic waves 

Anelastic relaxation phenomena are also important for seismic waves, as illustrated 

in Figure 1.10 for coda waves.  Codas in earthquake seismology consist of waves randomly 

scattered from the crust around the seismic station, similarly to a reflection seismogram in 

from a surface source in exploration seismology. Increased anelasticity of the medium is 

observed from shorter duration of the wavetrain T1/2 and reduction of wave frequencies. 

These effects are also associated with a larger effective Q–1 of the medium (bottom of 

Figure 1.10). 

Obtaining properties of seismic waves from mechanical properties of the medium 

may be a complex task. This procedure is described in chapters 5 through 7. In practice, 

the viscoelastic model is commonly used (next subsection and chapter 2). In this model, 

the variation of velocity and Q-factor of a wave with oscillation frequency f are explained 

through the variation of the effective complex-valued modulus of the medium M(f). 

Assuming that the density  is not affected by anelasticity3, the phase velocity of a wave 

 
2 This is indeed the case for f0 and Q-1 for porous fluid-saturated rock, particularly in laboratory 

experiments with small rock samples or thin layering in the field. 
3 However, in reality, for waves in porous fluid-saturated rock or grainy media, the density also 

contains a frequency-dependent imaginary part. See chapters 5 and 7. 
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equals 

                                                  ( )
( )M

c





= ,  (1.6) 

where  = 2f is the angular frequency. For different wave types, modulus M() in this 

formula can be different: shear modulus  for S waves, P-wave modulus 2M  = + for P 

waves, Young’s modulus 
9

3

K
E

K




=

+
 for extensional waves in a rod (where  is the Lamé 

modulus and K is the bulk modulus), or flexural modulus for  transverse waves in a bar. 

Any pair of these moduli (for example, (K, ), or (,)) can have an arbitrary frequency 

dependence and a Q–1 such as shown in Figure 1.9). Each of these moduli may possess 

different frequency dependencies. 

As a result of frequency dependencies of the moduli, phase velocities of the waves 

change from the “relaxed” limit 
R Rc M =  at  → 0 to “unrelaxed” 

U Uc M =  at 

 → ∞.  This change of velocity (usually increase, U Rc c ) is called velocity dispersion. 

 

FIGURE 1.10 

Schematic seismograms showing seismic coda waves with lower and higher attenuation. 

Higher apparent attenuation is recognized from shorter duration of the coda T1/2, which 

can be described by larger values of Q-1, , or  (parameters  and  describe the 

geometrical spreading; I do not discuss them in this course). 
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To describe wave attenuation, we need to first consider the expression for particle 

displacement (or velocity, acceleration) for a harmonic wave: 

                                           ( ) 0, exp
x

u x t u i t
c


  

= − −  
  

.  (1.7) 

A complex-valued modulus M() leads to a complex-valued wave slowness in this 

equation, which for small Q–1 equals (eq. 1.5): 

1 11 1
1 1

2 2

i i
Q Q

c M M c

  − −   
=  + = +   

    
, where c M  = . Therefore, the 

amplitude of displacement (eq. 1.7) exponentially decreases with travel distance x as: 

                             ( ) 1

0, exp exp
2

x T
u x t u i t Q

c


 −    

= − − −        
.  (1.8) 

where T x c=  is the wave travel time to point x. The last exponential factor here can also 

be expressed through the regular frequency: 1exp exp
2

T fT
Q

Q

 −   
− = −  

   
 , which is the 

definition of the Q-factor for a wave (Aki and Richards, 2002). The meaning of this Q is 

that upon propagation by one wavelength (T = 1/f), the amplitude of the wave decreases 

by factor ( )1exp Q −− . 

Thus, the Q-factor for a frequency-dependent modulus M(f) of a medium is also the Q 

of a wave in this medium. This is the third way of observing the anelastic (relaxation, 

viscoelastic) property of rock. 

1.6 Theories of Relaxation Phenomena 

In this course, we us only consider linear interactions, and therefore the linear 

viscoelastic model.  

1.6.1 Traditional approach: the viscoelastic model 

The conventional approach to explaining anelastic deformations in materials science, 
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engineering, and seismology is based on the so-called viscoelastic theory. The key 

hypothesis of this theory is that the time-dependent moduli M(t) and compliances J(t) or 

the frequency-dependent moduli M(f) and Q-factors measured in certain experiments 

(preceding section) truly belong to the material and operate in all other cases, and 

particularly in seismic waves. 

The viscoelastic model is inspired by generalizing observations of creep within rock. 

In creep experiments, the compliance function J(t) is measured nearly directly, by 

recording transient deformation. When loading is abruptly applied to a rock body and then 

kept constant, the body deforms almost instantaneously (“elastic” deformation) and then 

continues to slowly deform in the same direction for an extended period of time (from 

several seconds to several days, creep).  

Figure 1.11 shows three creep regimes occurring with a sufficiently large stress 

applied for a long time. In a field seismic or laboratory attenuation experiment, stresses are 

weak, and only the transient creep regime is sampled. During periodic weak loading and 

unloading the rock passes through the elastic stage (labeled OA in Figure 1.11), transient 

 

FIGURE 1.11 

Schematic creep curve showing the transient (primary), steady-state (secondary), and 

tertiary creep regimes (Griggs, 1940). Upward-sloping curve shows step-function 

loading and downward curves show unloading. Letters indicate different regimes: of 

deformation: OA – elastic deformation, AP - transient creep, PQ - elastic unloading, 

PR - transient relaxation creep. Gray ellipses indicate the intervals of high velocities.  and 

interpreted energy dissipation.  

Note that the transient creep (path O-A-P-Q-R) is reversible, which means that the system 

returns to zero-deformation state when the load is removed. After steady-state creep (T-

U-V), the system is left with a resudual deformation.   
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creep (AP), elastic unloading (PQ), transient relaxation creep (PR), and finally returns to 

the undeformed state. The segments AP and QR is this diagram are the same as the 

relaxation curves in Figure 1.5. 

The distinction between the “elastic” and “creep” deformation stages in creep 

(Figure 1.11) experiments pose an interesting question: during which of these two stages 

does the mechanical energy dissipation predominantly occur? To answer this question, note 

that the “elastic” deformations (highlighted by gray) occur much faster than the transient 

creep, and because of high velocities, they are likely to cause the largest energy dissipation.  

1.6.2 Approach of this course: continuum mechanics 

Despite what is often thought, theoretical models cannot be judged solely on their 

ability to fit data. The data may be easily fittable by multiple theories, some of which may 

still be unacceptable or incompatible. Rock-physics experiments produce relatively limited 

amounts of data, such as only one time-domain curve in Figures 1.5 or 1.6, or a pair of 

mutually related curves in Figure 1.9. These data usually sample only one spatial location 

such as the average volume of the rock specimen. As explained in the preceding subsection, 

such data can always be explained by some ‘phenomenological’ time- or frequency-

dependent modulus M(t) or M*(f), but the value of this explanation may be uncertain. 

Prior to fitting data, models of relaxation should be designed consistently with basic 

principles of other physical theories. For the mechanics of solids and fluids, the principles 

most important for us are:  

• Instantaneous interactions (acceleration of any point at time t is caused by 

forces acting at the same time); 

• Local interactions (forces at a given point x depending on only few spatial 

derivatives of stresses and material properties); 

• Within a continuous medium, there may (and consequently generally should) 

exist body forces (applied to elementary volumes) as well as surface stresses 

(applied to surfaces of elementary volumes).  

In addition, a very general observation can be made from the observed character of 

band-limited modulus-dispersion spectra in Figure 1.9: 
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• The existence of low- and high-frequency plateaus in the dispersion spectra 

suggests (at least) two deformation modes within the solid, and consequently 

the existence of some internal variable(s) within the medium. Relative 

movement of these internal variables cause the observed relaxation effects 

create the appearance of ‘material memory’ for a body. 

These principles form the basis of the “General Linear Solid” (GLS) model in this 

course (section 5). The canonical text showing application of these principles to numerous 

areas in physics is the eleven-volume Course of Theoretical Physics by Landau and 

Lifshitz, written from 1940s to 1970s. For applications to the continuum mechanics of 

solids, see its volume 7 (Landau and Lifshitz (1986) in Bibliography). However, these texts 

are of intended for theoretical physicists, and here, I only present selected and simplified 

content useful for applied geophysicists. 

In comparison to the conventional viscoelastic approach outlined in the preceding 

section, not that the continuum-mechanics approach: 

• Does not allow arbitrary time-dependent “material memory”. 

o Instead, it considers separate elastic and two types of viscous forces. 

• Instead of the material memory, it seeks internal variables within the material. 

o With appropriate selection of internal variables, the continuum-

mechanics approach reproduces arbitrary viscoelastic models. 

• As special cases, predicts equations (2.2) and the empirical time-dependent 

quantities M, J, and the frequency-dependent Q-1 in them.  

o However, the continuum-mechanics approach recognizes these 

quantities as properties of the whole body rather than material 

properties. 

1.7 Structure of next chapters 

In the next chapters, I start with a summary of the standard viscoelastic theory 

(chapter 2). Chapter 2 describes the phenomenology of this theory, its mathematical 

principles, causality (Kramers-Krönig) relations, and the use and meaning of spring-
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dashpot diagrams and several commonly used models.  At the end of chapter 2, I explain 

the quasi-static character of the viscoelastic approximation and discuss its limitations.  

Chapters 3 and 4 give simple introductions to variational methods in mechanics and 

to Lagrangian form of analytical mechanics. Chapter 4 describes procedures for model 

discretization and the general forms of equations of motion arising in most problems. In 

addition chapter 4 contains a brief summary of rigorous approach to standard 

viscoelasticity. 

Using the Lagrangian formulation, chapter 5 describes the framework of the General 

Linear Solid (GLS) and its key special cases: Biot’s poroelastic model, arbitrary 

mechanically-implementable viscoelastic models, and a generalization of the viscoelastic 

models called the Extended generalized standard linear solid. In chapter 5, I also discuss a 

general approach to formulating effective macroscopic models of heterogeneous media 

(“homogenization” of models).  Chapter 5 also gives several types of differential equations 

arising from the Lagrangian models without and with temperature variations.  

Based on these general approaches, chapter 6 discusses modifications of the 

Lagrangian models by variations of temperature during deformation (thermoelasticity). 

Here again, I briefly describe the standard thermoelasticity with wavelength-scale heat 

flows and also extend it to local heat flows within the internal GLS material structure. This 

completes the theoretical part of the course. 

Chapter 7 describes applications of the GLS models to several key cases: static 

equilibrium, low-frequency laboratory experiments with rock sample in the, and plane 

waves.  

Quick exercises related to current discussions are given in text boxes and laboratory 

assignments for practical Matlab calculations are given at the ends of key chapters.  
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2 The Viscoelastic Model 

 

Key points: 

• Mathematical principles:  

o Boltzmann’s after-effect  

o Correspondence principle 

• Phenomenology: creep, modulus and velocity dispersion, Q 

• Convolutional-integral and time-differential strain-stress relations 

• Causality and Kramers-Krönig relations 

• Kinetic equation 

• Zener’s and related equations 

• Linear solids 

o Time-domain responses and empirical-modulus and attenuation 

spectra 

• Quasi-static character of the viscoelastic model 

 

The viscoelastic model of anelasticity is extremely popular in materials science and 

engineering, and it also extends to scales as large as Earth’s and planetary tides, rotation of 

the Earth (Chandler wobble), and geodynamic processes. In time scale, this model is 

thought to work from milliseconds (seismic periods) to tens of thousands of years 

(postglacial rebound of the continents). The viscoelastic model is also commonly used in 

exploration seismology and studies of reservoir rock, which are the focus of this course. 

The linear viscoelastic theory is based upon an intuitive interpretation of rock 

inelasticity as “imperfect elasticity.” This model is empirical and can be viewed as a 

phenomenological extrapolation of the empirical strain-stress relations measured in creep 
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and other experiments. This extrapolation does not consider any physical laws but is 

performed using purely mathematical methods described in this chapter. By contrast, later 

in this course (starting in chapter 5), we will study the actual mechanics of internal friction 

within an attenuating medium. 

2.1 Mathematical principles 

The goal of the viscoelastic model is to predict the time-dependent stress (t) for a 

measured strain (t) or vice versa, to predict strain (t) if the stress (t) is known. The 

model is based not on any physical considerations, such as, for example, it does not attempt 

to decide whether the stress is caused by the strain or vice versa. Instead of considering the 

physics, specific physics two principles for direct mathematical generalization laboratory 

observations are advanced: 

1) Linearity of the strain-stress relation: If we consider two measurements with strain 

functions (t) and (t), and the corresponding stress functions (t) and (t), 

and implement a new experiment with combined deformation 

( ) ( ) ( )1 1 1 1 2 2 1t c t c t  = +  at any time t1, then the time-dependent stress measured 

at arbitrary time t2 in this experiment will be ( ) ( ) ( )2 1 1 2 2 2 2t c t c t  = + . This 

requirement of mathematical linearity of functional mapping ( ) ( )t t →  and 

vice versa, ( ) ( )t t → , is called the Boltzmann’s principle (“memory,” or 

“after-effect,” Nachwirkung in German). Linearity is naturally expected from 

weak elastic interactions occurring in seismic deformations, and it also holds for 

the so-called Newtonian (i.e. usual) viscosity. Note that linear relations between 

stress and strain perturbations ( ) ( )1 2t t   hold even for different times t1 

and t2, if the (t) if (t) are causally unrelated to each other but occur due to some 

external reason. 

2) The correspondence principle connecting the elastic and anelastic cases. This 

principle is much more subtle and more hypothetical. This principle relates the 

behavior of a given material to its “elastic counterpart,” i.e. the same material but 
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without anelasticity. For an elastic system, the observed strain and stress measured 

at the same point4 are related by  

                                                ( ) ( )t M t = ,     and     ( ) ( )t J t = , (2.1) 

where M is a material property (constant) called elastic modulus, and   1J M=  

is the compliance. The correspondence principle states that for an anelastic 

system, quantities M and J become functions of time, and relations (2.1) become 

integrals over all preceding times   t: 

                                                   ( ) ( ) ( )
t

t M t d    
−

= − , (2.2a) 

and 

                                                   ( ) ( ) ( )
t

t J t d    
−

= − , (2.2b) 

where M is the time-dependent viscoelastic modulus. The integrations over 

preceding times are selected in order to enforce causality of these relations. The 

elastic case corresponds to singular functions ( ) ( )M t M t=  and ( ) ( )J t J t= , 

where (t) is the Dirac delta function equal zero at all t ≠ 0 and satisfying 

( ) 1d  


−
= .  By taking the Laplace or Fourier transforms (next subsection), 

relations (2.2a) and (2.2b) become multiplications by complex-valued, frequency-

dependent moduli and compliances: 

                                  ( ) ( ) ( )f M f f = ,   and   ( ) ( ) ( )f J f f = , (2.2c) 

where ( ) ( )1J f M f= . In the elastic limit, ( )M f M=  and ( )J f J=  

(frequency-independent). 

 
4 Note that I call this principle ‘hypothetical’ because the above conditions are unrealizable in practice. 

No elastic counterpart exists for a real material, and the stress and strain are never measured at the same 

point. Stresses within a given material are also not related to strains by any definite relation (see next chapters 

in this text). 
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Function M(t) and its Fourier transform M(f) in eqs. (2.2) are assumed to represent a 

phenomenological (effective) property of the anelastic material called the viscoelastic 

modulus. The character of this modulus as being extended in time is also referred to as 

phenomenological “memory” of the material, which is implemented by “memory 

variables” in numerical modeling.  

In the frequency domain, another real-valued quantity 

                                                ( )
( )

( )

Re

Im

M f
Q f

M f
= − , (2.2d) 

is derived from M(f) and called the quality factor of the medium5. 

The viscoelastic modulus function M(t) in eq. (2.2a) contains a singularity at t = 0, 

which is useful to isolate using Dirac’s delta function (t) (Figure 2.1a): 

                                                    ( ) ( ) ( )UM t M t M t= + ,  (2.3) 

where MU is the unrelaxed modulus (chapter 1) and ( )M t  is a continuous function varying 

 
5 Note that in the notation used in this course, *Im 0M  , and therefore Q > 0. 

 

FIGURE 2.1 

Schematic shapes of: a) viscoelastic modulus function M(t), b) compliance function J(t). 

Solid lines show the singular parts proportional to Dirac’s delta function (t), and dashed 

lines show the   relaxation parts ( )M t−  and ( )J t  in eqs. (2.3) and (2.7). 
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from U RM M M = −  at t = 0 to  zero at t → ∞. With this separation of the unrelaxed part, 

eq. (2.2a) gives a combination of a response synchronous with (t) and a delayed stress 

relaxation: 

                                          ( ) ( ) ( ) ( )
t

Ut M t M t d     
−

= + − .  (2.4) 

Thus, the viscoelastic stress equals the elastic stress ( )UM t  caused by a constant 

modulus MU plus additional time-dependent stress  

                                                 ( ) ( ) ( )
t

r t M t d   
−

= − .   (2.5) 

This additional stress is called memory variable and often used to implement viscoelastic 

models in time-domain (finite-difference or finite-element) wave modeling codes. 

Similarly to the empirical modulus, the compliance function J(t) contains a delta-

function singularity of magnitude 1U UJ M= (unrelaxed compliance) at t = 0 (solid line in 

Figure 2.1b). Isolating this singularity, the compliance function becomes  

                                                   ( ) ( ) ( )UJ t J t J t= + ,  (2.6) 

where ( )J t  is a continuous function varying from U RJ J J− = −  at t = 0 to zero at t → ∞ 

(Figure 2.1b). Equation (2.2b) then becomes 

                                          ( ) ( ) ( ) ( )
t

Ut J t J t d     
−

= + − .  (2.7) 

Similarly to the stress “material memory” (eq. 2.5), the term ( ) ( )
t

J t d   
−

−  here can 

be viewed as an additional after-effect “strain memory,” but this concept does not seem to 

be used in modeling software. 

Justifications for assuming the correspondence principle in geophysics are given by 

many authors, but always by explaining a relation between a single strain history (t) and 

the corresponding stress history (t) (for example, see Nowick and Berry (1972) or 
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Lakes (2009), and references therein). This single pair of stress and strain functions is 

sufficient for describing deformation of a finite body or for a wave in a homogeneous 

medium. In these cases, it is indeed true that any pair of dependencies ((t), (t)) can be 

related by convolutional integrals like eqs. (2.2a and b). This relation can be constructed 

even if functions (t) and (t) are physically unrelated to each other (such as parameters 

measured in different parts of the body) but caused by some common source f(t). For nearly 

any pair of functions ((t), (t)), functions M(t) and J(t) can be obtained by the filtering 

operation called deconvolution. 

2.2 Phenomenology 

In this section, we discuss two general groups of observations leading to the 

viscoelastic model. Our goal here to show that from both time-domain and frequency-

domain experiments three quantities are typically extracted from the observations: 

• The relaxed and unrelaxed moduli (MR and MU). These moduli represent two 

basic elastic properties of the body or medium. 

• Some type of relaxation time  or characteristic frequency f0 = 1/. This is the 

principal measure of attenuation (inelasticity) within the material. 

These three parameters give the end-member case on which the interpretation is usually 

based. In more complex cases, there may be multiple relaxation times  (“relaxation 

mechanisms”) with accordingly variable MR and MU. 

2.2.1 Time-domain and frequency-domain pictures 

Time-dependent functions M(t) and J(t) can also be represented in other domains 

emphasizing different aspects of deformation. In materials science (usually dealing with 

causal functions u(t) decaying in time), the Laplace transformation is often used, in which 

the time variable t is replaced with Laplace variable Laplace s representing the decay rate 

of the function. In seismic applications, oscillatory functions u(t) are of primary interest, 

and the most useful transformation is the Fourier transform. The Fourier transform 

replaces a u(t) with function U() of angular oscillation frequency 2 f = :  
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                                                      ( ) ( )i tU d e u t =  ,  (2.8a) 

where f is the regular frequency6. The inverse transformation shows that the signal u(t) is 

represented as a sum of oscillatory harmonics e-it multiplied by weights U():   

                                                    ( ) ( )
1

2

i tu t d e U 


−=  . (2.8b) 

The frequency-dependent weights U() are called spectra. Note that as all measured 

physical quantities, the time-domain functions M(t) and J(t) are real-valued, but the 

corresponding frequency-domain spectra M() and J() are complex-valued. Magnitudes 

of these values like |M()| are the amplitude spectra (or spectral amplitudes), and their 

arguments ArgM() are the phase spectra. 

In the frequency (or Laplace, Z-transform) domain, the integral relations of 

section 2.1 become simple and reduce to complex multiplications or divisions shown in 

eqs. (2.2c). 

2.2.2 Time domain: Creep function  

The modulus M(t), compliance J(t) and other functions of viscoelasticity are inspired 

by time-dependent strain-stress responses measured in laboratory experiments. In most 

time-domain experiments, the time-dependent (t) resulting from application of a step-

function stress  = 0(t) is measured. The resulting strain response is often represented as 

a combination of the initial unrelaxed compliance JU and a nondimensional creep 

function (t):  

                                                   
( )

( )1U

t
J t





= +   . (2.9) 

The creep function is related to function ( )J t  in eq. (2.7) by ( ) ( )
t

Ut M J t d  
−

= −  and 

 
6 Note that in other texts, opposite signs of ‘it’ in the forward and Fourier transforms (eqs. (2.8)) are 

often used.   
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is therefore expected to satisfy causality ((t)  0 for t  0) and continuously increase 

with t. If there exists a finite limit (t)|t→ = const, then the ‘relaxed’ (static, final-state; 

chapter 1) modulus equals 
( )1

U
R

M
M


=

+ 
.  

The creep is studied phenomenologically, and numerous empirical forms of creep 

functions have been proposed. For example, in the Andrade law, the creep is a combination 

of a steady-state creep proportional to t and an additional power-law creep: 

                                                      ( ) n

U

t
t M t 



 
= + 

 
,  (2.10) 

where parameters  and  describe the linear and nonlinear viscosities, respectively. 

Exponent n is usually below one (n  0.2–0.4). Ratio 
UM


 =  plays the role of the 

characteristic relaxation time mentioned above. 

From experiments with magmatic rocks under low stresses measured over time 

ranges from about 30 s to 10 weeks, Lomnitz (1956) proposed the following logarithmic 

law for the creep function:  

                                             ( )
( )

0 for 0,

ln 1 for 0,

t
t

q at t



= 

+ 
 (2.11) 

where parameter a is some characteristic frequency (f0 above). The inverse of this 

frequency,  = 1/a, can be viewed as the relaxation time during which the transition from 

the elastic- to creep-type deformation occurs. This parameter is difficult to constrain from 

the data, but it is expected that a is high, so that that t >>  within the observation time 

range. Lomnitz (1956) used a = 1000 Hz and argued that but this characteristic frequency 

could also be as high as the vibration frequency of a vacancy in the crystal lattice, which 

could be 104–1010 Hz. However, the characteristic frequency could also be a resonant 

frequency of the measurement apparatus, which is likely to be about ~100–10,000 Hz. 
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2.2.3 Frequency domain: Dispersion band and Absorption peak 

In the frequency domain, a limited frequency band of positive modulus dispersion 

(ReM(f) increasing with frequency) and band-limited attenuation (a peak in Q–1(f)) are 

often observed or expected. Zener’s viscoelastic strain-stress relation discussed in the next 

section is very popular because it explains such band-limited seismic attenuation and 

dispersion spectra (Figures 2.2 and 2.3).  

Note that despite its notation as a ‘Q’, the peak value of the quality factor Qm is in 

fact unrelated to attenuation and represents a combination of elastic properties of the 

system. As shown in the next subsection, the peak Q–1 for Zener’s body equals 

( )1 1

2
m m

M
Q Q

M


− −= = , where U RM M M = −  is called the modulus defect (difference 

between the unrelaxed and relaxed moduli), and 
R UM M M=  is the geometric mean of 

the two moduli. Thus, the peak inverse Q-factor equals half of the ratio of the modulus 

defect to the average modulus, which is a pure elastic property. 

As noted above, the frequency of the peak 0 2mf  =  is the characteristic parameter 

representing ‘attenuation’ (i.e., internal friction) in Zener’s model. As illustrated by the 

Zener’s model and also shown in most experiments studying porous rock saturated with 

fluids variable viscosities, f0 is inversely proportional to the viscosity of the agent (e.g., 

fluid) causing attenuation. 

 

 

FIGURE 2.2 

Absorption peak for the standard linear solid in eq. (2.30): a) linear scale in Q-1, and 

b) logarithmic scale. 
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Exercise 

Derive relations (2.29a) and (2.29b) from equations above them. 

2.3 Kramers-Krönig (causality) relations 

Regardless of the physical mechanism, because J(t) and M(t) are real-valued and 

causal functions, their frequency-domain counterparts J() and M() are constrained by 

two very general mathematical relations. First, the real-valued character of (for 

example) M(t) means that the frequency-domain spectra at negative frequencies  < 0 are 

uniquely determined by the spectra at  > 0:  

                                                 
( ) ( )

( ) ( )

Re Re ,

Im Im .

M M

M M

 

 

− =


− = −
 (2.12) 

That is, ReM() is an even function of frequency, and ImM() is an odd function of 

frequency. These relations follow directly from the definition of the Fourier 

transform (2.8a) for a real-valued function u(t). 

 

FIGURE 2.3 

Real and imaginary parts of M() for a standard linear solid with 2U RM M = . 

Frequency m is the frequency of the peak in Q-1(). Note that for this ratio of the elastic 

moduli, 1 0.35mQ−   in Figures 2.2. The ReM curve illustrates the modulus dispersion. 
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The second relation is similarly general and describes causality. Causality means that 

function M(t) (for example) equals zero for all t < t0, where t0 is some time at which, for 

example, the mechanical-loading experiment is started. This requirement means that M(t) 

satisfies relation ( ) ( ) ( )0M t M t t t − , where (t) is the Heavyside function (equal zero 

for all t < 0, ½ for t = 0, and one for t > 0). After the Fourier transform (eqs. 2.8) and using 

eqs. (2.12), this equation shows that the imaginary part of M() must be related to the real 

part and vice versa:  

                                 
( )

( )

( )
( )

2 20

2 20

Im2
Re P.v. ,

Re '2
Im P.v. ' ,

M
M d

M
M d


 

  


 

  






=

  −

 = −
  −





 (2.13) 

where P.v. denotes the Cauchy’s principal value of the integrals (integrals evaluated by 

skipping the infinitesimal vicinity of radius 0a →  around the singularity at   = ). These 

equations are called the Kramers-Krönig relations. 

For M() with band-limited dispersion and attenuation as described in the preceding 

subsection (I will not discuss the precise mathematical conditions for this approximation), 

the P.v. integrals can be approximated by derivatives  of the integrands, and several 

differential forms of the Kramers-Krönig relations are obtained. In particular, such a 

relation shows if a band-limited ( )1Q f−  is measured, then regardless of the physical 

mechanism, it should be proportional to the derivative of the measured modulus dispersion: 

                                    
( )

 
( )1

ln Re Re2

ln Re

d M d M
Q

d d M



  

−
   = . (2.14) 

Thus, frequency-domain laboratory measurements of moduli and Q like shown in 

Figure 1.9 are not mutually independent. Both the M(f) and Q–1(f) essentially represent 

measurements of a single stress-strain response in the time domain, and consequently they 

are related. 

The general importance of the Kramers-Krönig relations for waves is in emphasizing 

the fact that a system with attenuation (Q–1) must also exhibit modulus dispersion and vice 
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versa. The peak attenuation and the fastest-growing dispersion occur at the same 

frequencies. Recall that the peak value 1

mQ−  also measures the total amount of dispersion 

(eq. 2.29b). 

2.4 Kinetic equation 

The time or frequency dependencies of the linear viscoelastic moduli can be 

expressed by linear relations for time derivatives, called kinetic (or kinematic) equations. 

Such equations describe, for example, diffusion processes, such as dissipation of heat or 

chemical reactions. Because of this affinity to heat, kinetic equations are useful for 

describing thermal effects. 

For a given (thermodynamic) variable  (such as strain), the kinetic equation 

expresses its rate of change 
d

dt


 =  through its current value  and some equilibrium 

(‘relaxed’) value  : 

                                                       ( )
1

,
r

T   


 = − −  . (2.15) 

Thus, the key parameter of the kinetic equation is the characteristic (relaxation) time r. 

This time has the meaning of the ratio of the deviation from the equilibrium ( ) −  to the 

rate of approaching it.  

The equilibrium value ( ),T  may depend on some external factors, for which we 

take the applied stress   and temperature T as an example (eq. 2.15). Whenever  and T 

change, the equilibrium level ( ),T   also changes, and by eq. (2.15), (t) starts 

approaching the new equilibrium variations cause in a time-delayed fashion. If the 

equilibrium is constant ( ),T const  = = , then eq. (2.15) gives an exponential approach 

of (t) to   with characteristic time r:  
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                                                     ( ) exp
r

t
t C 



 
= + − 

 
,  (2.16) 

where C is an arbitrary constant. Such exponential approaches to the equilibrium level are 

shown in Figures 1.5 and 1.6. 

2.5 Zener’s (standard linear solid) equation 

A commonly used form of viscoelastic strain-stress relations are described by the 

Zener’s, or standard linear solid equation. This equation postulates that at any time, a 

combination of the stress and its rate of change equals a similar combination of the strain 

and strain rate:  

                                                 ( )RM      + = + . (2.17a) 

This equation can be viewed as a generalization of the kinetic equation (eq. 2.15) applied 

to both strain and stress simultaneously. With constant stress ( 0 = ), eq. (2.17a) is a 

kinetic equation for strain (taking ( ) ( )t t =  and 
RM = ) , with relaxation 

time r  = . Vice versa, with constant strain 0 = , this equation is a kinetic equation for 

stress (t), with relaxation time t. Consequently, RM



=  is the relaxed modulus 

(modulus observed at equilibrium, when both 0 =  and 0 = ). 

Equation (2.17a) can also be written as an equivalence of two differential operators 

acting on functions of time (t) and (t): 

                                             1 1R

d d
M

dt dt
    

   
+ = +   

   
. (2.17b) 

In another useful form, for time-harmonic deformations7 with ( ) 0

i tt e   −=  and 

 
7 Note that time derivatives of harmonic functions are proportional to the functions themselves; for 

example: 
u

u i u
t




= = −


. 
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( ) 0

i tt e   −= , this equation simply means a specific form of the frequency-dependent 

complex modulus: 

                                              ( )
def

0

0

1

1
R

i
M M

i





 


 

−
= =

−
. (2.17c) 

The unrelaxed modulus MU is defined as the modulus obtained for very fast stress 

and strain variations. In this case, the rate-related terms    and    will dominate the 

other two terms in eq. (2.17a), and therefore the ratio of the stress and strain rates would 

equal RM 





 
= . This ratio must equal the unrelaxed modulus, and therefore 

U RM M 






= . Thus, it turns out that: 

• The ratio of relaxation times is an elastic property equal the ratio of the 

unrelaxed and relaxed moduli:   

                                                             U

R

M

M








= .  (2.18) 

Since U RM M , the relaxation times in eqs. (2.17) must always satisfy 

relation    .  

• There is only one relaxation-time parameter in Zener’s eqs. (2.17a), which 

can be taken as   

                                                             r    = .  (2.19) 

Parameters MR, MU, s, and  are the four “material properties” required for 

describing a viscoelastic linear solid. Note that MU is not included in Zener’s eq. (2.17), 

and therefore this equation does not describe the viscoelastic model completely. Only 

certain solutions of this equation must be selected, which refer to mechanically-

implementable models and have the correct value of MU. In section 2.7, I review several 

such mechanical models known as linear solids and derive their time-domain and spectral 
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properties.  

The selection of solutions by a given value of MU can be done as follows. As noted 

above (eq. 2.16), solutions to eqs. (2.17a or b) are ( ) 1

1
exp

R

t
t C

M 

 


  
= − −  

  

 when 

0 =  (relaxation of strain) and ( ) 2 expR

t
t M C



 


  
= + −  

  

 when 0 =  (relaxation of 

stress). These solutions contain two arbitrary constants C1 and C2. As explained in 

section 2.9, these two degrees of freedom actually indicate a problem with the viscoelastic 

model. This problem is resolved by requiring, in addition to equation (2.17), that the 

stress/strain ratio measured immediately after the loading or deformation is applied 

(at t = +0) equal the unrelaxed modulus: 
( )

( )

0

0
UM




= . This requirement is satisfied by 

mechanically implementable systems, such as those discussed in the next section. From the 

two solutions, the initial stress/strain ratio equals 
( )

( )

1

1

0 1

0 R

C
M





−

 
= − 

 
 and 

( )

( )
2

0

0
RM C




= + . Therefore, the arbitrary coefficients in (t) and (t) are set by the 

expected unrelaxed modulus: 
1

1 1

R U

C
M M

= − and 2 U RC M M= − .  

2.6 Spring-dashpot diagrams 

The viscoelastic model is often illustrated using combinations of springs and 

mechanical dampers (“dashpots”) arranged so that they provide the desired time- and/or 

frequency dependent strain-stress responses. These desired responses are specified by: 

1) Achieving the desired response at extreme low frequencies. At low frequencies, 

all dashpots produce zero forces and can accommodate arbitrary deformations. In 

this way, either finite “relaxed” response with modulus MR is obtained from the 

springs only, or “plastic” response with unlimited deformation with zero stress is 

achieved. 
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2) Achieving the desired response at extreme high frequencies. In this limit, each 

dashpot has zero displacement, and the unrelaxed modulus MU is again obtained 

by the resulting combination of springs. 

3) Achieving the desired frequency band across which the transition between 

regimes 1) and 2) occurs. This frequency band is controlled by the viscosities of 

the dashpots. 

The high-frequency regime takes place when a sudden change of the external force occurs 

(like experiment 2) in the preceding section), and the low-frequency regime takes place if 

the external force is kept steady (like experiment 1)).  

In the theory of linear viscoelasticity, spring-dashpot diagrams are supposed to be 

understood not as models of the internal construction of rock but only as ways of providing 

certain shapes of the time-dependent strain-stress response M(t) of the medium. 

Nevertheless, the time dependencies of M(t) are nonunique and depend on the external 

forces applied to the linear solid (for example, on whether the solid is kept at constant 

pressure or fixed deformation). Also, identical M(t) responses may correspond to different 

combinations of springs and dashpots, and so the whole concept of time- and frequency 

dependent material properties is rather complicated and unreliable. 

What the spring-dashpot arrangements show uniquely is the dependence of the stress 

on the strain and/or strain rate of the deformation. As seen from the following subsections, 

by following the different chains of spring and dashpots, the stress  experienced by any 

element is always given by linear combinations of the strains and strain rates of all elements 

                                               
springs dashpots 

i i j j

i j

M   = +  , (2.20) 

where the strains i with i ≥ 2 correspond to some internal variables. The two terms in these 

equations represent the elasticity and viscosity of the system, respectively, Mi denote the 

various elastic moduli, and j denotes the viscosities of the dashpots contributing to 

stress . 

In analytical mechanics (chapter 5), all eqs. (2.20) are described very compactly by 

the Lagrangian and dissipation functions. Therefore, the best and easiest way for 
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understanding the spring-dashpot arrangements such as shown in Figure 2.4 is to view 

them as diagrams of internal variables and construction of the Lagrangian and dissipation 

functions for the medium. 

2.7 Linear viscoelastic solids 

The internal variables in the linear solids (e.g., the white dot in Figure 2.4) are 

considered as unobservable, and therefore they can be selected in various ways. However, 

it is convenient to select them so that these variables become responsible for internal 

friction within the medium. This can be achieved by selecting i (with i ≥ 2) to be the 

deformations of the dashpot elements in the linear solids. 

There are several commonly used configurations of such spring-dashpot systems 

called linear solids, or linear bodies. Five types of these configurations are summarized in 

the following subsections.  

2.7.1 Maxwell’s body 

The Maxwell’s body consists of a spring and a dashpot connected in series 

(Figure 2.4). The connection point between these elements represents an internal strain 

variable of this system, which is denoted 2 (white dot in Figure 2.4). Variable 1 =  is the 

observed strain of the body, and let us denote s the stress applied to the ends of this diagram. 

I keep this notation of internal variables for consistency with mechanical descriptions of 

the same linear bodies in chapter 5.  

The strain-stress equations of equilibrium for such diagrams can be obtained from 

the following simple rules: 

• For elements connected in series, the stress is common to all of them. 

Therefore, the stress can be used as an independent variable, and the strains 

derived from it. 

• For elements connected in parallel, the strains are equal, and they can be used 

for parameterizing the deformation. 

• For a spring element, the strain and stress on it are related by  M = ; 
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• For a dashpot element, the strain rate and stress are related by   = . 

 From these rules, we see that 2  =  in Figure 2.4, and the observable strain 1 =  and 

stress are related by equation 

                                               
M


  + = . (2.21) 

This is a liming case of Zener’s equation (2.17) with finite stress relaxation time 
M




 =  , 

the relaxed modulus tending to zero as 0RM → , and strain relaxation time simultaneously 

tending to infinity as 
RM




 = . The unrelaxed modulus (ratio of the coefficients in terms 

containing   and  ) is .UM M=  

The complex-valued, frequency-dependent modulus M() can be easily obtained 

from eq. (2.21c): 

                                               ( )
( )

( ) 1

i
M

i 

  


  

−
= =

−
. (2.22) 

At low frequencies, this modulus is pure imaginary and proportional to the frequency: 

( )M i  − , which the effect of the dashpot. At high frequencies, this modulus 

approaches ( )M M →   (the unrelaxed modulus). 

 

FIGURE 2.4.  

Maxwell’s linear solid. This model contains one internal variable 
2
 (white dot)  

connected by one spring (M) and dashpot () aranged in a series. Labels and notation are 

as in Figure 2.4. 
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2.7.2 Kelvin-Voigt’s body 

In a Kelvin-Voigt’s body, there are no internal variables, and the spring and dashpots 

are connected in parallel (Figure 2.5). The strain-stress relation represented by this diagram 

is 

                                                         M  = + . (2.23) 

This equation means that the relaxed (static, steady-state) modulus is RM M= , strain 

relaxation time 
M




 = , stress relaxation time 0 = , and therefore the unrelaxed 

modulus is infinite: UM =  .  

The frequency-dependent modulus M() can be obtained as in the preceding 

subsection and equals 

                                               ( ) ( )1M M i M i  = − = − . (2.24) 

At low frequencies, this modulus is near-elastic (real-valued and constant): 

( )0M M →  . At high frequencies, the viscosity of the dashpot dominates the forces, 

and ( )M i →   − . 

 

FIGURE 2.5.  

Kelvin-Voigt’s linear solid. Labels and notation are as in Figure 2.4. 

 



ZB01305M 2. The Viscoelastic Model 

54 

2.7.3   Standard linear (Zener’s) solid 

The Zener’s linear solid (also called the “standard linear solid,” or SLS) is a 

mechanical system implementing Zener’s strain-stress equations (2.17) with nonzero 

coefficients. This mechanical system can be obtained in two ways: by using a Maxwell’s 

solid with an additional elastic element attached in parallel with it (Figure 2.6a), or using a 

Kelvin-Voigt body with an additional spring connected in series (Figure 2.6b). In either 

case, the model requires one internal variable (white dots in the figure). 

The Zener’s equation (2.17) is easily obtained by using the diagram in Figure 2.6a. 

For the elastic spring, 1 1M = , and for the Maxwell’s-body chain, eq. (2.21)  gives 

2 2

2M


  + = . Evaluating ( )1 2

2

1
d

M dt


 

 
+ + 

 
, the desired strain-stress relation is: 

                                           1
1

2 2

1
M

M
M M


    

 
+ = + + 

 
. (2.25) 

Therefore, the relaxed modulus equals 1RM M= , unrelaxed modulus 1 2UM M M= + , 

strain relaxation time 
1 2

1 1

M M
 

 
= + 

 
, and stress relaxation time 

2M



 = . Note that 

conditions U RM M  and    are satisfied for any (non-negative) values of mechanical 

 

FIGURE 2.6.  

Two forms of Zener’s linear solid (also called the Standard linear solid, SLS): a) using a 

Maxwell’s body with a spring attached in parallel, b) using a Kelvin-Voigt body with a 

spring in series.  Labels and notation are as in Figure 2.4. 
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properties. 

The Zener’s equations (2.17) are very important because they often capture the key 

features of observations with rock samples in the laboratory. The corresponding functions 

M(t), J(t), (t), M(f), and Q–1(f) are often used for fitting attenuation data and to recognize 

absorption peaks. The creep function obtained by solving eq. (2.17) for (t) with constant 

stress is: 

                                               ( ) 1 1
t

t e 








−  
= − −  

  
. (2.26) 

From eqs. (2.17), the complex modulus M() equals (Figure 2.3 was shown earlier): 

                                                     ( )
1

1
R

i
M M

i










−
=

−
. (2.27) 

and inverse quality factor (Figure 2.2): 

                                                   ( )
( )1

2

1
m

Q
   






−
−

=
 

+  
 

. (2.28) 

where 1m    = .  

The Q–1() spectrum (eq. 2.28) exhibits a peak at  = m with maximum value of  

                                           
( ) 1

1

2 2

m

mQ
     −

−
− −

= =  , (2.29a) 

where the dimensionless parameter  is defined by R

U

M

M









= = . Relation (2.29a) can 

also be written as 

                                                             
1

2
m

M
Q

M

− =  , (2.29b) 
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where U RM M M = −  is the modulus defect, and 
R UM M M=  is the geometric mean 

of the two moduli. Thus, the peak Q–1 is determined entirely by the elastic properties of 

this system.  

Using the peak attenuation value 1

mQ−  and frequency m, the expression for 

the ( )1Q −  spectrum (eq. 2.28) can be written in a convenient form: 

                                                    ( )1 1

2
2

1

m
m

m

Q Q









− −=
 

+  
 

.  (2.30) 

This equation shows that the shape of the absorption peak is completely fixed and only 

scaled along both frequency and magnitude axes. In order to produce the desired absorption 

spectra, this standard shape is only replicated and scaled by m in frequency and by 1

mQ− in 

magnitude. Peaks of Q–1() of this form resulting from a single relaxation frequency m 

are called Debye peaks. 

In terms of mechanical elements of Zener’s model (Figure 2.6a), the frequency of the 

attenuation peak equals  

                                              2

2

1

1 1

1

m

M

M

M
 


 

= =

+

 . (2.31) 

Thus, the frequency of the peak is inversely proportional to the viscosity of the dashpot. 

If the low-frequency limit of the modulus MR (equal M1) and two parameters of the 

attenuation peak m and 
1

mQ−
 are measured from some data, the Zener’s model becomes 

completely constrained. The relaxation times can be obtained as 

                                    1 21
1m m

m

Q Q


− − = + +
 

,   and   
2

1

m






 

= .  (2.32) 

Therefore, if we measure MR, MU, and 0 = 2f0 from frequency-domain data (Figure 1.9), 
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we obtain 

                                                
0

1



= ,   and  

0







= . (2.33) 

Figure 2.7 shows a comparison of the spectra predicted for observations in a 

laboratory forced-oscillation experiment for the three type of linear bodies considered 

above. Note that ReM behave similarly for Maxwell’s and Zener’s (SLS) bodies, with 

nonzero MR for Zener’s body. The spectra of Q-1 are most contrasting, with SLS showing 

a dissipation (relaxation) peak. Figure 2.8 shows how the spectra for Maxwell’s and 

 

FIGURE 2.7.  

Comparison of spectra ReM(f) and Q-1(f)  for Maxwell, Kelvin-Voigt, and Zener’s 

bodies. Frequencies are normalized so that the frequency of the Zener’s body peak 

equals 1.0. Moduli are normalized so that the geometric mean modulus 

1R UM M M= =  . Value of  = 1.5  (relative deviation of MR or MU from M is 

selected. In Kelvin-Voigt’s and Maxwell’s bodies, the value of  (dashpot visocity) is 

taken equal that in Zener’s body. For the Maxwell’s and Kelvin-Voigt’s bodies, Q-1 

values were multiplied by 0.01 before plotting. 
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Zener’s bodies look in the complex plane of M and in cross-plots of the inverse Q-factor 

with M. 

Exercise 

Derive parameters MR, , and  of Zener’s equation from the mechanical 

parameters M1, M2, and  for the second form of Zener’s body in 

Figure 2.6b.  

Suggestions: This is easier to do in the frequency domain. Assume a 

harmonic stress function ( ) 0

i tt e   −= , then express the strains of the 

elastic element M1 on the left and of the Kelvin-Voigt body on the right. 

The resulting strain (t) is a sum of these strains. Verify that the ratio  

( ) ( )t t   has the form of Zener’s equation (2.17c) and identify the three 

parameters in this equation.  

 

FIGURE 2.8.  

Left: spectra of Maxwell’s and Zener’s (SLS) bodies in the complex plane of modulus 

M; Right: cross-plots or Q-1 with ReM. 
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2.7.4 Burgers’ body 

The Burger’s solid adds to Zener’s one an additional degree of freedom (variable 

number three in Figure 2.9) for which free static deformation is allowed. Therefore, the 

relaxed (static) modulus of this system equals zero, and the complex-valued effective 

modulus at near-zero frequencies is pure imaginary as in a Maxwell’s body with two 

dashpots connected in series: ( ) ( )
1

1 1

1 2M i   
−

− − − + . At high frequencies, the dashpots 

do not move, and the unrelaxed modulus is due to a series of two springs (as in Zener’s 

body): ( )
1

1 1

1 2UM M M
−

− −= + . Between these limits, an expression for the complex modulus 

can be obtained by viewing the system in Figure 2.9 as a Maxwell body and a Kelvin-Voigt 

body connected in series: 

              ( ) ( ) ( )

1

1

1 11 1 1
Maxwell Kelvin-Voigt 2 2

1

1 i
M

M M M M i
i




 


−

− −− −

 
− 

 = + = + −
− 

  

. (2.34) 

Because of the two internal degrees of freedom, this spectrum does not reduce to the 

Zener’s linear solid equation (2.17). 

 

FIGURE 2.9.  

Burgers’ body. Labels and notation as in Figure 2.4. 
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2.7.5 Generalized linear solids 

By combining multiple linear solids of the types above, mechanical systems with 

broad dispersion and attenuation frequency bands can be obtained (Figure 2.10). The 

arrangement of a Kelvin-Voigt solid with multiple Maxwell solids is called the Generalized 

Maxwell solid (Figure 2.10a). Similarly, a Generalized Voigt solid is obtained by 

combining the Burgers’ model with multiple Voigt elements in a series (Figure 2.10b). The 

Generalized Maxwell solid without the main damper ( = 0) is called the Generalized 

Standard Linear solid (GSLS; also Generalized Zener’s, or Wiechert’s) model of material 

rheology (Figure 2.10a). The GSLS model is commonly used to implement band-limited 

attenuation in finite-difference codes for modeling seismic wavefields.  

2.8  Quasi-static character of viscoelastic equations 

In each of the forms of the viscoelastic relations discussed in this chapter (e.g., 

eq. (2.2) or Zener’s equation (2.17)), the equations have the general form: 

                                                 ( )  ( ) F Ft t  = , (2.35) 

 

FIGURE 2.10 

Combinations of elementary linear solids: a) Generalized Maxwell solid (with  = 0, this 

is also the Generalized Standard Linear, or Wiechert solid); b) Generalized Voigt model. 

Because of larger numbers of internal variables (gray circles), these systems can have 

broader spectral bands of dissipation.  
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where F{...} and F{...} are some integral or differential operators applied to the strain or 

stress as functions of time only. Such type of equations uniquely relating the force applied 

to some body to its deformation and vice versa represents a condition of some type of 

equilibrium. For example, the equilibrium may consist in a static deformation of a solid 

body or a steady-state flow of viscous fluid between two plates. Because the equilibrium 

may occur with loading forces slowly variable in time, this is a quasi-static equilibrium. 

Three key features differentiate equations of equilibrium like shown in eq. (2.35) 

from dynamic equations of mechanics: 

1) Equations of equilibrium are insensitive to the masses (densities) in the mechanical 

system. Indeed, if a body is near static equilibrium, all accelerations are near zero 

and the inertial forces are negligible compared to the elastic or viscous forces, and 

therefore the mass can be considered as equal zero. Zero masses attributed to all 

internal variables are key features of all viscoelastic bodies (section 2.7). Because 

of the zero masses, the internal variables are always equilibrated with current 

deformation (t). 

2)  Dynamic equations of motion are formulated not for strains and stresses as in eq. 

(2.35) but for displacements. Schematically, the general form of dynamic equations 

(second Newton’s law) is: 

                                                 
( )

( )
( )2

2
,

t t
t

t t

  
=  

  

u u
m F u , (2.36) 

where u is a vector of all displacements in the system, m is the mass (generally, a 

matrix for a complex system), and F is the force dependent on u(t) and its gradients. 

3) Equation (2.35) is symmetric in the sense that it can be used for predicting (t) from 

a measured (t), and vice versa. This is another indicator of an equation of 

equilibrium. This equation does not describe the deformation uniquely and allows, 

for example, two arbitrary constants C2 and C3 described in section 2.4.  

By contrast to the equilibrium equation (2.35), the dynamic equation (2.36) is causal 

in the sense that its right-hand side represents the cause (mechanical forces)  and the left-

hand side represents the effect of these forces. This equation predicts the acceleration of 
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each point of the body from the displacements, velocities, and their gradients given in the 

right-hand side.  

2.9 Problems with the viscoelastic approach 

Time- and frequency-dependent material properties in equations (2.35) often allow 

explaining laboratory observations quite easily. For example, spectra like shown in 

Figure 1.9 measured for a rock sample are commonly interpreted as representing the 

effective modulus M(f) of its material, and this modulus is used to predict propagation of 

seismic waves. However, do functions M(t) or M(f) truly represent a material property?  

To answer this question, it is important to realize several strong limitations of the 

viscoelastic model: 

1) Inherent quasi-static approximation; 

2) Treatment of the heterogeneity of the medium; 

3) Disregard of non-viscoelastic forces such as Darcy-type pore-flow friction; 

4) Use of boundary conditions; 

5) Nonphysical wave solutions arising in the presence of contrasts in material 

properties. 

The first of these limitations was described in the preceding section, and the other three are 

explained in the following subsections.  

Thus, only in limited cases, viscoelastic functions such as M(t) or Q(f) can be viewed 

as material properties. These limited cases are quite restrictive:  

• Modeling of laboratory samples in which the deformation can be considered 

as homogenous. In addition, for fluid-saturated porous rock, only fixed 

(usually undrained) pore-flow conditions should be used. The resulting 

viscoelastic functions strongly depend on these conditions. Under drained 

conditions (when pore flow is allowed), limitation 3) above becomes 

significant. 

• Waves in media with no pore-flow effects and far from any boundaries. 
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In many applications of the viscoelastic model (see standard texts such as by 

Carcione and also many software algorithms), dynamic equations like (2.36) or body forces 

like gravity are added to the viscoelastic equations. However, these additions are performed 

in an artificial manner and still based on assumed time-dependent mechanical properties. 

We do not discuss these methods here because in the following chapters, a rigorous 

approach free from the above problems is given.  

2.9.1 Treatment of heterogeneity 

The viscoelastic model was originally designed for explaining quasi-static 

deformations with negligible spatial variations, such as creep of the whole rock sample in 

a lab experiment (preceding section). In this case, the time is the only significant 

independent variable, and there exists only one complex-valued function M(t) or J(t) 

describing the whole system.  In heterogeneous media with spatially-variable (x, t) 

and (x, t), deformations occur not by time-only dependent stress-strain relations (2.35) at 

point x. From physics, it is known that heterogeneous deformations are driven by spatial 

gradients of pressure, which lead to multiple types of waves and material and heat flows. 

For example, stress  at point x and time t is affected by the deformations of adjacent 

points at earlier times, and not by the earlier strain values at the same point x. At time t 

after an application of stress, the strain at point x is affected by boundaries and material-

property contrasts at distance ct from this point, where c is the wave or some flow velocity 

within the medium. 

Since for a heterogeneous medium or a finite body (which are the usual cases) 

both (x, t) and (x, t) depend on the deformation of the whole body, relations (2.35) are 

(generally) only mathematical identities satisfied by this deformation. For a given 

experiment, it is often a difficult task to determine whether the resulting phenomenological 

M(t) and J(t) are dependent on the shape of the body or not. To evaluate this dependence, 

one has to utilize rigorous physics-based models such as described further in this course. 

2.9.2 Treatment of non-viscoelastic forces 

In addition to the problem of spatial heterogeneity, the viscoelastic model contains 
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another serious problem in application to 

rocks: it considers only forces produced by 

surface stresses  (more rigorously called the 

Cauchy stress tensor ij; see below in this 

course). An important example of body force 

acting within fluid-saturated porous rock is 

the Darcy friction of the fluid flowing through 

the pores of porous rock. The rate of this flow 

and the resulting force are controlled by the 

property called permeability of the rock.   

Permeability is responsible for a 

significant portion of anelasticity (in fact, all 

of it in Biot’s model of porous rock; see 

section 5.4 below) is caused not by the 

surface stress  (eqs. 2.35) but by body-force 

friction. Thus, for porous rock, eqs. (2.35) are 

not applicable. Similarly, thermal relaxation 

(section 6 below) also may occur by means of 

heat flowing out of point x or toward it, but 

not by a time-memory process at the same point. Several heuristic approximations to 

combining Biot’s and thermoelastic effects with viscoelasticity have been proposed 

(known as ‘poro-viscoelasticity’ and ‘thermo-viscoelasticity’), but I will not go into them 

here. Instead, I will follow an approach starting from physical observations rather than 

from hypothesized mathematical principles. 

2.9.3 Boundary conditions 

A complicated problem of the viscoelastic model is in an incomplete treatment of 

boundary conditions. When two solid bodies are joined together, the displacements and 

stresses at the boundary must be equal. This condition is shown by dashed lines in 

Figure 2.11. However, if the bodies are viscoelastic as, for example, the two Zener bodies 

 

FIGURE 2.11 

Boundary conditions at a welded 

contact of two Zener’s bodies (labels 1 

and 2) with different mechanical 

properties. 

The displacements and stresses for the 

observable displacement must be equal 

(dashed solid lines). However, the 

internal variables can also be 

connected, for example, by an elastic 

force shown by red spring.   
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in Figure 2.11, they contain internal variables (white dots) for which some boundary 

conditions also need to be specified.  

In viscoelasticity, these internal variables are considered as non-interacting (and so 

no connection between them in the diagram) and quasi-static (section 2.8). However, in 

real rock, the internal degrees of freedom such as the network of microcracks may interact 

with the boundary. The interaction may be elastic or viscoelastic, as schematically shown 

by the red spring element in Figure 2.11. 

2.9.4 Nonphysical wave solutions 

Another serios problem with application of the viscoelastic model to seismic waves 

is in producing nonphysical wave solutions in layered media, or upon reflection from 

interfaces. Such nonphysical solutions have to be avoided by special mathematical 

conventions. For more on this subject, see, for example, Ruud (2006), Krebes and 

Daley (2007), and Vavryčuk (2010). 

2.10 Laboratory assignments 

Lab 2.1: Dispersion and attenuation spectra of linear solids 

Write a Matlab or Octave program to calculate and plot the modulus dispersion 

(ReM(f)) and attenuation (Q–1(f)) spectra for Maxwell’s, Kelvin-Voigt’s and Zener’s solids. 

Lab 2.2: Explore Burgers’ model 

Write a Matlab or Octave program to plot ReM(f) and Q–1(f)) for Burgers’ model 

(Figure 5.8; eq. 2.34) with some M1 = 1, 3 = 1 (in some appropriate units), and try a couple 

values for M2 and 2. Compare the results to the spectra of Maxwell’s body (on the left in 

Figure 5.8) and Kelvin-Voigt’s body (on the right in this Figure).  
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3 Variational Approach in Physics 

 

Key points: 

• Variational approach to mechanics and differential equations 

• D’Alembert’s principle of virtual work and Hamiltonian action principle  

• Potential and pseudo-potential 

• Constraints  

 

Large systems of differential equations arising in the mechanics of solids and fluids 

can often be presented very compactly in the form of a variational principle minimizing 

(more precisely, extremizing) a single functional. The variational principle gives a 

powerful and elegant way for summarizing all equations, perform transformations of 

variables, investigating the possible types of interactions, and determining the conservation 

laws. In this chapter, I describe the general ideas of variational approaches for differential 

equations, and in chapter 4, these ideas will be further detailed for Lagrangian mechanics. 

Consider, for example, the differential equations governing the motion of Np 

particles. The number of particles can range from 1pN =  to a very large number such as 

the number of atoms in a solid body. The particles interact and are also subjected to forces 

(external and due to mutual interactions), so that so that the kth particle is subjected to a 

total force vector Fk. The second Newton’s law then states that under the action of the 

force, the particle will attain acceleration   

                                                    k
k k

km
= =

F
a x , (3.1) 

where mk is the mass of the kth particle, xk is the vector of its coordinates, and overdots 

denote derivatives with respect to time: 
def

2 2

k k t=  x x . Equation (3.1) is convenient for 
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evaluating the change of velocity of any particular particle, but for considering the whole 

system of particles, it is more convenient to write it as a balance of the applied and inertial 

forces in the frame of reference of each particle: 

                                                           k k km − =x F 0 . (3.2) 

When describing finite-difference modeling algorithms, this equation is often called the 

“conservation of momentum’. However, better avoid this terminology because it does not 

add much to the understanding of eq. (3.2). The concept of momentum is yet to be defined 

(section 4) and not needed here. Equation (3.1) has an additional value of pointing the 

significance of the force Fk (in the right-hand side) is the cause of acceleration ak (left-hand 

side).  

Equation (3.2) gives zero at any t, for each particle and at any point on its true 

trajectory xk(t). Therefore, it would be useful to present the trajectories of all Np particles 

as a s stationary point (usually minimum) of some functional (a correspondence assigning 

a real number to the set of all trajectories xk(t)) S{xk(t)}. This functional is called the 

Hamiltonian action. To obtain this functional, let us look at the d’Alembert’s principle of 

virtual work first. 

3.1 d'Alembert’s principle 

Let xk(t) be the true trajectory of kth particle, and consider arbitrary infinitesimal 

deviations of all particles from their trajectories: ( ) ( ) ( )k k kt t t = +x x x . Since all of the 

net forces in equation (3.2) equal zero, each of them can be multiplied by xk(t) and 

summed, producing the virtual work (work due to the arbitrary perturbations), which will 

equal zero: 

                                               ( )
1

0
pN

k k k k

k

W m 
=

= − = x F x . (3.3) 

Thus, the d’Alembert’s principle states that the true trajectories xk(t) are such that an 

arbitrary deviation from them results in zero virtual work W. 
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The virtual work W is a differential form (a linear functional of infinitesimal 

deviations xk(t)) and not a functional of xk(t). This means that if W is virtual work, there 

exists no functional W{xk(t)} whose variation gives the W. For this reason, the 

d’Alembert’s principle (3.3) is called quasi-variational. 

3.2 Hamiltonian action 

To obtain the functional of Hamiltonian action and a variational principle for it, the 

virtual work W is integrated over time: 

                                            ( )
2 2

1 1
1

0
pt t N

k k k k

kt t

S Wdt m dt  
=

= = − =  x F x . (3.4) 

The two types of forces in the parentheses give the change of the kinetic energy for each 

particle 
2 2

1 1

t t

k k k k

t t

m dt T dt = x x   (where 
21

2
k k kT m= x , and you need to use integration by 

parts and condition ( ) ( )1 2 0k kt t = =x x ), and elastic energy k k kU = −F x (which is 

simply the definition of elastic energy). Therefore, S is an increment of a functional S, 

which is called the Hamiltonian action and defined as 

                                                               

2

1

t

t

S Ldt=  , (3.5) 

where  

                                                           ( )
1

pN

k k

k

L T U
=

= − . (3.6) 

is the Lagrangian function of the system of particles. All equations of motion are then 

contained in the principle of stationary (extremal) Hamiltonian action: 
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2

1

0

t

t

S Ldt 
 

= = 
  
  (3.7) 

for arbitrary infinitesimal variations of trajectories ( )k tx . In most cases, it is much easier 

to determine the two scalar energies than to write all the vector equations of motion (3.1). 

In section 4, we will obtain the differential equations on xk(t) which allow finding this 

extremum S = 0.  

Thus, the Lagrangian of a mechanical system is the difference between the total 

kinetic and potential (elastic) energies of all particles (eq. 3.6). However, note that the 

Lagrangian can also have other forms. For example, for a charged particles in a magnetic 

field, the effect of the magnetic field is represented by terms in L proportional to particle 

velocities: 

                                                      
1

pN

k
mag k

k

q
L

c=

 
= − 

 
 x A , (3.8) 

where qk is the electric charge of kth particle, and A is the vector potential of the magnetic 

field at point xk (this vector potential is another vector field defined so that the magnetic 

induction field B is the curl of A: = B A ). Denominator c in eq. (3.8) is a constant 

related to the selected electromagnetic units, and it equals the speed of light in the Gaussian 

CGS (centimeter-gram-second) system.  

The variational principle gives a much more powerful way for formulating and 

solving equations of motion than eqs. (3.1) or (3.2). Instead of following the trajectory of 

each particle in time, we consider all possible values of xk at all times as independent 

variables in a (highly) multidimensional space, and determine the stationary point of S. 

This stationary point is the true trajectory of all particles. 

3.3 Dissipation pseudo-potential 

In the expressions for potential energies Uk, forces Fk depend on coordinates xk only, 

and consequently they can be presented as gradients of the total potential energy of the 
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system: 
1

pN

k

k

U U
=

=  : k kU= −  F x . Thus, using the variational principle, these forces can 

be found by: 1) perturbing the particle trajectories by arbitrary deviations xk(t), 

and 2) presenting the resulting perturbation of the time integral of the elastic energy U as 

linear combinations of these xk at different times: 

                                              
2 2

1 1
1

pt tN

k k

kt t

Udt dt 
=

 
= − 

  
 F x . (3.9) 

The coefficients of xk in these linear combinations are the forces Fk.  

Forces Fk may also depend not on the coordinates xk of the particles but on their 

velocities kx . In particular, such velocity-dependent forces are those caused by magnetic 

fields and forces of friction. For example, if each of these particles is a sphere of radius r 

moving through fluid with viscosity , then it will experiences a viscous friction force 

6k kr = −F x  (the Stokes’ law). Such forces can also be described as gradients of a time 

(and volume) integral as eq. (3.9), but using arbitrary velocity perturbations k x  and 

pseudo-potential, or dissipation function D instead of U: 

                                            

2 2

1 1
1

pt tN

k k

kt t

Ddt dt 
=

 
= − 

  
 F x . (3.10) 

For the example of Stokes’ friction in this paragraph, 
2

1

3
pN

k k

k

D r
=

=  x  for Np particles in 

the same fluid. 

According to eq. (3.10), the dissipation function is used in the same way as the 

potential energy U but viewing particle velocities rather than coordinates as independent 

variables. 
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3.4 Constraints 

Often, in addition to a system of differential equations such as (3.2), it is required 

that the system satisfies additional constraints. For example, in mechanics of porous solids, 

such constraints can be boundary conditions at the free surface or open or closed conditions 

for pore-fluid flow across various boundaries. Such constraints can also be naturally 

included in the system of final equations by using the variational approach. 

Using the example of a system particles (eq. 3.2), let us assume that it is also required 

that the particles move along certain surfaces satisfying constraints  

                                                  ( )1 2 3, , ,... 0jB =x x x , (3.11) 

where Bj is the jth constraint function dependent on all xk. To include these constraints into 

the equations, we only need to modify the Lagrangian as cL L L→ + , where 

                                                     
1

cN

c j j

j

L B
=

=  , (3.12) 

and parameters j are Lagrange multipliers. These multipliers are functions of time and 

treated as additional variables of the mechanical system. To visualize the physical meaning 

of this variable, note that if function Bj in eq. (3.11) represents some distance from the jth 

constraint surface, then j is the external force required to hold the system on this surface. 

The Hamiltonian action of the system with constraints equals ( )
2

1

t

c c

t

S L L dt= + , and 

it can be viewed as a functional of both original variables xk(t) and the additional 

variables j(t). Because j(t) are determined so that the boundary conditions (eq. 3.11) are 

satisfied, the additional term in the Lagrangian Lc equals identically zero for the solution. 

Therefore, the resulting xk(t) achieve extremum of the original action: 
2

1

0

t

t

Ldt
 

= 
  
  within 

the constrained subspace of coordinates xk. 
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3.5 Non-mechanical equations and Fréchet derivatives 

Variational methods can also be useful to derive compact forms for non-mechanical 

equations. How to decide for which equations this can be done? Consider a differential 

equation: 

                                                            ( ) 0F u = . (3.13) 

where u is some variable or field, and F contains a combination of differential operators, 

which can possibly be nonlinear. This equation can be linearized at the vicinity of 

function u by using the concept of Fréchet derivatives. The Fréchet derivative is the linear 

operator ˆ
uF   defined so that if we perturb function u by adding to it an arbitrary function  

multiplied by an infinitesimal factor  (say, ( ) ( ) ( )u u → +x x x ), then the relative 

perturbation of F(u) (called the Fréchet differential) is the partial derivative of F(u) with 

respect to : 

                                
( ) ( )

( )
0

0

ˆ limu

F u F u
F F u





 

 →
=

+ − 
 = = +  

. (314) 

Thus, for small perturbation u in the vicinity of function u, eq. (3.13) is approximated as 

( ) ( ) ˆ
uF u u F u F u +  + , or the increment of F(u) equals 

                                                     ( ) ˆ
uF u F u = . (3.15) 

The answer to the question of this section is: a variational principle for eq. (3.13) 

exists if the Fréchet derivative operator is symmetric in the following sense: 

                                                   ˆ ˆ
u uF dV F dV    =  , (3.16) 

where the integration is carried out over the volume of the body, and functions  and   

and their derivatives equal zero at all edges of the volume V.  If functions u (and therefore  

and ) also depend on time, time integration should also be included, and similarly, the 
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arbitrary trial functions  and   and their derivatives would be zero at the endpoint times t1 

and t2. 

Exercises 

1) Considering coordinates xk(t) as function u(t) above, derive expressions 

for the Fréchet derivative ˆ
k

F
x

 for the Newton’s second law (eq. 3.1): 

( )k k k kF m= −x x F .  

Hint: Note that this ˆ
k

F
x

will be a differential operator which must be 

applied to the trial functions (t). 

2) Show that these derivatives satisfy the symmetry relation (3.16). 
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4 Lagrangian Mechanics  

 

Key points: 

• Generalized variables 

• Conservative and dissipative mechanical systems 

• Euler-Lagrange equations 

• Attenuation coefficient and Q 

• Examples of simple and multidimensional damped mechanical oscillators 

 

In Lagrangian analytical mechanics, the deformation of a rock body or wave-

propagating medium in any experimental environment is completely described by giving 

the functional forms of the Lagrangian (denoted L) and dissipation functions (D) for this 

environment. The Lagrangian L is usually the difference of the total kinetic and elastic 

energies of the body (eq. (3.6)). However, in general, the Lagrangian does not have to be 

separable into the potential and kinetic energies. 

4.1 Generalized coordinates 

In section 1.1, I described the Lagrangian variational approach using coordinates of 

particles comprising the mechanical system. However, the description does not have to use 

only such coordinates, and any type of “generalized coordinates”, q(t) can be used. For 

example, if the mechanical system is the subsurface with a distribution of elastic moduli 

and density, vector q would include positions of the macroscopic “representative 

elementary volume” (REV) within the medium, or we could use spatially variable strains 

or magnitudes of certain spatial harmonics as the generalized coordinates. Thus, the 

number of generalized variables can be small or very large in wave modeling, but for any 

number of variables, the principle of Hamiltonian action yields the equations of motion. 
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As shown in eq. (3.5), all time- or frequency-domain domain equations of motion are 

obtained by employing the Hamiltonian principle of extremal action ( ) 
2

1

t

t

S t Ldt= q . The 

trajectory is in the space of generalized coordinates qi(t) which are arbitrary variables 

describing the state of the mechanical system. The braces {…} in this notation mean that 

S is a functional, i.e. a function whose argument is a function of time, that is, values of all 

variables q taken at all times. 

The principle of extremal action states that the trajectory qtrue(t), corresponding to 

the true motion of the system is such that S = 0. This equation means that for a small 

arbitrary deviation of all variables q(t) such that 0 =q  and 0 =q  at the endpoints t = t1 

and t = t2, the action is unchanged:      true trueS S o + = +q q q q . In this relation, the 

“little o{…}” denotes some functional which for a small q tends to zero faster than q. 

For example, if q is characterized by some small measure  (such as the peak or average 

seismic strain), then o() would consist of arbitrary terms of functional orders higher than 

, such as 2, 3, etc. 

The variation of action (eq. 3.5) also represents an integral over time: 

                                                        ( )
2

1

t

i

it

S
S q t dt

q


 


=  , (4.1) 

where summation over all indices i is implied. The derivative 
i

S

q




 is a functional 

derivative, which is the derivative of S with respect to the time-variant function qi(t) at any 

time t. Note that the definition of this derivative is similar to that of the Fréchet differential 

(eq. 3.15), except that because of time integration, 
i

S

q




is an ordinary function and not 

operator. 



ZB01305M     4. Lagrangian Mechanics 

76 

4.2 Euler-Lagrange equations 

The functional derivative 
i

S

q




 can be evaluated from partial derivatives of the 

Lagrangian function with respect to its arguments. Function L is usually a function of the 

generalized coordinates qi and the corresponding “generalized velocities” denoted iq : 

( ),L L= q q  . Then, because 
2

1

t

t

S Ldt=   for an evolution of the system from time t1 to t2, the 

perturbation of the action equals 
2

1

t

i i

i it

L L
S q q dt

q q
  

  
= + 

  
 . The part of the integral 

containing iq  in the integrand can be transformed by integration by parts: 

( )2 2 2

1 1 1

t t t

i

i i

t t t

d q df
S f q dt f dt q dt

dt dt


  = = = −    (recall that we consider qi equal zero at both 

end points, and therefore the terms corresponding to the limits of this integration interval 

equal zero). Therefore, S equals  
2

1

t

i

i it

L d L
S q dt

q dt q
 

  
= − 

  
 . Thus, 

i i i

S d L L

q dt q q





 
= −

 
. 

The above S must equal zero for arbitrary q, which gives us the equation that must be 

satisfied by the motion of the dynamic system q(t): 

                                                           0
i i

d L L

dt q q

 
− =

 
. (4.2) 

This differential equation is called the Euler-Lagrange equation.  

In the Euler-Lagrange equation (4.2), the derivative  
def

i

i

L
Q

q


=


 is the “generalized 

force”, which corresponds to the usual force F in Newton’s laws (eq. (3.1) and also see 

example below).  The derivative with respect to velocity  
def

i

i

L
p

q


=


 is called the 

“generalized momentum”, which generalizes the concept of the usual momentum 

k km=p x of a single particle. In this notation, equation (4.2) is simply 
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                                                                i
i

dp
Q

dt
= , (4.3) 

which represents the second Newton’s law with respect to arbitrary coordinates of the 

system generalizing eq. (3.1)). This equation is also valid when the “mass” of the system 

varies with time or spatial coordinates. 

The Lagrangian describes the internal interactions within the system (elasticity and 

inertia). If an external force is present, such as the seismic source, the force is added to the 

right-hand side of eq. (4.3):  

                                                            i
i i

dp
Q F

dt
= + . (4.4) 

The external force Fi is also “generalized” and corresponds to the character of the 

generalized variable qi. For example, if qi is the coordinate of a point of an elastic medium, 

then Fi would be the corresponding component (X, Y, or Z) of the ordinary body force 

applied to the point. If qi is a rotation angle of a body, Fi should be the torque applied to 

the body, and so on. 

All components i of the external force Fi can also be obtained as derivative of a 

Lagrangian function 
F

i

i

L
F

q


=


 by taking F i iL q F= . Therefore, all external forces can be 

included in the Lagrangian by taking:  

                                                    ( )
def

, i iL T U q F= − +q q  . (4.5) 

Note that the meaning of the added term qiFi is simply the work by the external force 

applied when the generalized variable is shifted by qi. This term can also be included in the 

potential energy U. 

4.3 Mechanical energy 

Next, function 
def

i iH p q L= −  is called the “generalized energy.” If expressed through 
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pi instead of iq , this function is called the Hamiltonian. The generalized energy has an 

important property: if L does not explicitly depend in time t (as above) and contains no 

external forces, then the energy H is constant with time:    

                          ( ) ( ) 0i i i i i i i i i i

i i

dH d L L d
p q q q p q p q p q

dt dt q q dt

 
= − − = − − 

 
. (4.6) 

This is the law of conservation of mechanical energy. Thus, time-independent Lagrangian 

functions describe conservative systems. 

Other conservation laws are also obtained from the symmetries of the Lagrangian. 

For example, if the Lagrangian does not explicitly depend on some coordinate qi, then the 

corresponding generalized force is zero: 0i

i

L
Q

q


= =


, and consequently the corresponding 

momentum is conserved (eq. 4.4): 0idp

dt
= . For example, this qi can be the coordinate of 

the center of mass of a closed mechanical system, and then this relation means the 

conservation of momentum for the system.  If this qi is the orientation angle of a system, 

then pi is the angular momentum, with the corresponding conservation law. 

4.4 Dissipation of mechanical energy 

To describe a non-conservative system with mechanical-energy dissipation, we need 

to add a frictional force in the right-hand sides of eqs. (4.2) or (4.3). Let us denote this 

force Ri:  

                                                          i
i i

dp
Q R

dt
= + . (4.7) 

Force Ri represents effects like viscous friction (see example in the following subsection). 

As outlined in section 3.3, this force can be obtained as a derivative of the dissipation 

function D with respect to velocities iq : 
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def

i

i

D
R

q


= −


. (4.8) 

Sign ‘–‘ in this expression means that the  force of friction acts in the direction opposite to 

velocity iq , and function D is non-negative and increases with iq . To understand its 

meaning, evaluate the derivative of the total energy (4.6) using eqs. (4.7) and (4.8): 

                                    ( )i i i i i i i i i

i

dH d D
p q p q p q R q q

dt dt q


= − − = = −


. (4.9) 

This shows that D is indeed responsible for the energy dissipation rate (power). In many 

cases of ‘linear’ dissipation (in all cases for rock considered in this course), the dissipation 

function is a quadratic function of the generalized velocities: 
1

2
i iD q q=  (similar to the 

kinetic energy). In such cases, the dissipated power (4.9) equals  2i i

dH
q q D

dt
= − = − . This 

relation shows that for linear dissipation, the dissipation function can be understood as half 

the mechanical energy dissipated per unit time. 

Finally, from the above, the Euler-Lagrange equations for ith generalized coordinate 

with energy dissipation are 

                                                      0
i i i

d L L D

dt q q q

  
− + =

  
. (4.10) 

When modeling continuous media, variables qi often represent functions of spatial 

coordinates x, and therefore in addition to q and time derivatives q , the Lagrangian and 

dissipation functions depend on spatial derivatives of q. Let us denote the spatial derivative 

with respect to coordinate xj by comma in the subscript: 
def

,
i

i j

j

q
q

x


=


. Then, with the use of 

dependencies on ,i jq in functions L and D, the Euler-Lagrange equations (4.10) become 

modified with additional spatial derivatives: 



ZB01305M     4. Lagrangian Mechanics 

80 

                                    
, ,

0
i j i j i i j i j

L L L D D

t q x q q q x q

       
+ − + − =

       
. (4.11) 

Note again that summations over spatial coordinates j are implied in this equation. 

Thus, for a system of arbitrary complexity and geometry, the complete equations of 

motion become readily available once we decide on the forms of functions ( ),L q q  and 

( ),D q q  for the system. In the following subsection, I illustrate these functions for a well-

known mechanical system with only one degree of freedom (linear oscillator), and in the 

next section 0 – for a continuous medium usually used for modeling seismic waves. 

4.5 Mass-Stiffness-Damping (MSD) model 

Numerical modeling and inversion always use parameterizations of the continuous 

displacement fields by some finite vector of variables q, which is only dependent on time. 

For a 3-D gridded model, this vector may contain about a million elements, but this is still 

a discrete problem. For such finite systems, the (quadratic) Lagrangian and dissipation 

functions reduce to only three quadratic forms of vectors q and its time derivative q : 

                                                      

1 1
,

2 2

1
,

2

T T

T

L

D


= −


 =


q Mq q Sq

q Dq

 (4.12) 

where the three mechanical-property matrices are:  

1) the mass matrix M giving the kinetic energy of the system for all possible variations 

of variables q(t);  

2) the stiffness matrix S describing the elastic energy. This matrix is often dented K, 

but I reserve this symbol for bulk modulus and for the poroelastic model.  

3) the damping matrix D containing a similar description of all dissipation effects. 

This matrix is often denoted C, but I will use ‘D’ for association with “damping”. 

We will call this model mass-stiffness-damping (MSD). Note that after discretization (i.e., 
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evaluation of the spatial derivatives i u  through differences of u, evaluation of spatial 

integrals, etc.), there is no longer any formal distinction between the body-force (Darcy 

type) and viscous (Navier-Stokes type) friction in eqs. (4.12). The difference is still present, 

but it is embedded in the structure of matrix D. This difference may also be unnoticeable 

in the resulting solution q(t)8.  

Equations (4.12) are the same as functions L and D for a multidimensional linear 

oscillator (examples shown in section 4.7) except that the displacement is a vector and the 

mass, rigidity, and damping of this multidimensional “oscillator” are matrices. The Euler-

Lagrange equations of motion from eq. (4.12) are also those for an oscillator: 

                                         
d L L D

dt

  
− + = + + =

  
Mq Dq Sq f

q q q
, (4.20) 

where f is the vector of external force applied by the seismic source. Basically, these 

equations only state that some combination of displacements and their first and second time 

derivatives is proportional to the external force. If the external force is absent (f = 0), this 

equation describes free oscillations (for example, of a rock sample in the laboratory or the 

whole Earth) or all types of seismic waves. With a different construction of matrices M, S, 

and D, these equations describe finite-element models of solid bodies or wave-propagating 

media (subsection 0). Because relations (4.12) and (4.20) are so general, they apply to 

fluid-saturated media or thermoelastic effects. 

Oscillations of this multidimensional mechanical system take the form of numerous 

traveling or standing waves. The shape of the specific wave depends on boundary 

conditions (size and shape of the body) and the location(s) and time dependence of sources 

f(t) operating within the medium. 

In full-waveform inversion or for modeling forced oscillations of a rock sample in 

the lab, the time-spatial domain eq. (4.20) is often transformed into the frequency-spatial 

(“f-x”) domain. This transformation is done by replacing the time derivatives of any 

 
8 This is why viscoelastic models (disregarding the GLS matrix d and replacing it with ) are always 

successful in matching M(f) spectra from experiments with rock samples in the laboratory. The average effect 

of Darcy friction (d) is presented as that of h in, for example, Maxwell’s or Zener’s viscoelastic model. 
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function y by 
dy

i y
dt

= − (this means that all time dependencies are of the form 

( ) 0

i ty t y e −= ). Equation (4.20) then becomes the inhomogeneous Helmholtz equation: 

                                                    ( ) ( )2 i  − − + =M D S q f . (4.7) 

This equation can be solved by matrix inverse: 

                                                                   =q Gf , (4.8) 

where 

                                                    ( )
1

2 i 
−

= − − +G M D S , (4.9) 

is the frequency-domain response function for the mechanical system.  

In practice, evaluation of this inverse of a large matrix requires some effort, such as 

evaluation of the singular-value decomposition and taking into account the boundary and 

“radiation” conditions. The product q = Gf can also be found in time domain, by time-

stepping the differential equations (4.20). These numerical modeling methods will be 

described in the next sections. 

In the presence of an external force, an important quasi-static approximation of 

eq. (4.8) is obtained by dropping the mass term: 

                                                  ( )
1

i
−

= − +q D S f . (4.10) 

This matrix equation describes the stationary motion of a damped multidimensional linear 

oscillator under low-frequency, harmonically oscillating loading. In particular, this 

equation can be used for modeling subresonant experiments with rock samples (e.g., 

subsection 7.3 below). At low frequencies, inertial forces are negligible, and elastic forces 

are balanced by viscous ones. 

In the viscoelastic approach, the specific dependence of the terms ( )i−S D  on 

frequency in eq. (4.7) is abandoned, and this combination is replaced with the “viscoelastic 
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modulus”: 

                                          ( ) ( )
def

1

elastici i  − − → = − S D S S I Q , (4.11) 

where Selastic is the rigidity matrix for an “elastic” model which would exist in the absence 

of attenuation, and Q-1 is a diagonal matrix of “inverse Q-factors” defined at every point 

within the subsurface. The frequency dependence of Q-1() is generally arbitrary, and it 

may be estimated from well-log or laboratory experiments. However, most commonly, 
1−Q  

is taken as constant within the frequency band. Note that this frequency dependence is 

drastically different from the linear dependence C in eq. (4.7) and therefore, the 

“constant-Q” model disagrees with the basic physics described above. Nevertheless, this 

model is used as a viable approximation in most seismic wave modeling and inversion 

software. 

4.6 Oscillations and waves 

Let us return to the general equation of frequency-domain deformation in the mass-

stiffness-damping form (eq. 4.7): 

                                               ( ) ( )2 i  − − + =M D S q f . (4.7 repeated) 

In the absence of the source in the right-hand side (f = 0; ‘homogeneous’ equation), this 

equation has solutions which represent free oscillations. For a finite body, a free oscillation 

mode represents a spatial pattern synchronously oscillating in time. For an infinite medium, 

the oscillation patterns travel in space and form waves. 

Thus, with f = 0, the equation describing a free oscillation mode number n has the 

form of a generalized eigenvalue problem: 

                                                      ( )2 ( ) ( )n n

n ni = −Mq S D q , (4.16) 

where vector q(n) gives the spatial distribution of the oscillation/wave mode, and n is its 

frequency.  Because of the matrix character of this eigenvalue equation, it is only satisfied 
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by certain vectors q(n) (eigenvectors, or eigenmodes), and 2

n  above is the eigenvalue 

corresponding to the nth mode. In the next section and chapter 7, I give several specific 

forms of this general equation and its solutions. 

4.7 Examples 

To illustrate the Lagrangian methods above, let us consider an elementary example 

of a linear oscillator and then extend it to a more realistic structure. 

4.7.1 Linear oscillator with damping 

The damped linear oscillator is the simplest system exhibiting mechanical energy 

dissipation. Most characteristics of attenuative processes, including the definition of Q, 

arise from either explicit inferences or implicit analogies to this system. The concept of the 

linear oscillator is a mathematical abstraction belonging to the field of theoretical 

mechanics (Landau and Lifshitz, 1976), however, its realizations are pervasive in nearly 

every area of physics and engineering, such as mechanics, electrodynamics, optics, and 

quantum mechanics. 

A linear oscillator is a mechanical system described by only two parameters, which 

are its mass m and the natural frequency 0. These parameters are factors of the functional 

forms for the kinetic and potential energies, respectively. The energy forms are quadratic 

with respect to both the displacement, r, and velocity, r , and the Lagrangian is: 

                                          ( )
2

2 20,
2 2

mm
L


= −r r r r .  (4.17) 

The energy of the oscillator is then: 

                                          

2
2 20

2 2

mL m
H L


= − = +


r r r

r
.  (4.18) 

The energy is preserved in time, and the oscillator’s movement consists of infinite 

oscillations at frequency 0 near the point r = 0. 



ZB01305M     4. Lagrangian Mechanics 

85 

In order to introduce energy dissipation in this system, a “damping,” or viscous-

friction force is required. For slow flows in fluids, the (Newtonian) friction force is 

proportional and directed opposite to the velocity. By using the two oscillator parameters, 

such force can be can be expressed through a dimensionless constant  : 

                                                      0D m = −f r .  (4.19) 

In a variational formulation, this force is described by the Rayleigh dissipation function: 

                                              2

0 0
2

k

m
D E = =r . (4.20) 

Note that the oscillator’s dissipation function is proportional to its kinetic energy Ek. Half 

of the proportionality factor between Ek and D is the attenuation coefficient,  = 0/2 

(Figure 4.1; section 4.9 below), and its inverse is the “relaxation time,” 0 = 1/. 

With the above Lagrangian and dissipation functions, the equation of motion 

becomes: 

                                        rrr 
0

2

0  mmm −−= .   (4.21) 

For weak dissipation ( << 1), its general solution is 

                                     ( ) ( )*

0Re expt i t = −
 

r A , (4.22) 

where the complex-valued frequency is (see section 4.9) 

                                          *

0 0 1
2

i
 

 
  − 

 
, (4.23) 
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and A is an arbitrary complex-valued amplitude. Because r is real-valued, it is sufficient 

to consider only the solution with non-negative *

0 0Re =  (for negative frequency, we 

have ( ) ( )*

0 0A A −  ; the asterisk denotes complex conjugation here; section 2.3). The 

imaginary part of *

0 describes the logarithmic amplitude decrement of the free oscillation 

with time. Similar complex frequencies arise for the Earth’s normal modes, surface waves, 

and in lab attenuation measurements using standing waves. 

With the use of the complex frequency and r(t), eq. (4.21) takes the form of the free-

oscillator eq. (4.20), 

                                                     *2

0m m= −r r . (4.24) 

If an external force f(t) is added to the right-hand side of eq. (4.21), then: 

                                               ( )
( )

( )
f

A
m


 =  ,  (4.25) 

where the shape of its frequency-domain response to f() is determined by the complex 

frequency alone, 

 

FIGURE 4.1 
Definition of the quality factor for a linear oscillator. In a steady-state oscillation, Q 

measures the relative width of the resonance peak: f = f0/Q, defined at the level of 1 2  

of the maximum amplitude. Example with Q = 10 shown. 
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                                               ( ) *2 2

0

1


 
 =

−
.  (4.26) 

Thus, the displacement-amplitude response to a harmonic force exhibits a spectral peak 

centered at 0, with parameters  and  (= Q-1) controlling its absolute and relative widths, 

respectively (Figure 4.1). Note that in practical observations, it is the absolute width of the 

spectrum that is measured, and Q only inferred from it. In terms of , eq. (4.26) reads: 

                                        ( ) 2 2

0

1

2i


  
 =

− −
. (4.27) 

This expression allows measuring  in the observed power spectra by fitting, for example, 

the following normalized density function to the observed power spectrum: 

                                       ( )
2

2
2 2

0

0

1

1
2


 

 

 =
 −

+ 
 

.   (4.28) 

Exercises 

From eq. (4.27) for forced oscillations at frequency , express, as functions 

of time: 

1) Kinetic energy Ek; 

2) Potential energy Ep; 

3) Total mechanical energy 
mech p kE E E= + ; 

4) Averages of the above quantities of\over an oscillation period, 

denoted 
pE , 

kE , and 
mechE . 

5) Mechanical-energy decay rate mech
mech

dE
E

dt
= ; 

6) Attenuation coefficient mech

mech

E

E
 = − . 

Show that the time-averaged kinetic energy is related to the average 
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potential energy as ( )
2

0k pE E = . 

Note that the kinetic and potential energies equal each other only at the 

natural frequency ( = 0). This criterion can be used for determining the 

natural frequency 0. This is also one of the reasons for the difficulties with 

defining a Q factor for forced oscillations.  

The inverse quantity 1/() to eq. (4.27) gives the stress/strain ratio (Figure 4.2), 

which can be compared to the empirical moduli and Q-factors for  viscoelastic solids 

(chapters 1 and 2). Near the resonance frequency, the stress/strain response drops for 

lower  , and at large frequencies, the response increases proportionally to f2 

(Figure 4.2a) The Q factor increases near linearly at low frequencies, and above 0, it 

becomes negative (because of the negative real part of () and phase lag close to 180). 

 

FIGURE 4.2 
Logarithm of the complex magnitude (left) and Q-factor (right)of the stress to strain ratio for 

a mechanical oscillator with three values of  (legend). 
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4.7.2 Linked oscillators 

A system of interlinked linear oscillators (multidimensional oscillator) represents a 

close analogy to the elastic medium, and it helps understanding the behavior of a rock 

sample in the laboratory or causes of multiple types of waves in the field. In this section, I 

explain how the spectra of oscillations and the various observable quantities in such 

systems can be modeled. This modeling can also be viewed as a simplified approach to 

“digital rock”. 

Consider a network of linear damped oscillators connected with springs and dampers. 

Such systems can be drawn as graphs with vertices corresponding to the masses and 

displacements, and edges representing deformations (strains) (Figure 4.3).  Springs of this 

graph correspond to the elastic-energy terms in the Lagrangian and dashpots denote the 

terms in the dissipation function. Let us denote the (X, Y) coordinates of the masses as the 

generalized coordinates, with zero values corresponding to the state of equilibrium. Both 

the kinetic and potential energies are quadratic functions of these coordinates, which can 

be expressed in the MSD form (section 4.5) as 

                                     
1

2

T

kE = q Mq  and  
1

2

T

pE = q Sq , (4.29) 

respectively. Both of the above forms must be symmetric and positive definite, and 

therefore all eigenvalues of both M and S are non-negative. Furthermore, the kinetic energy 

is always positive, and consequently matrix M has no zero eigenvalues and has an 

inverse, M-1. 

For a harmonic oscillation at frequency , each of the coordinates varies as 

( ) ( )sini i iq t q t = + , and the distribution of amplitudes q  and frequency  given by the 

eigenvalue equation from section 4.5: 
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                                                      ( )2 0 − =M S q . (4.30) 

This relation means that q  represent an eigenvector of matrix M-1S, with 2 being the 

corresponding (always non-negative) eigenvalues. The number of such modes equals the 

number of degrees of freedom in the system (for example, twice the number of masses for 

2-D oscillations in Figure 4.3). However, some of the modes may be degenerate, i.e. having 

equal values of . For each mode, the total, time-averaged mechanical energy equals: 

                                           ( )21

2

T

mechE = +q M S q . (4.31) 

Newtonian dissipation in such a system (dashpots in Figure 4.3) is also given by a 

symmetric, positive definite quadratic form:  

                                                †1

2
D = q Dq , (4.32) 

(with complex-valued q, we have to use Hermitian conjugation instead of the transpose) so 

that the time-average energy increase (dissipation) rate for the selected mode equals: 

                                   
2

†

0

1

2

t

mech i

i

D
E q d

t q





= − = −

 q Dq . (4.33) 

 

FIGURE 4.3 
Four interlinked linear damped oscillators illustrating a complex mechanical system. 
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Therefore, the attenuation coefficient and the Q for the selected mode are: 

                           
( )

2 †

† 22 2

mech

mech

E

E






−
= =

+

q Dq

q M S q
, and 

2
Q




= . (4.34) 

Equations (4.34) should not be understood as   2 and Q  -1, because  here is a 

constant determined by the selected mode q . However, if pairs (, Q) are compiled across 

the different modes, an approximate “scaling relation” Q() may appear (see Lab 4.2). 

Similar empirical relations are commonly observed, for example, for the Earth’s free 

oscillations, surface waves, and also the well-known general “frequency dependence of Q.” 

This frequency dependence is believed to be Q  0.15-0.4 for all waves and across the entire 

seismic frequency band.  

Above, we considered the case of weak dissipation and did not include the effect 

of D on shifting the resonant frequencies. If operator D is not diagonal on the eigenvectors 

of matrix M-1S, dissipation would also intermix the modes, and the motion may no longer 

be harmonic.  

4.8 Equipartitioning of energy 

Equation (4.30) shows that for a normal mode in any system (standing wave), the 

energy is equipartitioned, so that the average kinetic energy equals the average potential 

energy. This equality of the kinetic and potential energies in a wave is sometimes called 

the Rayleigh principle. 

Because the kinetic energy is proportional to 2, the oscillation eigenfrequency 0, 

can be determined from the energy equipartitioning using the ratio of the time-averaged 

potential and kinetic energies pE  and 
kE  evaluated for the appropriate distribution of 

amplitudes q  but taken at frequency  = 1: 

                                                     0

p

k

E

E
 = ,   (4.35) 
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With the average potential and kinetic energies being equal, their spatial distributions 

and time dependencies differ for oscillations of a finite body or in a traveling wave 

(Figure 4.4). In a body, the oscillation is a standing wave, in which the energies oscillate 

at frequency 2, the kinetic energy is opposite in phase relative to the potential one, and 

their sum is constant (Figure 4.4a). By contrast, in a wave traveling in a homogeneous 

medium, the kinetic and potential energies equal each other at any time and point 

(Figure 4.4b). The whole pattern of energy highs and lows travels with the wave. 

4.9 Attenuation coefficient 

In the viscoelastic model, the above calculation of the eigenfrequency is also 

extended to attenuation, although at the expense of making the moduli, energies, and action 

complex-valued. Because 
pE  is proportional to the elastic moduli (spring constants k in 

our examples in Figure 4.3), a shift of each modulus into the complex plane,  

k
k k i k Q→ −  would accordingly shift the potential energy of the mode: 

Imp p pE E i E→ +  (where Im 0pE  , and I retain the notation 
pE  for Re pE  for brevity). 

The eigenfrequency (4.35) would then attain a negative imaginary part (for weak energy 

dissipation, Im p pE E ), which we denote (–). The complex-valued angular frequency 

of the oscillation is therefore 

 

FIGURE 4.4 

Equipartitioning of elastic and kinetic energies during harmonic oscillations: a) time 

dependencies in a body, b) distance dependencies in a wave. Blue line is the elastic 

energy, and red line with crosses is the kinetic energy.  
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0 0 i   − .   (4.36) 

where 0  is the ordinary angular frequency of the oscillation. This quantity  is the 

temporal attenuation coefficient  

                                                            0

Im

2

p

p

E

E
  .   (4.37) 

Quantity  describes the logarithmic decay of oscillation amplitude with time. For an 

oscillation at frequency 0, the amplitude decreases with time as  

                                                         ( ) ( )0 tA t A e −= .   (4.38) 

The attenuation coefficient  is a fundamental quantity which applies not only to the 

viscoelastic case (eq. 4.37). More generally, 2 is the ratio of the average total mechanical-

energy dissipation rate 
mechE  to the current level of this average energy 

mechE . This 

definition simply arises from the amplitude decay in eq. (4.38). Since the energy of the 

oscillation is proportional to A2, it should decay with time as e–2t.  Therefore, the general 

definition of the attenuation coefficient is 

                                                            
2

mech

mech

E

E
 = − .   (4.39) 

The Q-factor of a resonator (oscillator, or a given free-oscillation mode) is a 

secondary quantity defined by taking a ratio of  to the oscillation frequency:  

                                                             1

0

2
Q





− = . (4.40) 

This and other definitions of Q for forced oscillations are discussed in the next section. 

In the viscoelastic case (eq. 4.37), the inverse Q-factor (4.40) equals 
1

Im p

p

E
Q

E

−   

However, looking again at eq. (4.34), note that the above “imaginary shift in the potential 
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energy” 
2

0

1
Im

2
p ij i jE D q q=  is produced by the dashpots and is generally unrelated to the 

elastic or kinetic energies. For example, in the model in Figure 4.3, it is impossible to say 

how to attribute the effects of the two dashpots to the nine elastic moduli in order to 

interpret them as “viscoelastic” moduli. Therefore, attenuation should not be linked to 

elastic moduli or to any other specific part of the mechanical system. Attenuation is a 

property of the entire deformation of the body, similar to the natural frequency 0. 

4.10 Quality factors  

For complex mechanical systems like rock, there exist several types of definitions of 

quality factors. These factors depend on the oscillation mode, the way this oscillation mode 

is excited by external loading, and also on the general goals of investigation. 

4.10.1 Q of a free-oscillation mode 

The Q-factor for a linear oscillation mode arises from the time dependence of 

solution (4.37), as a ratio of its logarithmic decrement to the natural frequency:

1

0 02Im ReQ  −  = , which equals: 

                                                      1

0

2
Q






− =  . (4.41) 

This Q-1 is a constant belonging to the entire oscillator and relates to its only natural 

frequency. Therefore, the Q-1 for an oscillation mode has no frequency dependence, and it 

cannot be attributed to the spring constant k. 

4.10.2 Q-factors in forced oscillation experiments 

To look at varying frequencies, the concept of Q-1 needs to be extended to forced 

oscillations at non-resonant frequencies. This is not so easy to do. Depending on the ways 

this extension is performed, the same linear, damped mechanical oscillator can have 

multiple “quality factors.” To see them, we need to start from the basic definition of the 
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inverse Q–1 as the ratio of the mechanical energy decay in one period, 
mechTE ,  to some 

reference energy level, Eref: 

                                          1 1

2

mech mech

ref ref

TE E
Q

E E 

− − −
= = .  (4.42) 

The key question, and also the entire uncertainty here is in the selection of Eref. For forced 

oscillations, energy is not equipartitioned, and neither Ek, Ep, nor Emech uniquely describe 

the state of the system. It can neither be said which of these energies truly “dissipates.” 

Different measures of energy can be used for Eref, leading to several types of Q described 

in the following subsections.  

Kinetic-, potential-, and total-energy based Qs 

For example, the above relation of D to kinetic energy suggest that the natural choice 

for Eref might be the peak kinetic energy: ˆ 2ref kE E=  (denominator 2 here is because we 

use the peak amplitude of ( ) ( )ˆ 1 cos2 2k kE t E t= + as a measure of its average level). 

Therefore, from eq. (4.42), the “kinetic” quality factor Qk is proportional to frequency 

(Figure 4.5): 

                                           
0

ˆ

2

k
k

mech

E
Q Q

E

 


= = .  (4.43) 

Alternately, if we relate the dissipation  to the peak potential energy, ˆ 2ref pE E= , as it is 

done in seismology (Aki and Richards, 2002), then such quality factor becomes inversely 

proportional to frequency (Figure 4.5): 

                                           0
ˆ ˆ

ˆ2

p p

p k

kmech

E E
Q Q Q

EE

 


= = = ,  (4.44) 

because ( )
2

0
ˆ ˆ

p kE E =  in a forced oscillation. Next, if we define the quality factor Qt from 

the relative loss of the peak total mechanical energy, then: 
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0

0

ˆ  for ,

 for ,

pmech
t

kmech

QE
Q

QE

 

 


= = 


  (4.45) 

since ˆ
mechE equals ˆ

pE  or ˆ
kE  for  < 0 and   0, respectively (Figure 4.5). 

Further, possibly the most robust choice for Eref in (4.42) could be the total 

mechanical energy averaged over a period. This also corresponds to the definition of 

viscoelastic Q by Buchen (1971). Peak energies, which are attained only once or twice 

during a period, rarely have consistent relations with the average 
mechE . At resonance, 

ˆ
mech mechE E= , and for 0  , the mechanical energy oscillates between ˆ

kE and ˆ
pE  above, 

and its average level equals ( )ˆ ˆ 2k pE E+ . Consequently, we can define the “average total-

energy Q-factor” as: 

                                        
2

k pmech
a

mech

Q QE
Q

E

 +
= = .  (4.46) 

This seems to be the most logical choice for the oscillator’s Q away from the resonance. 

Note that it stays near constant for   0 (Figure 4.5). 

 

FIGURE 4.5 

Frequency dependences for several types of Q definitions (4.43)–(4.46) for a linear 

driven oscillator. At the resonant frequency  = 0, all of these values equal the true 

quality factor (4.41) denoted Qtrue here. 
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Strain-stress phase-lag Q 

Another definition of Q comes from force-displacement phase lags  in sub-resonant 

lab measurements of seismic attenuation and observations of Earth’s tides (Agnew, 2009). 

If we consider a harmonic force ( ) ˆ i tf t fe −=  and a logarithmic amplitude decay rate , 

then from eq. (4.37), the stationary solution for displacement is 

                                         ( ) 2 2

0

ˆ

2

f
u

i


  
=

− −
. (4.47) 

This displacement lags the force by phase angle : 

                  ( )

02 2

0

2 2

0 0

02 2

0

2
arctan    for   ,

2       for   ,
2

2
arctan    for   .

Arg i


 

 


     


  

 


 −




= − + = =



−  −

. (4.48) 

At low frequencies 0  , the phase lag is nearly proportional to the frequency of the 

loading force: 

                                                      
0 0 0

2  
 

  
 = . (4.49) 

 Cotangent of the phase lag  is usually interpreted as the quality factor in lab observations: 

(Lakes, 2009): 

                                                            
1

tan
Q


 .  (4.50) 

This quantity approximates the quality factors Qp and Qt above, and it is inversely 

proportional to the frequency (Figure 4.5): 

                                              
2 2 2

0 0

2 2
pQ Q

  

 

−
=  = .  (4.51) 
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4.10.3 Conclusion about Q 

As we saw above, a well-defined and meaningful Q-factor only exists for an 

oscillator (resonator), or oscillation mode for a complex mechanical system. For forced 

oscillations or waves at variable frequencies, values of Q and their frequency dependencies 

are sensitive to the measurement procedures and definitions. 

Multiple types of forced-oscillation Q-factors can be defined for a linear oscillator, 

based on somewhat different physical ideas and approximations. Most of these definitions 

contain strong and variable frequency dependencies (Figure 4.5). These extensions of the 

“true” resonance Q away from the natural frequency characterize not so much the oscillator 

itself but mostly our ideas about the energy Eref which we consider to be “dissipating.” 

However, in reality, friction is not associated with any particular type of energy, and the 

choice of Eref is only guided by convenience. Therefore, when applied to rocks and 

oscillatory processes in different environments, the “quality factors” (4.42) and (4.43)–

(4.46) should be compared to each other very carefully, because they may represent quite 

different physical characteristics of the system. 

Conventionally, the phase-lag Q (eqs. ((4.50) and (4.51)) is used in laboratory 

experiments.  When using this quantity, note that with this definition, the attenuation Q-1 

contains an inherent increase proportional to the frequency even for the simplest 

mechanical system (oscillator). Thus, the material property that can be inferred from such 

measured Q-1(f) dependence is not Q-1 itself but rather its ratio to the observation frequency: 

1

2

0

2Q 

 

−

= . For a mechanical resonator with damping  and natural frequency 0, this ratio 

equals 
1

0

Q 

 

−

= . 

However, there is also another useful transformation of the measured Q-1, namely 

transforming it into a frequency-dependent (empirical) attenuation coefficient: 

                                          ( )
1

1

2

Q
fQ


  

−
−= = .  (4.52) 

This transformation refers to amplitude dependence as a function of travel time t in a 
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seismic wave: ( ) ( ) ( ) ( )
1

0 exp 0 exp
2

Q
A t A t A t


 

− 
= − = −    

 
 . From seismic 

amplitude data, it is often found that this () has a simple dependence on frequency with 

nonzero limit (0) =  

                                                ( )
1

2

2 2

eQ 
    

−

 + + + ,  (4.53) 

where 1

eQ−  is a frequency-independent “effective Q-1,” and  is a viscous-relaxation type 

property (characteristic viscosity divided by characteristic modulus). 

4.11 Laboratory assignments 

In the following exercises, you will model a simple “digital rock” using the 

mechanical model in Figure 4.3 (page 90). You can also design a similar model of your 

own. 

Lab 4.1: Model the mechanical system in Figure 4.3 

Use Matlab or Octave to solve for the spectrum of oscillation frequencies in the 

system shown in Figure 4.3. Write the program assuming that all masses, spring rigidities, 

and damping parameters may be different from each other. For example, use adjustable 

parameter vectors ‘m’, ‘k’, ‘eta’, etc. to hold the respective mechanical parameters. 

Then calculate the eigenfrequencies for the case of equal masses, m = 1, all spring 

constants k = 1, and both dashpots having  = 0.01.   

Lab 4.2: Calculate the Q spectrum for the system in Figure 4.3 

Using results of Lab 0, calculate numerically the Q values for each oscillation mode.  

Plot the dissipation factors Q–1 versus frequencies of the mode. Comment on their 

“frequency dependence.” However, note that the dependence is actually not on the 

frequency but on deformation type within the modes. 
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Lab 4.3: Model forced oscillations of the system in Figure 4.3 

Also using the program of Lab 0, calculate additional averaged properties of the 

oscillation patterns in Figure 4.3: 

1) Root mean square (RMS) average of displacements in X and Y directions. 

2) Average elastic and kinetic energies. Are they equal for each mode? 

3)  Average energy dissipation rate (value of the dissipation function). 

4) Optional: Construct some other averages, such as eigenvalues of the cross-energy 

matrix.  

Plot these quantities as bar charts versus mode numbers or as graphs versus mode 

frequencies. When plotting vs. frequency, sort the values by increasing frequencies, so that 

the graphs look as recorded in an experiment. 
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5 Lagrangian Mechanics of Macroscopic Solids or Fluids 

 

Key points: 

• Macroscopic material properties 

• Lagrangian descriptions of isotropic materials 

• General Linear Solid (GLS) rheology 

• Biot’s poroelasticity as a case of GLS 

o Extensions of Biot’s model 

• Viscoelasticity as a case of GLS 

o GLS forms of viscoelastic linear solids 

• Extended generalized standard linear solid 

• Effective media and homogenization 

 

Here and below, we consider small and reversible (seismic) deformations of a 

continuous or discretized elastic medium. For such deformations, displacements ui (where 

i = 1, 2, or 3) at each point x = (x,y,z) are usually selected as the generalized coordinates. 

These displacements represent components of displacement vectors u(x,t) at each point. 

As above, the time derivatives are denoted by an overdot, and therefore iu  are the 

generalized velocities. Zero displacements u = 0 corresponds to the state of equilibrium 

without seismic waves or oscillations. 

In analytical mechanics, the problem of obtaining all equations of motion for u(x,t) 

consists in finding the functions  ,L u u and  ,D u u . These functions are actually 

functionals themselves, because their arguments are functions of x:  u(x) and ( )u x . These 

functionals are integrals over the entire volume of the medium:  ,L LdV= u u  and 
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 ,D DdV= u u , where L and D in the integrands are the densities of the Lagrangian and 

dissipation functions of the medium. For simplicity of notation, I use the same symbols L 

and D for the density and the total volume integrals. The total action of the elastic field is 

given by the integration over the whole volume and time interval: S LdVdt=  .  

The definition of functions L and D requires considering the principles of physics, 

and not merely modifications of mathematics as this may seem from the conventional 

viscoelastic model. To recognize the possible forms of L and D, we need to identify the 

meanings of such key concepts as linearity, elastic and kinetic energies, viscous friction, 

and symmetries, such as the dependence or independence of mechanical properties on 

spatial locations, orientations, and time. In particular, the linearity and the condition that 

u = 0 corresponds to an equilibrium (i. e., minimum of the elastic energy) means that 

functions L and D should be quadratic with respect to u and u . This is a very strong 

constraint on the possible forms of L and D, and the following considerations show that 

there exist only several possible quadratic functional forms for L and D in an isotropic 

medium: 

1) All energies are scalar quantities, which are explicitly independent of the 

coordinates and time and rotationally-invariant. All energy functions are 

composed by summations of contributions from the elementary volumes dV 

within the body (as shown by relations  ,L LdV= u u  and 

 ,D DdV= u u  above). 

2) The quadratic forms of the kinetic energy T and function D depend on 

particle velocities iu  only, and the quadratic form for U is formulated with 

respect to displacements ui.  

3) The elastic energy U can in principle depend on the displacement u directly 

and also on the strain tensor ( )
def

2ij i j j iu u =  +  . Further, because U is a 

scalar quantity and the medium is isotropic, U can only depend on scalar 

combinations of ui and ij called rotational invariants of the displacement ad 

strain, respectively. There exist only one such invariant for vector ui, which 
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is its square uiui. For the strain tensor , there are two invariants, which are 

def

1 iiI  = =  (first order in ) and 
2 ij ijI  =  (second order), where  is the 

dilatational strain, and ( )
def

3ij ij ij  = −   is the deviatoric (zero-trace) 

strain, and summation over all pairs of repeated indices is implied as usual. 

4) The dissipation function D only depends on the time derivatives and iu  

(particle velocity) and 
ij  (strain rate), also in the form of rotational 

invariants (for strain rate) similar to  and I2. 

With physical constraints 1) – 4), there are only six possible forms of the terms in 

functions L (Lagrangian) and D (dissipation-function densities) reduce to only six terms: 

                                        

2

2

,
2 2 2

.
2 2

i i i i ij ij

K
i i ij ij

K
L u u u u

d
D u u 

 
 


  

  
= − +  + 

 


  = +  +   

 (5.1a) 

In these expressions, the terms enclosed in parentheses represent the elastic energy (in L) 

and viscous friction (in D). The coefficients in front of the various combinations of u and 

 represent the macroscopic material properties. Thus, for an isotropic medium with no 

internal structure (described only by displacements u and the corresponding strain), there 

exist only six possible material properties. Factor  is the mass density, and the 

corresponding term is the kinetic energy density. Factors K and  are the bulk and shear 

elastic moduli, respectively. Together with , these terms describe the dynamics of the 

medium.  

The term proportional to uiui in the first eq. (5.1a) would leads to an elastic force 

returning the medium to the equilibrium point u = 0. For media without internal variables, 

this term would violate translational invariance, i.e. the invariance with respect to shifting 

the whole body to a different place. For this reason, the corresponding material property 

 = 0 for a material without internal structure. However, for materials with internal 

structure (section 5.1), this  could be a viable material property. 
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In function D in eqs. (5.1a), the first term containing factor d describes the first-order 

linear friction, such as occurring in an acoustic or electrical resonator, or mechanical 

oscillator in the preceding section. However, although possible, this term (friction with 

respect to displacement rate without strain) does not seem to occur in media without 

internal structure, for which we can take d = 0. However, this term provides the description 

of pore-fluid friction in Biot’s poroelastic model, although there, variables ui are also 

represented by a vector in a 2-D model space (see the next subsection). Pore-flow effects 

are likely the dominant internal-friction mechanism for explaining the seismic wave 

attenuation in sedimentary rock.  

Parameters K and  in D (eqs. 5.1) represent the solid viscosity of the rock for 

dilatations and shear deformations, respectively. Viscosity is the standard mechanism of 

internal-friction in grainy solids, and metals, and it leads to the well-known Navier-Stokes 

equations for fluids. In contrast to the first term in function D containing the ground 

velocity iu , this type of internal friction is caused by the strain rate ij . Note that the solid 

viscosity of subsurface rocks was first measured by Ricker in 1941. In in number of papers 

(e.g., Deng and Morozov, 2016), we showed that the bulk and shear solid viscosities can 

be produced by “squirt flows” within porous rock with microcracks. This mechanism 

should be significant in many sedimentary rocks and granite. 

Alternatively, the same functions (5.1a) can be expressed using the components of 

the complete strain tensor ij instead of the deviatoric stress ij . In this form, the bulk 

modulus K is replaced with Lamé modulus , and a similar replacement is made for the 

bulk viscosity parameter: 

                                       

2

2

,
2 2 2

.
2 2

i i i i ij ij

i i ij ij

L u u u u

d
D u u 



  
 


  

  
= − +  + 

 


  = +  +   

 (5.1b) 

This representation may be slightly easier to implement in numerical modeling. 
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5.1 Media with internal structure (“General Linear Solid”) 

Real rock almost always contains internal structure, such as grains of various shapes 

and mechanical properties and various pores (partially) saturated with fluids. 

Macroscopically, these structures can be described by additional internal variables, such as 

displacements of pore fluids relative to the average rock frame. It was actually our group 

who proposed a general Lagrangian model for such arbitrary macroscopic structure 

(several papers by Morozov and Deng since 2016). This model was called the General 

Linear Solid (GLS), to give a resemblance but also an alternative to the well-known 

Generalized Standard Linear Solid model (GSLS; see section 2.7.5). The GLS is a much 

more general concept, and it includes the GSLS, all other “linear solids,” Biot’s 

poroelasticity, and other models with linear elasticity and Newtonian viscosity. I will 

illustrate these models in subsections 5.4 and 5.5 below. 

There are two types of GLS models depending on the character of the additional 

internal variables recognized within rock. Subsection 5.1.1 describes the case when internal 

variables have meanings of spatial displacements, such as macroscopic movements of pore 

fluids, groups of mineral grains, etc. In addition, other internal variables may exist, such as 

variations of porosity, capillary effects, variations of temperature, electrical charges 

developing within rock, etc.. Such general internal variables are described in 

subsection 5.1.2. 

5.1.1 GLS with displacement-type internal variables 

The first form of the GLS is a straightforward generalization of eqs. (5.1) to media 

with additional internal variables with meanings of vector displacements. Such vector 

variables can be movements of pore fluids or displacements of groups of grains within the 

rock frame. Thus, we can simply consider a mechanical continuum with N vector 

variables uJ. The first of these variables is normally the observable displacement u of a 

macroscopic point within the material, and others can be the relative displacements of pore 

fills or some other properties. Equations (5.1) are then generalized to additional matrix 

products in the N-dimensional space of variables:  
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1 1 1
,

2 2 2

1 1
,
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i i i i ij ij
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i i K ij ij

L

D 

  
= − + + 

  


  = + +   

u ρu u ζu Δ KΔ ε με

u du Δ η Δ ε η ε

  (5.2)  

In these equations, all material properties become NN matrices:  is the density matrix,  

and  are the elastic moduli matrices,  and  are their viscosity counterparts, and (as 

before) i,j = 1,2,3 denote the spatial coordinates. Matrices , K, , d, , and  should be 

symmetric and positive definite, to ensure that the kinetic and elastic energies are non-

negative for arbitrary deformations. Similar to the conditions  = 0 and d = 0 mentioned 

above, elements 11 and d11 of matrices  and d (corresponding to the observable 

deformation of the whole rock) must equal zero. Because one of the matrices , d, , and 

 can always be diagonalized by appropriately selecting the internal variables, model (5.2) 

contains ( )3 2N N +  independent mechanical properties. 

5.1.2 GLS with arbitrary scalar internal variables 

In addition to N displacement-type variables u in eqs. (5.2), let us consider a vector 

of N scalar variables  representing some macroscopic-scale variations occurring within 

rock during deformation. For example, for Biot’s GLS model considered later (section 5.4) 

variables  would represent local dilatation of the drained rock frame, i.e. rock with drained 

Biot’s pores but potentially containing fluids trapped within parts of the pore volume. 

Microstructures contributing to such variables may include planar (or other) micropores 

with “squirt” flows, dilatations of certain mineral-grain assemblages or parts of the pore 

volume, patches of saturation containing WIFF, capillary effects, or more general effects 

of viscosity within the drained frame.  

Considering only local effects, the contributions from the scalar field  to the 

Lagrangian and dissipation function should contain products , no coupling with the 

displacement of the rock or pore fluid (u), and no spatial derivatives of internal 

deformations ( i θ ). Focusing on the bulk-deformation terms for brevity, the most general 

extension of the model in eqs. (5.2) consists in adding the following four quadratic terms 
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containing  and θ  to it9: 

                                              
0
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D D


= − +


  = + −


θ Pθ Δ Qθ

θ P θ Δ Q θ

 (5.3) 

where L0 and D0 are the Lagrangian and dissipation functions from eqs. (5.2). Here, the 

N  N matrix P describes the elastic response of the internal deformations , the N N 

matrix Q describes its elastic coupling to volumetric strains (), and matrices P′ and Q′ 

have similar meanings for viscosity and viscous coupling. The signs of the terms containing 

matrices Q and Q′ will be clear when we get to the equations of motion. 

Equations (5.3) contain all possible combinations of the variables and their time 

derivatives satisfying the above requirements of locality and linearity. Consequently, again 

referring to the example of Biot’s porous rock, with appropriate selections for N and 

matrices P, Q, P′, and Q′, eqs. (5.3) should contain all squirt-flow, WIFF, and other models 

of the rock based. In particular, in squirt-flow models, matrix elements Q1J would describe 

the elasticity of Jth set of compliant pores, JP  would be the effect of viscosity within these 

pores. Together with P and Q, matrix K contains all effects of the elastic rock frame and 

Biot’s pore fluid.  

Equations (5.3) are invariant with respect to scaling (selection of measurement units) 

of the internal variables 1−→θ C θ  and material-property matrices →Q QC , T→P C PC

,  →Q Q C , and T →P C P C , where C is an arbitrary diagonal matrix. By utilizing this 

invariance, we can select variables  as non-dimensional (analogous to dilatation ) and 

fix the value of the elastic matrix for parameters  

                                                               K=P I , (5.4) 

where I is the identity matrix and K is some characteristic (scaling) modulus. For example, 

 
9 Note that variables  can also couple with internal displacements and velocities (terms with material 

properties  and d in eqs. (5.2)), but we do not consider this coupling here.   
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for porous rock (Biot’s model, section 5.4) it is convenient to take this modulus equal the 

elastic modulus of the drained frame. 

5.2 Equations of motion 

Equations of motion are obtained by taking variational derivatives of separate terms 

of the Hamiltonian action S LdVdt=   and the corresponding dissipation functional

DdVdt . For an ordinary macroscopic, isotropic medium without internal variables, Euler 

derivatives (eq. 4.11) using the functions L and D in eqs. (5.1) (with  = 0 and d = 0) give 

partial differential equations of motion for the medium:  

                                                          
i j iju =  ,  (5.5) 

where ij is the stress tensor equal 

                                 ( ) ( )2 2ij ij ij K ij ijK       =  + +  + .  (5.6) 

In this expression, the first pair of parentheses contains the elastic stress (bulk and shear), 

and the second pair contains the corresponding parts of the viscous stress.  

For a general GLS medium, the above equations remain the same but attain matrix 

form. For porous rock, material property d is often important, and I retain it in the 

equations: 

                                                         
i i i j ij= − − +ρu ζu du σ , (5.7) 

where the strain-related (elastic and viscous) stress tensor including thermoelastic effects 

(chapter 6) equals: 

                         ( ) ( ) ( )02 2ij ij ij K ij ij ij  = + + + − −σ KΔ με η Δ η ε Kα T T . (5.8a) 

Using moduli  ,  and the corresponding viscosities, this equation can also be written 



ZB01305M  5. Lagrangian Mechanics of Macroscopic Solids or Fluids 

109 

through strain ij: 

                          ( ) ( ) ( )02 2ij ij ij ij ij ij   = + + + − −σ λΔ με η Δ η ε Kα T T . (5.8b) 

As shown in section 1 below, matrix differential equations lead to solutions for harmonic 

waves, which are also of matrix form. Further, spatial discretization of the model makes 

all equations matrix (see sections 4.5 and 5.9). 

In most applications further in this text, I do not consider10 the elasticity directly 

related to displacement ui and set  = 0. 

5.2.1 Wave modes 

Generally, a GLS medium with N variables supports N P-wave modes and 2N S-

wave modes with different polarizations. Equations (5.7) or (5.8) need to be written 

specifically for each wave type, using a time-spatial dependence harmonic in time and 

exponentially decaying along axis X:  

                                             ( )Re exp i t ikx x = − + −  u A  , (5.9) 

where AJ is the complex amplitude (including the relative phase shift) of the Jth variable,  

is the frequency, k is the wavenumber, and  is the spatial damping factor (attenuation 

coefficient). This damping factor is merely the observed logarithmic spatial decrement of 

the amplitude, which can be due to multiple physical reasons such as geometric spreading, 

scattering, or intrinsic internal friction. Denoting the complex-valued wavenumber 

*k k i +  and ( )
2

* 2k  , eqs. (5.7) or (5.8) always reduce to solving a generalized 

eigenvalue equation for eigenvector (polarization in model space) ( )n
υ  and eigenvalue (n) 

(with n = 1…N): 

 
10 The necessity and physical meaning of this term in the general Lagrangian is currently under 

investigation. This term may contain the elastic effects of surface tension of saturating fluid in porous rock. 

However, in observations, these effects may be difficult to separate from those of the elastic moduli K and .  
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                                                        ( ) ( ) ( )* *n n n
=ρ υ M υ , (5.10) 

where * i  +ρ ρ d  and M* is a complex-valued, matrix modulus corresponding to the 

selected wave type. Several examples of these moduli are given in section 7.2 below. 

The eigenvector problem (5.10) has normally N eigenvectors corresponding to the 

modes waves possible in this medium. For example, in Biot’s poroelasticity 

(subsection 5.4), N = 2, and the eigenvectors represent the primary and Biot’s secondary P 

waves. From the corresponding values of , the phase velocity of the wave is obtained for 

each mode:  

                                                       phase

1

Re
V

k




 = ,  (5.11a) 

and the energy-dissipation factor, defined by ( )1 2Q k−  :  

                                                           
1 Im

2Re
Q





− = .  (5.11b) 

With weak dissipation, for an eigenmode n satisfying eqs.  (5.11) and (5.10), the 

kinetic and potential energies included in the Lagrangian L in eqs. (5.5) equal each other. 

This equation of energy equipartitioning (Rayleigh principle; section 4.8) is useful for 

calculating the amount of wave dispersion and attenuation in heterogeneous media. 

Temperature waves 

If thermal effects are considered, then the average temperature T or temperature 

vector T need to be added to model variables u and eqs. (6.11) or (6.12) for  0T T  added 

to the system of linear differential equations (5.7) and (5.8) above. An interesting question 

arises from including fields T(x,t)  in the system of dynamic equations: will additional 

wave modes analogous to Biot’s secondary P waves appear because of the added 

temperature field(s)? These secondary waves are called temperature waves, or T-waves. 

Many researchers assume that temperature waves should be expected, and such 
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waves are sometimes interpreted from experimental observations. However, I argue here 

that no specific T-waves should be expected in addition to the multiple wave modes already 

existing in a GLS medium with N ≥ 2. Equations for T or T contain no second time 

derivatives (i.e., no inertial terms) which are usually responsible for oscillations. The 

equations for T are of kinetic (diffusion) and not wave type. Therefore, the temperatures 

always change quasi-statically, in response to deformation, and they only cause 

modifications of these deformations. Thus, for example, in Biot’s porous rock, there should 

be no separate temperature wave, but thermal effects modify the behaviors of both the 

primary and secondary P waves. 

However, in practical modeling, adding T to the wave equations does indeed cause 

significant difficulties. In numerical modeling or harmonic-wave decompositions, the T is 

treated as an additional dynamic variable, and therefore the number of modeled wave 

modes is indeed increased by one. The additional mode dominated by eq. (6.11) turns out 

to be nonphysical: it represents a certain exponential shape of distribution of the strain and 

temperature in space, with magnitude exponentially changing in time. If treating this mode 

as a “T-wave”, the wave turns out to be of infinite velocity, which is of course 

unsatisfactory. To create a finite-velocity T-wave, people arbitrarily introduce additional 

“relaxation” terms proportional to   in eq. (6.11). Such terms are also equivalent to 

assuming inertial properties of temperature perturbations. However, this approach does not 

seem to be physically justified. Temperature or heat are not something that would possess 

inertia or (always related to it) gravitational attraction.  

Instead of constructing a valid T-wave mode by compromising the physics, it is better 

to exclude the non-physical mode from solutions. The non-physical mode has a nonzero 

temperature increase rate, let us take it to be 0T   for example. Then, the dilatation rate is 

negative everywhere: 0  , which means that the whole body is shrinking in size, with 

outer portions having the largest displacements.  In a finite body, this pattern is likely 

correct and describes thermal relaxation of the body. However, for an infinite medium (for 

which T-waves are usually discussed), this mode would have nonzero (finite or infinite) 

displacements at the infinity. This mode with nonzero displacements at the infinity (and 

consequently infinite energy) should be excluded by boundary conditions.  
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Note that a similar problem with nonphysical solutions exponentially increasing 

downward is encountered for surface waves. There, the problem is also removed in the 

same way, by not allowing the wave amplitudes to exponentially grow at the infinity. 

In finite-difference modeling, the above difficulty of a nonphysical temperature-

related mode is manifested by propagation of numerical errors when evaluating wave 

propagation. This problem can similarly be resolved by carefully constructing the 

algorithm taking into account the existence of nonphysical solutions. 

5.3 Constitutive relations 

In physics and engineering, constitutive equations, constitutive laws, or constitutive 

relations are understood as relation between two physical quantities that is specific to the 

material or substance. A constitutive relation represents the response of the material to 

some external factor, so that parameters of this response represent an important 

(‘constitutive’) property of the material. For example, when heat Q is injected into a unit 

volume of material, the corresponding constitutive relation states that the temperature will 

increase by VT Q c = , and cV (specific heat at constant volume) is the material property.    

In elastostatics, constitutive relations are usually understood as relations between 

strain  and stress . In the viscoelastic theory, this relation is extended to time-dependent 

and/or frequency-dependent relations (chapter 2), and two-way time-dependent  relations 

( ) ( )t tε σ  are called constitutive relations or rheologic laws. However, this empirical 

understanding of constitutive relations is inappropriate in mechanics. In mechanics (see the 

end of chapter 2): i) there exists is no fixed relation between the time histories of strain and 

stress, ii) there exist forces not included in , and iii) there are forces related to 

displacement u instead of . The one-to-one relation ( ) ( )t tε σ  only exists in special 

cases in which these i)–iii) cases do not take place: quasi-static deformations without body-

force friction, and in the absence of certain types of structures within the studied body. 

The correct constitutive relations in mechanics represent the deformation-to-stress 

relations produced by the different terms in the Lagrangian description (5.2). These 

relations are contained in equations (5.7) and (5.8) and discussed separately in the 

https://en.wikipedia.org/wiki/Physics
https://en.wikipedia.org/wiki/Engineering
https://en.wikipedia.org/wiki/Physical_quantities
https://en.wikipedia.org/wiki/Matter
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following subsections. I use the general GLS case (5.2); however, note that with a single 

variable (N = 1), these relations also refer to the usual isotropic elastic solid or fluid with 

(optional) linear viscous internal friction. I also discuss only elasticity and viscosity and 

disregard the effects of temperature and heat flows. 

5.3.1 Elasticity: Hooke’s law 

The equation of motion (5.8) with time-independent deformation at constant 

temperature T = T0 gives the elastic stress tensor produced by a given strain tensor at any 

point within the medium: 

                                                      2ij ij ij= +σ KΔ με . (5.12) 

This is the Hooke’s law for a continuous solid. With  = 0, this relation also applies to a 

fluid or gas. By listing all 6N components of strain and stress as vectors:  
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,  (5.13) 

this relation becomes matrix multiplication: 

                                                        =σ Mε , (5.14) 

where M is a 6N6N matrix of the elastic modulus. This relation works two-way, so that 

strain can be uniquely obtained from stress by =ε Jσ , where 1−=J M  is the elastic 

compliance matrix. This compliance matrix is useful for obtaining effective-media 

properties for porous media (section 5.8 below). 

In the presence of scalar variables , the elastic stress is modified (by taking 

variational derivatives of the modified Lagrangian L in eqs.(5.3)): 
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                                       2ij ij ij ij = + −σ KΔ με Qθ .  (5.15) 

5.3.2 Viscous surface friction: Navier-Stokes law 

If we consider the terms proportional to strain rates in eq. (5.8) (those produced by 

the viscosity-related parts of the dissipation function), the viscous stress tensor is obtained: 

                                                       2ij K ij ij= +σ η Δ η ε . (5.16) 

This strain-rate to viscous-stress relation is well-known as the Navier-Stokes law in fluid 

mechanics, but it also applies to solids. 

                                                              =σ ηε , (5.17) 

where  is a 6N6N matrix of viscosities. 

Although eq. (5.17) is also a constitutive relation, its use is strongly limited to cases 

in which the elastic stress is zero or known. Such cases include steady-state flow processes 

(Figure 5.1). The inverse relation expressing () from eq. (5.17) is nonunique and hardly 

useful on its own, because: 1) in addition to the viscous stress here, there usually exists an 

inhomogeneous elastic stress which causes the flow, 2) the inverse is also affected by static 

level of , 3) matrix  often contains many zero elements and is not invertible, and 4) there 

may also be a body-force friction adding to the resistance top the flow (Figure 5.1; next 

 

FIGURE 5.1.  

Velocity distribution and traction force applied to the moving boundary () in viscous 

fluid flow between two boundaries. 
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subsection). 

In the presence of scalar variables , the viscous stress (proportional to time 

derivatives of the variables) becomes  

                                          2ij K ij ij ij = + −σ η Δ η ε Qθ .  (5.18) 

5.3.3 Body-force drag friction: Darcy’s law  

To describe Darcy’s law, we need to consider a porous material with saturating fluid, 

i.e. the case of N = 2 (discussed in detail in section 5.4 below). Considering a slow flow 

(so that the inertial force can be disregarded), the equations of motion (5.7) give a steady-

state force balance relation: 

                                                         i j ij− + =du σ 0 . (5.19) 

This equation is the differential form of Darcy’s law. This law will predict the velocities 

of the fluid components of the rock from a known spatially-variable stress . Note that the 

stress here includes both elastic and solid-viscosity parts in eqs. (5.8). 

5.4 Biot’s Poroelastic Model 

For the best description of Niot’s poroelastic model, I refer the reader to the book by 

Bourbié, et al. (1987). These authors (as well as Biot himself) also use Lagrangian formulation 

which is readily rendered in our matrix GLS form. The complete Biot’s model is obtained from 

eqs. (5.2) by considering two variables (N = 2), zero matrix , matrix  consisting of only 

one element (shear stiffness of rock frame), and zero viscosity matrix ( = 0). The 

displacement variable u1 is the observable deformation of the whole fluid-saturated rock, 

and the internal variable u2 is be the filtration displacement (relative displacement between 

the fluid and its unperturbed position in host matrix) multiplied by minus porosity : 

( )2 fluid 1 −  − −u w u u .  
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Accordingly to the two forms of deformations (of the rock as a whole and its pore 

fluid), there are two types of stresses: the solid stress tensor ij and the pore pressure p. As 

in the Lagrangian model above and in the more general thermodynamics, these stresses are 

given by derivatives of the potential energy U: 

                                                   ij

ij

U





=


,     and    

U
p




=


, (5.20) 

where the scalar quantity div  − w  is called the fluid content.  

The potential energy U is a quadratic function of two variables ij and . Therefore, 

for bulk deformation, U should be given by three terms proportional to squares of ij and 

, and their product. The shear-deformation part of U is not affected by pore fluid. 

Consequently, from such very general considerations, U is given by the following quadratic 

expressions (basically, again all possible combinations of scalar invariants I1 = , 2 ij ijI  =

, and : 

                             2 21 1

2 2
UU K M M  =  −  + ,     and     shear ij ijU  = . (5.21) 

In the notation of eqs. (5.2), the dilatational and deviatoric strains associated with the two 

displacement fields are 1  , 2   , 1ij ij  , and 2 0ij = . Therefore, eq. (5.21) is the 

elastic part of the Lagrangian (eqs. 5.2), with 22 matrix moduli (I enclose in boxes the 

most important formulas in Biot’s model): 

                  
UK M

M M





− 
=  − 

K   (bulk modulus)      and       
0

0 0

 
=  

 
μ  (shear). (5.22) 

In these equations, parameter KU is the “undrained” bulk modulus explained in the next 

subsection. Parameter M is the pressure that needs to be exerted on the fluid in order to 

increase the fluid content  by a unit value at constant volume (when  = 0). Parameter 

  [0, 1] is called the Biot-Willis coefficient (also called Skempton A), which measures 

the proportion of the dilatational strain caused by variations in fluid content at constant 
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pressure. These parameters are related to the bulk modulus of a drained rock frame, KD, as 

2

U DM K K = −  (next subsection).  

The kinetic energy density in the poroelastic model equals (Bourbié et al., 1987): 

                                        
2 2

f

kin i i f i i i i

a
E u u u w w w





= + + , (5.23) 

where f is the density of the pore fluid and a  1 is the tortuosity of the pore space. This 

expression is again contained in the Lagrangian in eqs. (5.2), with 22 density matrix: 

                                                          

f

f f

a

 

 


− 
 =
 −
  

ρ . (5.24) 

In a porous medium, internal friction occurs by the friction of pore fluid being squeezed 

through pores (Darcy law). The force of this friction is opposite in direction and 

proportional to the rate of pore flow iw . In Biot’s model, this friction described by the 

dissipation function ( )2i iD w w = , where  is the pore-fluid viscosity and  is the 

permeability. This D corresponds to the D in eqs. (5.2) with matrix d equal 

                                                        
0 0

0  

 
=  

 
d . (5.25) 

In matrix d in eq. (5.25), the first row and column are always zero (chapter 5), and 

the remaining block corresponding to the internal variables can be interpreted as an inverse 

mobility matrix. In Biot’s model, this matrix consists of a single quantity 1 m  = , 

where quantity m  =  is called the fluid mobility in Darcy flow.  

5.4.1 Relations between displacements, strains, and elastic parameters 

The three parameters of the bulk elastic-moduli matrix K are related to the empirical 

moduli measured in experiments:  
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1) The undrained modulus KU measured in an experiment with zero pore flow 

( = 0). This regime is obtained by jacketing the sample (for example, 

hydraulically insulating the sample by covering it with epoxy). 

2) The drained modulus KD measured in an experiment in which the pore-fluid 

pressure is unchanged. This regime can be (at least hypothetically) achieved 

by providing a hydraulic connection of the pore fluid to the outside of the 

sample. This regime is also approximated by measurements with dry rock. 

3) The modulus of the solid skeleton (or solid grains) Ks. This modulus is 

obtained by measuring the pressure/strain ratio while ensuring that the 

pressure of the pore fluid equals the pressure on the solid grains. This means 

that the sample must be unjacketed, and the measurement must be quasi-static 

to allow equilibration of all pressures. 

4) The elastic modulus of the pore fluid Kf. This modulus is usually measured 

separately, by using only the pore fluid. 

All of these moduli can be calculated from matrix K by considering several types of 

experiments with a rock volume. Let us use here the notation 
def

1

2

   
=   

   
 popular in 

discussions of poroelasticity. The stresses applied to the whole rock and its pore fluid are 

given by the matrix product  

                                                  
p





   
=   

−   
K .  (5.26) 

The inverse of this equation is  

                                                 
p





   
=   

−   
J  ,  (5.27) 

where J is the compliance matrix:  

                                            1
11

UD
K MK




−  

= =  
 

J K ,  (5.28) 
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In which, from the rule of calculating the matrix inverse  

                                             2det
D UK K M

M
= = −

K
.  (5.29) 

As shown in the next paragraph, this quantity is the drained modulus, and you can notice 

that 
D UK K . The compliance matrix J gives the deformations of the whole rock ( = 1) 

and of the change in fluid content ( = 2) caused by given confining and pore pressures. 

By taking different combinations of , , , and p, the different experiments listed 

above are obtained: 

1) Taking fluid flow  = 0, and  = KU. Thus, the upper-left element of matrix K is 

the undrained modulus. It can be measured by taking an experimental ratio 

UK


=


. 

2) Taking p = 0, the drained case is obtained, and from the compliance equation 

above, 
DK


 = . Thus, the drained modulus equals 

11

1
DK

J


= =


. 

Also from the compliance equation (5.27), if we ensure p = 0 (drained experiment) 

and apply stress  to the whole rock sample, then its deformations will be 
1

DK



 

   
=   

   
, 

i. e.  =  . This relation shows that 

                                                           
0p




=

=


 , (5.30) 

i.e. the Biot-Willis coefficient  is the amount of relative compression of the pore volume 

when applying pressure to a drained rock. Thus, it is a property of the drained rock frame 

and independent of the pore fluid. This quantity must obey constraints 1   . 

To see how the moduli Ks and Kf are included in matrix K, we need to first express 

the dilatations of the material of the frame and pore fill from the macroscopic variables  
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and :  

                                                        
s

fl 

    
=      

U , (5.31) 

where matrix U is 

                                                      
1 1

1 1 

− 
=  

− 
U . (5.32) 

In the drained experiment (eq. (5.27) with p = 0), from relation (5.31), the dilatations of 

the solid and fluid phases equal 

                                             
1

1

s

fl DK



  

  −     
= =      −    

U  .  (5.33) 

From this equation, ( )1s

DK


 = − . At the same time, when pores are empty (p = 0), the 

entire deformation and strain energy in the rock belongs to the solid, and consequently 

s

sK


 = . Therefore, parameter  is also related to the ratio of the dry and solid-grain 

moduli:  

                                                        1 D

s

K

K
 = − . (5.34) 

To find the meaning of modulus Kf, consider another experiment in which both the 

confining and pore pressures are held equal p (and therefore stress  = –p). From 

eq. (5.27), the deformation of the solid and fluid phases are 

                              
( )

2 1

1

s U

f UD

K Mp p

K Mp K



   

 − −−    
= =     − − +    

UJ  .  (5.35) 
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The volumetric strain within the fluid should satisfy f

f

p

K

−
 = , which gives (after some 

simplification) the relation for the bulk modulus of pore fluid Kf :  

                                                 
1

f sK M K

  −
= − . (5.36) 

This relation also shows how the elastic coupling M in matrix K can be determined from 

the measured Ks and Kf:  

                                                  
1

f sM K K

  −
= +  . (5.37) 

This relation shows that M can be viewed a Reuss (harmonic) average of moduli Ks and Kf, 

with  acting as the total volume occupied by the compound within a unit volume of rock.  

5.4.2 Gassmann’s equation 

Because there are four empirically measured moduli (KU, KD, Ks, and Kf) but only 

three independent elastic moduli in matrix K, the empirical moduli must be mutually 

related for any material. This automatic relation is called the Gassmann’s equation. 

Gassmann’s equation is usually presented as answering the following question: If the 

drained bulk modulus KD, modulus of solid grains Ks, and pore fluid modulus Kf are 

measured for a porous rock with porosity , what is the bulk modulus of this rock KU in a 

saturated state?  The answer to this question is given very compactly by eq. (5.29): 

                                                      2

U DK K M= + ,  (5.38) 

where  and M can be determined from eqs. (5.34) and (5.37). There are many forms of 

final relations for the undrained modulus, for example:  
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1 1
1

1

s D
U

K K
K





− −
− +

=
+

 ,  (5.39) 

where ( )
1 1

1 1

1 1

f s

D f s

D s

K K
K K K

K K


 



− −

− −

− −

−
  = −

−
. 

5.4.3 Wave modes 

Again using the generalized eigenvalue equation  

                                                 ( ) ( ) ( )* *n n n
=ρ υ M υ , (5.10 repeated)  

with longitudinal and transverse spatial polarizations of vector u1i, Biot’s model predicts 

two P-wave and one S-wave modes. Phase velocities V and attenuation (spatial attenuation 

coefficients V = ) of these modes are shown in Figures 5.2–5.4. These dependencies 

are controlled by the characteristic frequency (Biot’s frequency)  

                                                          
2

c

f

f


 
=  .  (5.40) 

This relation shows that the velocity dispersion and attenuation effects are caused by 

inertial forces acting on the pore fluid (hence f in the denominator and no elastic moduli 

in this expression). Biot’s frequency fc is proportional to fluid viscosity , which is opposite 

to the characteristic frequency due to viscous-friction terms with matrices K and m in 

the Lagrangian (these terms would describe the mesoscopic-scale fluid-flow friction). 

At low frequencies, velocities of the primary modes tend to the corresponding elastic 

limits: 

                                            
2

PV
 



+
=   and  SV




= , (5.41) 

and the velocity of the secondary (dissipative) P wave tends to zero (Figures 5.2a–5.4a). 

The attenuation coefficients in Figures 5.2ba–5.4b are scaled by levels 
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2 c

P

P

f

V


 =   and  

2 c
S

S

f

V


 = , (5.42) 

which correspond to temporal attenuation coefficients (section 4.9) 2P S c cf   = = = . 

 

FIGURE 5.2.  

Primary (“fast”) P waves in Biot’s model for several porosity values and ratios KD/Ks 

(from Bourbié et al., 1987): a) velocity, b) attenuation coefficient  Frequencies are 

relative to Biot’s frequenct fc, velocities are relative to the zero-frequency limit. 

 

 

FIGURE 5.3.  

Secondary (“slow”, “diffusive”) P waves in Biot’s model for several porosity values and 

ratios KD/Ks (from Bourbié et al., 1987): a) velocity, b) attenuation coefficient  
Frequencies are relative to Biot’s frequenct fc, velocities are relative to the zero-

frequency limit. 
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The Biot’s characteristic frequency fc is extremely variable but typically large (from 

30 kHz to 1 GHz for water), and consequently the dispersion and attenuation effects are 

weak at seismic frequencies (
210cf f −
 or less) (Figures 5.2–5.4).   

The Q-1(f) shows an asymmetric peak at f = fc (not shown in these figures). At a fixed 

frequency f < fc, the attenuation coefficients and Q-1 decreases with increasing . The same 

trend of attenuation decreasing with increasing pore-fluid  is observed for the viscoelastic 

attenuation mechanism at frequencies above the relaxation peak, f > fc. 

5.5 Rigorous form of the Viscoelastic Model 

In this section, I use the GLS continuum-mechanics framework to re-describe the 

axiomatic viscoelastic model (chapter 2). As shown in the following subsections, for all 

mechanically implementable viscoelastic models (those which can be represented by 

spring-dashpot diagrams), rigorous physical meanings can be obtained. Such viscoelastic 

systems can be solved with great accuracy and detail by using Lagrangian mechanics. 

The conventional viscoelastic models are obtained from GLS models by: 

 

FIGURE 5.4.  

S waves in Biot’s model for several porosity values and ratios KD/Ks (from Bourbié et 

al., 1987): a) velocity, b) attenuation coefficient  Frequencies are relative to Biot’s 

frequenct fc, velocities are relative to the zero-frequency limit. 
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1) Using mechanical diagrams to approximate the desired behavior of the 

viscoelastic model. 

2) From the mechanical diagram, selecting the appropriate number of 

variables N. As shown in the examples below, this number equals one (for 

the observable deformation) plus the number of joints between the 

mechanical elements which are not directly connected to the measured strain. 

3) Using only elasticity terms (with factors K) and viscosity terms (with 

factors ) in the Lagrangian. Terms containing matrices d and  are absent in 

the viscoelastic model. 

The principal conclusion from this GLS model is that the true physical properties of 

the medium (elastic matrices M and , and density ) are frequency-independent and not 

directly measured in any experiment. The measured viscoelastic moduli M(t), compliances 

J(t), and the corresponding frequency-domain spectra M(f), J(f), or Q–1(f) only belong to 

observations with certain specific systems, such as waves of different kinds or 

deformations of rock samples of certain shapes and under certain boundary conditions. 

Such observation-method specific quantities are called ‘apparent.’ These functions are 

determined not only by material properties but also by the size and shape of the body being 

tested, its heterogeneity (such as subsurface layering), and other factors. For example, the 

same sample of fluid-saturated sandstone shows strongly different M(f) when measured in 

an unjacketed or jacketed states. 

Thus, the goal of interpretation of any experiment with anelastic rock consists in 

revealing the true (frequency-independent) mechanical properties through the observed 

frequency-dependent apparent properties.  

5.5.1 Linear solids 

In the following subsections, I show material properties for five types of the classic 

linear solids described in section 2.7.  

Maxwell’s solid 

The Maxwell’s solid requires one observable and one additional internal variable 
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shown by white circle in Figure 5.5. Therefore, the GLS dimensionality N = 2 in this case, 

and the 22 material-property matrices are 

                    
0

0 0

 
=  

 
ρ ,      

M M

M M

− 
=  − 

M ,     and    
0 0

0 

 
=  

 
η , (5.43) 

where the modulus M denotes any type of elastic moduli, and  denotes the corresponding 

solid viscosity. The characteristic form of the elastic matrix M in eqs. (5.43) corresponds 

to the expression for the strain (for example, shear) energy of the ‘spring’ depending on 

the on the difference of the strains of variable 1 (observed) and 2(internal) (Figure 5.5): 

                ( )( )shear 1 2 1 2 1 1 1 2 2 22ij ij ij ij ij ij ij ij ij ijU           = − − = − + . (5.44) 

The mechanical-energy dissipation is only caused by the strain rate of the internal variable 

in this model: 

                                           shear 2 2

1

2
ij ijD   = . (5.45) 

Note that the diagram in Figure 5.5 contains more information than is usually shown 

in the diagrams of linear solids. Because this diagram summarizes not only the strain-stress 

response but also the complete structure of the Lagrangian and dissipation function, it 

shows the observable displacement variable (black dot), the internal variable (open white 

 

FIGURE 5.5.  

Maxwell’s linear solid. This disgram describes the bulk-deformation (labeled K) and 

shear-deformation (labeled ) parts of the Lagrangian and dissipation function. Black 

dot labeled  indicates the density in the Lagrangian, the open dot shows the internal 

variable, and labels u1, u2 and 1, 2 indicate the displacement variables and strains, 

respectively. 
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dot), the definition of the internal displacement and strain (u2 and 2, measuring the 

deformation of the ‘dashpot’), and density matrix . In the conventional linear solid 

models, the internal variable u2 (open dot in Figure 5.9) is massless, which is another 

physical drawback of these models.  

To obtain the characteristic frequency-dependent spectra M(f) for a Maxwell’ solid, 

we need to consider some specific experiment. For example, assume that a cylindrical rock 

sample in a laboratory experiment is being deformed by an oscillating force applied to the 

end of the cylinder, and the displacement is measured at the same point. Taking this 

measured displacement as the generalized variable q (a two-element vector in the GLS 

model space), we can express the average strain  through this q. Using this strain, we can 

further express the Lagrangian (L) and dissipation density (D) for the sample through q 

and its time derivative q . The L and D functions will have the same forms as in the mass-

stiffness-damping matrix system in eq. (4.12) (simply because there are no other forms 

possible): 

                                                 

1 1
,

2 2

1
,

2

T T

T

L

D


= −


 =


q Mq q Sq

q Dq

 (5.46) 

Since the oscillating loading force is applied to the end of the cylinder only (and not to the 

internal variable), then it can be taken equal 
1

0

 
=  

 
f .  Using these equations, the response 

of the deformation to the applied load will be (see eqs. (4.8) and (4.9)) 

                                            ( )
1

2
1

0
i 

−  
= − − +  

 
r M D S . (5.47) 

In this vector r, the first element corresponds to the displacement of the top of the cylinder, 

which means that it is the desired complex-valued modulus ( ) 1M r = . The second 

element r2 shows the displacement of the internal variable. 

The force-deformation response vector (5.47) contains the relaxation spectrum M() 
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of the ordinary viscoelastic Maxwell’s solid, but it also contains additional information: 

1) The free oscillation of the sample and the Q associated with this oscillation; 

2) The deformation of the internal variable.  

You can study these features in the laboratory assignments at the end of this chapter. 

Kelvin-Voigt solid 

For a Kelvin-Voigt solid (Figure 5.6), there are no internal variables, and the 

corresponding 11 constitutive matrices are 

                                              =ρ ,      M=M ,   and     =η . (5.48) 

With nonzero , waves in this medium are always dissipative, similar to waves in a 

Newtonian fluid.  

Using these material-property matrices, this system can be studied completely 

similarly to the Maxwell’s case (eqs. (5.46) and (5.47)). 

Standard linear (Zener’s) solid 

The Zener’s linear solid can be obtained in two ways: by using a Maxwell’s solid 

with an additional elastic element attached in parallel with it (Figure 5.7a) or using a 

Kelvin-Voigt body with an additional spring connected in series (Figure 5.7b). In either 

case, the model requires one internal variable (N = 2), and the 22 material-property 

 

Figure 5.6. Kelvin-Voigt’s linear solid. Labels and notation are as in Figure 5.5. 
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matrices represent the Maxwell’s model with additional elasticity added to either the 

observable strain 1ij or internal strain 2ij. The difference between the two models is in the 

selection of the secondary modulus M2 (or K2, 2), so that both the zero-frequency and the 

high-frequency limits of the response and frequency fc are the same.  For the first type 

(Figure 5.7a), the matrices represent the Maxwell’s model with additional elasticity due to 

the observable strain 1ij:   

                      
0

0 0

 
=  

 
ρ ,      

1 2 2

2 2

M M M

M M

+ − 
=  

− 
M ,     and    

0 0

0 

 
=  

 
η . (5.49) 

For the model in Figure 5.7b, the form of matrix M in the expression for the elastic energy 

is different: 

                                  
1 1

1 1 2

M M

M M M

 − 
 =    − + 

M ,   and    
0 0

0 

 
=   

η . (5.50) 

and the rigidity of the ‘springs’ and viscosity  are also different from the case in 

Figure 5.7a. These quantities must be selected so that:  

1) The ‘unrelaxed’ modulus (upper-left element M11 of matrix M) equals M11 in 

 

FIGURE 5.7.  

Two forms of Zener’s linear solid (also called the Standard linear solid, SLS): a) using a 

Maxwell’s body with a spring attached in parallel, b) using a Kelvin-Voigt body with a 

spring in series.  Labels and notation are as in Figure 5.5. 
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eq. (5.49); 

2) The ‘relaxed’ compliance (upper-left element of matrix J = M-1) also equal that for 

matrix M in eq. (5.49).  

 

Exercise 

From the above, it is obvious that 1 1 2M M M = + . Try also obtaining 2M   

and   

To obtain , consider a pure internal deformation with fixed 1 = 0.  For 

this deformation, the characteristic frequency is 22 2cf M = , and this 

frequency must be the same for the two implementations of Zener’s body.  

 

Again using a specific experimental parameters and eqs. (5.46) and (5.47), the 

behavior of the Zener’s body can be modeled completely and in detail (see Lab 5.2 below). 

This modeling yields the Zener’s equation and all the characteristic relation for relaxation 

times and frequency-dependent attenuation and dispersion spectra (section 2.4).  

Burgers’ solid 

The Burger’s solid adds to Zener’s one an additional degree of freedom (variable 

 

Figure 5.8.  

Burgers’ linear solid. Labels and notation are as in Figure 5.5. 

 

 



ZB01305M  5. Lagrangian Mechanics of Macroscopic Solids or Fluids 

131 

number three in Figure 5.8) for which free static deformation is allowed. Therefore, this 

viscoelastic system is described by the GLS case N = 3, with 33 material-property 

matrices 

     

0 0

0 0 0

0 0 0

 
 

=
 
  

ρ ,      

1 1 1

1 1 2 1

1 1 1

M M M

M M M M

M M M

− − 
 

= − + −
 
 − − 

M ,     and    2

3

0 0 0

0 0

0 0





 
 

=
 
  

η . (5.51) 

Generalized standard linear solid 

The GSLS model of material rheology (Figure 5.9) is a combination of multiple SLS 

(Zener’s) bodies with an additional spring. This arrangement of mechanical elements 

(terms in equations) is commonly 

used to implement band-limited 

attenuation in finite-difference 

codes for modeling seismic 

wavefield.  

In finite-difference modeling 

software, the GSLS structure is 

implemented by including in the 

time-stepping several Maxwell’s 

solids shown by red in Figure 5.9. 

The effects of Maxwell’s solids are 

implemented by adding terms rij 

called ‘memory variables’ to the 

elastic stresses ij within the 

medium. From Figure 5.9, these 

memory variables can be roughly 

visualized as deformations of the 

dashpots (which are initially zero 

and vary with time). 

The GSLS (Figure 5.9; which 

 

FIGURE 5.9.  

Generalized standard linear solid. Color 

boxes indicate the Kelvin-Voigt, 

Maxwell’s, and Standard Linear (Zener) 

solids. Moduli M1, M2, … and the 

corresponding viscosity parameters of the 

dashpots may refer to any type of elastic 

modulus (bulk, shear, Young’s, or P-

wave). Variable u1 and its gradients 1 

represent the observable variable, and 

variables uJ (J = 2…N) are the internal 

variables added to implement band-

limited seismic attenuation. 
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is also the Standard linear solid for N = 2) is constructed by using 1L N −  internal (or 

memory) variables (usually, L = 5 or 6 in finite-difference modeling; Zhu et al., 2013). Its 

GLS matrices are (Figure 5.9): 

             

0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 
 
 

=  
 
 
  

ρ ,   

2 31

2 2

3 3

0 0

0 0

0 0

N

J NJ

N N

M M M M

M M

M M

M M

=
 − − −
 

− 
 = −
 
 
 

− 



M ,  (5.52a) 

                                             and   
2

3

0 0 0 0

0 0 0

0 0 0

0 0 0 N







 
 
 
 =
 
 
  

η . (5.52b)  

The values of MJ and J are usually selected to achieve a near-constant Q-factor 

within the frequency band of interest. Figure 5.10 shows such attenuation and wave 

velocity dispersion spectra calculated using the eigenmode eq. (5.10) for a GSLS rheology 

with five Maxwell’s bodies listed in Table 5.1. Only one mode is valid (all other modes 

involving massless internal variables have infinite velocities) and shows a broad-band near 

constant spectrum of Q-1(f) (Figure 5.10a) and a near-linear interval of velocity increase 

across this band (Figure 5.10b). 
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 If we try nonzero densities of the internal variables, N wave modes appear 

(Figure 5.11). There exists a small “critical” level of these densities, so that for densities 

above this level, the primary-mode velocity dispersion is positive (solid line in 

Figure 5.11b; this type of dispersion is actually called “inverse” in optics and seismology). 

The level of this critical density is about q/Q, which is about 1% of the density of the rock. 

 

FIGURE 5.10 

Characteristics of a plane P wave in a GSLS medium (Table 5.1): a) attenuation, b) phase 

velocity. 

 

FIGURE 5.11 

Propagation of a plane P wave in a GSLS medium with densities assigned to the internal 

variables: a) attenuation for internal density levels of 1% of the main density (Table 5.1), 

b) phase velocity for internal-density factor a = 0.01, c) and d) – the same for a = 0.05 

(Table 5.1). The numbers of wave modes are labeled. Black lines indicate the primary 

mode, and gray lines are the additional modes due to internal densities.. 
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For internal densities below this critical level, the velocity trend with frequency is negative 

(Figure 5.11d; “normal” dispersion). The attenuation (Q-1) can still be kept exactly the 

same (Figure 5.11a and c). Thus, as this example shows, internal densities cause significant 

effects on the wave mode content and velocity dispersion even with the same attenuation 

spectrum Q-1(f). 

5.5.2 Kinetic (massless) internal variables 

To understand the behavior of generalized linear solids, it is instructive to consider 

an elementary system consisting of a Maxwell body connected in parallel with some other 

mechanical system (Figure 5.12). This system represents partitioning of the Generalized 

Standard Linear Solid in Figure 2.10a, and the serial arrangement in Figure 2.10b can be 

treated similarly. The two parts of this system share the “observable” strain  and strain 

rate   , whereas the strain   is contained entirely within the Maxwell body. This strain is 

considered not measured and viewed as an internal variable. Our goal here is to show that 

if the Maxwell body is massless, this internal variable obeys a kinetic equation.  

As usual, to solve this problem, we need to write the Lagrangian and dissipation 

function for the entire system. For simplicity of notation, we choose the deformation of the 

“internal spring” as the internal variable (Figure 5.12), so that 0 =  in both the initial (at 

t = 0) and “relaxed” (t →  and 0 = ) states. Therefore,  

                             2

0
2

k
L L  = −  , and    ( )

2

0
2

D D


  = + − . (5.53) 

Table 5.1. Mechanical Parameters of the Generalized Standard Linear Solid (GSLS) medium in 

Figures 5.10 and  5.11 

   GSLS model 

(Figure 5.11a, b) 

GSLS with 1% (5%) 

internal densities 

(Figure 5.11c, d) 

J J,  (GPa) J (Pas) J (kg/m3) J (kg/m3) 

1 10 0 2000 2000 

2 0.15 9.3108 0 20 (100) 

3 0.15 9.3107 0 20 (100) 

4 0.15 9.3106 0 20 (100) 

5 0.15 9.3105 0 20 (100) 

6 0.15 9.3104 0 20 (100) 
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For a massless variable   , the Lagrangian is independent of the generalized velocity,   , 

and therefore the corresponding Euler-Lagrange equation is: 

                                   0
L D

k  
 

 
 − + = + − =

  
 . (5.54) 

Therefore, the rate     is uniquely determined by the external deformation rate and the 

current value of  : 

                                              
1

  


 = −  , (5.55) 

where  = k/ can be called the “relaxation time.”  This is the kinetic equation commonly 

used for describing chemical reaction rates and often used to describe viscoelastic solids 

(e.g., Nowick and Berry, 1972). If after some moment t0, the external strain becomes 

stationary ( 0 = ), then the internal strain exponentially relaxes to zero as 

( ) ( ) ( )0 0 0expt t t t t   − = − −    for t  t0.  The external strain rate, ( )t , serves as a 

source continuously displacing ( )t   from the stationary solution.  

Equation (5.55) shows that (), which is the Fourier amplitude and phase of the 

internal deformation at frequency  is uniquely determined by (): 

                                               ( ) ( )
1

i

i


   



−
 =

−
 , (5.56) 

The internal degree of freedom follows the observed deformation with phase lag 

( )1Arg i i −    , which is determined by  alone. This is the reason for the “stress-

strain” phase lags used in viscoelasticity, and also for “relaxation times”  controlling most 

popular strain-stress relations. Once again, such properties are only possible because of the 

assumed pure massless internal variables. 
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As shown in Problem 5.3, a solution to eq. (5.55) can be written in the form of a 

Volterra integral over the preceding time history of ( )t . However, the significance of this 

solution as “memory” inherent in the system should not be overstated, as it simply follows 

from the differential eq. (5.55). Physically, the ability to produce a kinetic equation (5.55) 

and a solution completely determined by ( )t  arises from the absence of mass in the 

Maxwell body (Figure 5.12). This is characteristic of the quasi-static approximation 

inherent in the viscoelastic model (see section 2.8). 

5.6 Extended Generalized Standard Linear Solid 

In this section, we consider a GLS model called the extended Generalized Standard 

Linear Solid (extended GSLS). This model differs from the conventional viscoelastic 

models and has no pictorial representation by a collection of springs (like in Figure 5.9). 

The purpose of this model is in describing the rock matrix with multiple porosities. Because 

of a close similarity to Biot’s model, this structure is likely more appropriate for describing 

rocks than the usual GSLS. 

The extended GSLS is obtained by noting that the bulk-modulus matrix K for Biot’s 

model (eq. 5.22) becomes that of the SLS (Zener’s; eq. (5.50)) model when Biot-Willis 

parameter  is set equal one. Using this connection, we can generalize the elastic matrix of 

 

FIGURE 5.12 

Maxwell’s body connected in parallel with an arbitrary mechanical system (L0, D0). The 

two elements share the “observable” variables (strain  and strain rate  ). The “internal” 

strain    belongs to the Maxwell’s body and accounts for its retarded response. 
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the GSLS (eq. 5.52a) by including parameters J for each internal variable J = 2,…N: 

                      

2

1 2 2 3 32

2 2 2

3 3 3

0 0

0 0

0 0

N

J J N NJ

N N N

M M M M M

M M

M M

M M

   







=
 + − − −
 
 − 
 = − 
 
 

− 



M .  (5.57) 

For the Biot’s poroelastic case (N = 2), this extended SLS is exactly the bulk-modulus 

matrix. The analogy also suggests that J is limited by relation 1J J    in which the 

lower limit 0J   is a geometrical property serving as “porosity” for component J of the 

composite material. The lower limit J = J means zero analog of the pore-fluid modulus Kf 

(eq. 5.36). The upper limit J = 1 means that the drained frame (modulus M1 in eq. 5.57) 

contains no stiffness due to this variable (compare to eq. (5.34)). In this limit, the elastic 

frame contains a deformation mode (the “drained,” or quasi-static state) in which variable J 

has no impact on the wave propagation. 

Having defined the possible elastic structure, we need to consider solid viscosity. 

Generally, a GLS medium with N variables supports N P-wave modes and 2N S-wave 

modes with different polarizations. As shown in section (and also section 7.2 below), these 

waves can be found as solutions ( )n
υ (with n = 1…N) of the generalized eigenvalue equation 

                                                        ( ) ( ) ( )* *n n n
=ρ υ M υ , (5.10 repeated) 

where 
* i  +ρ ρ d  and *

Mi= −M M η  are the complex-valued, matrix density and P-

wave modulus, respectively, and (n) is the eigenvalue containing the phase velocity and 

attenuation of the wave. Without viscosity or Darcy friction (d = 0,  = 0), all these 

eigenvalues will be real-valued, and all N wave modes will propagate to arbitrary distances. 

However, in practice, only one primary mode with weak attenuation is usually observed 

for each wave type. All other modes such as Biot’s secondary waves are suppressed by 

solid viscosity. Thus, matrices  and d should generally be constructed so that they exert 

relatively weak friction on the primary mode (involving the strongest deformation of the 



ZB01305M  5. Lagrangian Mechanics of Macroscopic Solids or Fluids 

138 

observable displacement variable uJi, with J = 1) but strong friction on other modes 

with J ≥2. 

5.6.1 Selection of internal-friction material properties 

In Biot’s model (section 5.4) and in the usual GSLS (eqs. 5.52), the diagonal matrices 

of internal friction d and K are defined in exactly the way described in the preceding 

paragraph. All elements of the first rows and columns of these matrices equal zero, and 

therefore, viscous forces are only applied to the internal variables number J ≥2. However, 

in the extended GSLS model (eq. 5.57) with J ≠ 1, such purely diagonal friction is 

insufficient. If using a diagonal matrix , the primary wave mode also turns out to be 

dissipative, as in the Kelvin-Voigt body (see subsection above). However, as shown below, 

the appropriate matrices  and/or d can be found for any selection of parameters J, and 

even for any arbitrary elastic matrices K and . 

If the observed dispersion spectrum for some modulus (for example, P-wave) M() 

possesses a high-frequency plateau M()  MU, this plateau means that the deformation at 

high frequencies occurs in a mode which is insensitive to viscosity (because viscosity 

causes effective moduli M() linearly increasing with frequency). Therefore, this wave 

mode must be a solution of eq. (5.10 repeated) with zero viscosity Matrices  and d 

determine whether all wave modes will experience attenuation at high frequencies, i.e. of 

the elastic wave equation (with real-valued matrices  and M) 

                                           ( ) ( ) ( ) elastic  elastic  elasticn n n
=ρυ Mυ . (5.58) 

This equation can be solved giving N possible elastic-wave solutions. The non-dissipative 

mode should be the primary one, with the largest phase velocity and (usually) the strongest 

contribution from the observable displacement variable u1i. Let us denote this mode by 

index n = 1, i.e. 
( )1 elastic
υ . Then, because the wave must be non-dissipative, all internal-

friction matrices should satisfy 

                                      
( ) ( ) ( )1 elastic 1 elastic 1 elastic

K = = =η υ η υ dυ 0 . (5.59) 
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If multiple elastic wave modes are expected (for example, are observed) to be non-

dissipative, additional equations with n > 1 can be added to equations (5.59). 

With all eigenvectors 
( )n elastic
υ obtained from eq. (5.58), equations (5.59) represent a 

linear system of equations for frictional material properties (elements of matrices hK, m, 

and d). In these equations, some of these material properties, such as elements on the main 

diagonals, can be selected relatively arbitrarily (similar to the diagonal of matrix  in 

eq. (5.52b)), and others need to be inverted from eqs. (5.59) to produce the non-dissipative 

mode(s). Similar to eq. (5.52b), the arbitrary elements can be selected so that the resulting 

wave will have the expected attenuation spectrum of Q-1(f). 

5.7 Effective media (homogenization) 

The preceding subsection gave an example of homogenization (construction of 

effective-media parameters) for a porous medium with noninteracting microcracks. Here, 

I describe how homogenization is done for a GLS.  

… 

5.8 Effects of microcracks on material properties 

The observable macroscopic material properties (elastic moduli, viscosities, 

electrical and thermal conductivities, etc.) are modified if pores or microcracks present 

within the rock frame. In this section, we consider the effects of microcracks. Microcracks 

can be described by the second-order crack-density tensor ij (Sayers and 

Kachanov, 1991): 

                                                       
( ) ( )1 c c

ij c i j

c

n n
V

 =  , (5.60) 

where c is the crack number, V is the averaging volume, n(c) is the unit normal vector to the 

cth crack, and c is the weight with this crack contributes to the desired physical material 

property.  



ZB01305M  5. Lagrangian Mechanics of Macroscopic Solids or Fluids 

140 

For calculating elastic properties and density of the effective medium, we can take c 

equal volumes of the penny-shaped cracks of radii ac and aspect ratios c: 
3

c c ca = . 

Then, the trace of this tensor equals the porosity of the microcracks, which I denote s (for 

‘secondary’ pores): 

                                               s

1
tr ii c

cV
  = = =α . (5.61) 

Thus, the crack density tensor (5.60) is a generalization of the concept of porosity. Along 

with the microcrack porosity value (as its trace), this tensor contains information about the 

preferred or correlated orientations of cracks. 

Let us now consider a GLS model in eqs. (5.2) describing some internal rock 

structure, such as, for example, a rock with Biot’s pores (with N = 2). Let us now assume 

that this rock also contains secondary microcracks with distribution given by eq. (5.60). 

The question we want to solve is how the material-property matrices , K, , K, , and d 

in eq. (5.2) would be modified by this secondary porosity. We will introduce no additional 

GLS variable in vector u to describe the microcracks (which we could!). Instead, we will 

assume that the macrocracks behave quasi-statically and look for their effect in terms of 

changing the effective material properties in the primary model.  

In the presence of microcracks, the kinetic and elastic-energy and dissipation-

function terms in eqs. (5.2) would change by linear and/or quadratic terms with respect to 

the values of tensor ij. The quadratic forms will be of the same forms as in eqs. (5.2), with 

modified material-property matrices. Because the energy terms are scalars, there are only 

few ways in which these matrices can vary with variable ij. The density matrix should 

only be sensitive to the secondary porosity (trace of ij): 

                                               ( )mod

s s1   = − +ρ ρ ρ . (5.62) 

Here, the first term is the reduction of density due to the secondary porosity c, and the 

additional term is just another possible modification of matrix  associated with 

introduction of c. For example, the microcracks are typically assumed to be located within 
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the solid rock matrix (first term in eq. (5.62)), but they also might actually occur on the 

edges of the primary pores and thus modify the pore space and tortuosity. These effects 

would be contained in matrix . Because secondary porosity is usually very small, = 0 

or even mod =ρ ρ should likely be a good approximation. 

Matrix d has a role similar to  in Lagrange energy forms (eqs. 5.2), and therefore 

its variation due to secondary porosity should be similar: mod

s = +d d d  (there is no need 

to isolate factor ( )s1 −  in this case). 

To obtain modifications of the strain-related matrices K, , K, and , it is easier to 

start from the elastic-energy or viscous-dissipation terms in eqs. (5.2). Because we will be 

varying porosity at constant stress (not strain), we need to use the stress tensor ij as the 

independent variable. In terms of the applied stress, the elastic energy density in eqs. (5.2) 

equals 
1

2

T T

ii K jj ij ijU = +σ J σ σ J σ , where 1

K

−=J K  is the bulk compliance and 1



−=J μ  is 

the shear compliance. Due to the effect of microcracks, this energy is modified by adding 

a term which is also quadratic with respect to the stress tensor ij and linear with respect to 

porosity ij. The most general form of such modified potential-energy expression is 

                                           
mod

1 2

T T

jk kj ii ik kj jiU U  = + +σ b σ σ b σ . (5.63) 

where b1 and b2 are symmetric matrices in the NN GLS model space. These matrices 

contain new model parameters describing the sensitivity of elastic properties of the material 

to the density of microcracks. Viscosity terms in the dissipation function 

(
1

2

T T

visc K ij ijD = +Δ η Δ ε η ε  in eqs. 5.2) should modify analogously, with their own pair of 

parameter matrices b1 and b2. 

Parameters b1 and b2 in eq. (5.63) need to be determined by solving the problem for 

static equilibrium of a medium with specific shapes and distribution of cracks. Since 

tensor ij is a sum of contributions from individual cracks (eq. 5.60), matrices b1 and b2 

can also be found for individual cracks, and the results added together.  
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Once matrices b1 and b2 are found, they can be transformed into modifications of the 

bulk and shear matrices, so that the modified elastic energy (5.63) written as in eq. (5.2):  

                                            mod mod mod1

2

T T

ii K jj ij ijU = +σ J σ σ J σ , (5.64) 

and therefore, the modification of elastic energy by the secondary porosity is: 

                     mod

1 2

1

2

T T T T

ii K jj ij ij jk kj ii ik kj jiU U    − = + = +σ J σ σ J σ σ b σ σ b σ . (5.65a) 

This change of the elastic energy density of the medium can also be represented by 

compliance of the distribution of microcracks, which is a fourth-order tensor Jijkl: 

                                                  mod 1

2

T

ij ijkl klU U− = σ J σ , (5.65b) 

and therefore Jijkl is a combination of aij, b1 and b2. To find these combinations, it is 

convenient to use spatial coordinate axes (indices i, j, k, l, etc.) in the directions of the 

eigenvectors of the crack density matrix . In these coordinates, the crack density has the 

form 

11

22

33

0 0

0 0

0 0







 
 

=
 
  

α , and eqs. (5.65) give the nonzero components of crack 

compliance (no summations over the subscripts ‘p’ and ‘q’ here): 

                                  
( ) ( )

( )

2
1 2

1 2

2 ,
2

2 .

pqpq pq pq pp qq

ppqq pp qq pq pq

   

   

= + + +

= + +

b
J b b

J b b

 (5.66) 

This compliance tensor will need to be further decomposed into JK and J. However, JK 

and J. can also be very simply obtained from arbitrary b1 and b2 by a numerical matrix 

calculation (see Lab 5.4).  

Finally, note that for an ordinary isotropic solid without internal variables (N = 1) 

with randomly oriented ‘penny-shaped’ microcracks (for which the crack tensor is diagonal 
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and equal 
1

3
ij s ij  = ), the above solution of equation (5.65) shows that the modification 

of the shear compliance is always equal 4/15 of the modification of the bulk compliance: 

                                                       
1 4 1

15 K
 



   
=   

  
. (5.67) 

This simple proportionality occurs because in eq. (5.65), quantities b1 = b1 and b2 = b2 are 

scalars in this case, and the ratio of compliance corrections 
KJ J   is only determined 

by the ratio b1/b2, which is fixed by the selected pore geometry. 

5.9 Model discretization 

Discretization of continuous models into the form of finite mass-stiffness-damping 

models (section 4.5) can be done by numerous methods. Below, I describe two groups of 

these methods: 1) using “finite elements” (decomposition to functions of arbitrary shapes; 

subsection 5.9.1), and 2) using “finite differences” on regular spatial grids 

subsection (5.9.2). 

5.9.1 Discretization using basis functions (Galerkin’s method) 

Laboratory experiments are typically conducted with cylindrical cores (e.g., 

Figure 1.7), and therefore it is natural to use cylindrical coordinates to model them. 

… 

Cubes (Fourier functions) 

… 

Discs (Bessel functions) 

…. 

Cylindrical bodies (Fourier-Bessel functions) 

… 
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Ellipsoidal bodies (Spherical functions) 

… 

5.9.2 Discretization by spatial gridding 

To produce equations for finite-difference or finite-element modeling of seismic 

waves, the model needs to be discretized on some type of a grid or a mesh. To produce 

such gridded equations, one can use the differential equations in subsection 4.2. However, 

if not considering variations of temperature, discretized equations can be easily obtained 

directly from the Lagrangian and dissipation functions. This approach is very general and 

also simpler for nonuniform grids, and I will review it below. 

Consider the ordinary case N = 1 and dij = 0 for simplicity (eqs. 5.1), with wavefield 

sampled on a uniform 2-D or 3-D grid (or even a 1-D grid, which is layering) with constant 

grid spacing. Let us denote 

x

y

z

 
 

=
 
 
 

u

u u

u

 the vector combining all values of the three 

components of displacement at all grid points. This will usually be a very large vector, but 

nevertheless, all equations involving this vector will be simple.  By using this vector, we 

can first define matrix operators extracting the x, y, and z components of the vector 

wavefield: 

                           x =U I 0 0 ,    y =U 0 I 0 ,   and    z =U 0 0 I , (5.64) 

where the matrix blocks are of the same dimension as u. Further, three spatial 

differentiation operators can be defined for each block of spatial directions i = x, y, z (or 1, 

2, 3) (see the GEOL884 notes): the forward derivative 
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1 0

0 1 1 0 0

0 1 1 01

0 0 1 1

0 0 0 1 1

0

i

ix

+

 
 

−
 
 −

=  
−  

 −
 
 

D , (5.68a) 

and the backward one: 

                           

0 0

1 1 0 0 0

1 1 0 01

0 1 1 0

0 0 1 1 0

1

T

i i

ix

− +

 
 
−

 
 −

= − =  
−  

 −
 

− 

D D . (5.68b) 

Combining these operators applied to each of the (x,y,z) blocks of vector u, it is 

straightforward to obtain an expression for gridded strain corresponding to the definition 

( )
def

2ij i j j iu u =  +   (i.e., ( )
def

2ij i j j i

+ + += +E D U D U ): 

                                                           ij ij

+=ε E u . (5.69) 

The dilatational strain at every point within the grid is obtained as the spatial trace of this 

matrix, which gives another matrix operator +
Ω  (and its counterpart −

Ω ):  

                                          + +=Δ Ω u ,    where    
11 22 33

+ + + += + +Ω E E E . (5.70) 

By using this  and the -- description of material properties (eqs. 5.1b), Generalized 

viscoelastic model for the body where all terms containing u and u  are combined in three 

new matrix operators:  

1) the mass matrix M consisting of all density values on the diagonal;  

2) the stiffness matrix 2T T+ + + += +S Ω λΩ E μE , where  and  are similar diagonal 

matrices of the elastic moduli at each grid point. This matrix is often dented K, but 
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I reserve this symbol for bulk modulus and for the poroelastic model.  

3) the damping matrix  2T T

 

+ + + += +D Ω η Ω E η E  containing similar values of 

viscosity parameters on the diagonal. This matrix is often denoted C, but we will 

use ‘D’ for association with “damping”. 

In frequency-domain modeling with attenuation using the empirical “viscoelastic” 

model, the governing equations often deviate from the rigorous Lagrangian and 

thermodynamical equations above. Unfortunately, this difference is practically never 

appreciated, but nevertheless, the viscoelastic model is the dominant approach to 

describing attenuation. 

5.10 Problems and laboratory assignments 

Lab  5.1: Model a Maxwell’s body  

2) Using these matrices, model the frequency-dependent strain-stress response r in 

this experiment. 

Lab  5.2: Model a Zener’s body  

1) Modify the code of Lab 5.1 to model a rock cylinder  

Lab 5.3: Zener’s body with finite internal mass 

Modify the code of Lab 5.2 to include a nonzero mass density for the internal variable 

(white dot in Figure 5.7). Compare the M(f) spectra and deformations of the internal 

variable for different values of the internal mass. 

Lab 5.4: Modification of bulk and shear elastic moduli by secondary porosity 

For a medium with N = 1, write a Matlab function which takes arbitrary 

parameters b1 and b2 and an arbitrary crack tensor (symmetric matrix) ij in eq. (5.65) 

1) Using relations (5.43), derive matrices M, S, and D for unidirectional extension of 

a cylindrical Maxwell’s body of length l. Disregard the Poisson’s effect of 

transverse contraction, i.e. assume that the body only deforms in the axial direction. 
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and returns the corresponding modifications of bulk and shear compliances  ( )1 K  

and ( )1  .  

To implement the function, consider two mutually independent trial values for stress 

tensor, for example 1

1 0 0

0 0 0

0 0 0

 
 

=
 
  

σ  (unidirectional extension) and 2

0 1 0

1 0 0

0 0 0

 
 

=
 
  

σ  (shear). 

Ideally, you need to select these trial stresses in the directions of eigenvectors of matrix ; 

otherwise, there is a chance that the resulting system of equations will be singular.  Using 

these trial stress tensors, evaluate the right-hand-side of eq. (5.65) and the coefficients with 

KJ and J  in its left-hand side. Using these coefficients, solve for 
KJ and J . 

Using this function and values b1 = … and b2 = … for planar cracks, verify eq. (5.67) 

for an isotropic distribution of cracks (matrix ij proportional to an identity matrix). 

Problem  5.1: Creep in the standard linear solid  

Model creep of a Standard Linear Solid analytically. Use the configuration shown on 

the left in Figure 5.7. Write the Euler-Lagrange equations, and solve them numerically for 

constant stress , starting from zero initial conditions. As a result, you will obtain (t) 

and (). 

Problem  5.2: Equivalence of two forms of the SLS  

Show that the two configurations of the Standard Linear Solid shown in 

Figure Figure 5.7 are equivalent when m = 0. To achieve this, repeat derivation from 

eq. (5.53) to (5.56) for each of these bodies and determine . For the case on the right, 

determine the values of k1 and k2 so that the values of  and the potential energies in the 

static limit ( = 0) are the same as for the other case.  

Problem  5.3: Memory equation for strain 

Show that the solution to equation (5.55) can be written in a ”memory” form, i.e. as 

a convolutional integral of the preceding history of the external strain rate: 
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                                         ( ) ( ) 0
0 0exp

t
t t

t t dt 


−

− 
 = − 

 
  , (5.68) 

Problem  5.4:  Memory equation for stress 

Assuming that the mechanical system (L0, D0) in Figure 5.12 is a single spring of 

rigidity k0, derive the stress (t ) in an integral form similar to (5.68). 

Problem  5.5: Strain-stress relations for SLS  

Using the results of problems 5.3 and 5.4, derive the stress-strain rate relation for the 

Generalized Standard Linear Solid in Figure 2.10a. 
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6 Effects of Temperature 

 

Key points: 

• Adiabatic and isothermal deformations 

• Heat flows within the General Linear Solid 

• Kinetic equations 

• Variational principles for thermal flow equations 

 

Temperature has two effects on mechanical properties of rocks. First, for example, 

in an oil or hydrothermal reservoir, the ambient temperatures may change by hundreds of 

degrees, and these variations cause variations of mechanical properties. In particular, 

properties related to pore fluids or bitumen are affected by temperature. Among these 

properties, the most sensitive mechanical property are viscosity and effective porosity. 

Pore-fluid viscosity, and consequently also the solid viscosity of the whole rock quickly 

reduces with increasing ambient temperature. The dependencies of material properties on 

temperature are documented experimentally and explained by empirical and kinetic models 

similar to explanations of chemical reactions. Here, I will not consider these dependencies 

and focus on the second physical effect of temperature variations called the thermoelastic 

effect. 

Thermoelasticity studies local variations of temperature caused by deformation itself. 

When a seismic wave passes through a medium, the compressed areas become hotter and 

the expanded ones become cooler. In addition, in a grainy and porous medium (like any 

rock), grains with contrasting elastic properties or thermal properties, and pores filled with 

fluids attain substantial temperature contrasts. These temperature contrasts cause additional 

stresses within the medium, and also heat flows between the hotter and colder parts of the 

medium. The exchange of heat causes a gradual loss of the average mechanical energy in 

the wave, which is ultimately observed as attenuation and velocity dispersion in the seismic 
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wave. Our goal here is to describe these complex microscopic processes by certain 

averaged properties of the medium and macroscopic equations, similar to the Lagrangian 

energy functions in section 5. 

Consider a rock body and denote T0 its temperature in an undeformed state and 

without sources of heat. If the temperature of the body changes to a spatially variable T, 

because of the phenomenon of thermal expansion, different parts of the body will tend to 

expand unevenly, and consequently the body will become deformed. Thus, the vector of 

temperature gradient gradT acts as a body force causing additional deformation. This 

deformation is somewhat analogous to the action of the gravity vector g, only gradT is 

usually not constant and often dependent on the deformation itself. 

In addition to body forces produced by temperature gradients, temperature variations 

have two other types of effects on the elastic moduli and viscosities of the material: 

1) Material properties themselves are sensitive to the ambient temperature. In 

particular, viscosity of pore fluids strongly reduces with increasing 

temperature.  For a composite material such as porous rock, the whole rock 

and its pore space possess generally different coefficients of thermal 

expansion, and consequently the porosity and the drained and undrained 

moduli will also change with temperature.  

2) The elastic moduli and the corresponding viscosities also depend on whether 

heat is added to or withdrawn from the material during the deformation. If 

there is no heat exchange (good insulation or quick deformation, usually a 

good approximation for seismic waves), the adiabatic elastic moduli are 

observed. Alternatively, if the temperature is maintained constant (by means 

of adding or removing heat), isothermal elastic moduli are observed. The 

adiabatic moduli are always larger than the isothermal ones. These moduli 

will be discussed more in section 6.1. Presumably the same relation should 

exist between the adiabatic and isothermal viscosities, although these 

concepts are not studied so much. 

To describe these above phenomena mathematically, note that the elastic energy in 

the Lagrangian (5.2) is actually the thermodynamic (or Helmholtz) free energy. In 
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thermodynamics, the term “free” means “able to produce mechanical work.” The formula 

for the free energy is F E TS= − , where E is the internal energy, T is the temperature, 

and S is the entropy. As always in analytical mechanics,  to obtain the free energy for 

arbitrary T from the second term in L in eq. (5.2) (
1

2

T T

ij ij+Δ KΔ ε με ), we need to consider 

what most general form add to it a term which would be: a)  a scalar in both the coordinate 

and model spaces, b) proportional to temperature deviation from equilibrium 
0T T− , 

c) linear with respect to strain , and d) sensitive to  the volume change only, i.e. trace of 

the strain tensor 
ii=Δ ε . The most general expression satisfying these requirements is  

                     ( ) ( ) ( )0 0

1 1

2 2

T T T T

i i ij ijF T F T= + + + − −u ζu Δ KΔ ε με Δ Kα T T ,  (6.1) 

where T0 denotes an N-element vector with all elements equal T0, and F0(T) is the free 

energy of the rock due to its temperature alone (i.e., due to the vibrations and interactions 

of its molecules). Do not confuse the transposition symbol ‘T‘ with temperature T.  

Note that the generality of expression (6.1) suggests that T must be a vector in the N-

dimensional GLS model space. Elements of this vector represent temperatures of each 

component of the rock (such as the average rock and pore fluid within it). The different 

components of the medium should generally have different temperatures because they have 

different bulk moduli, coefficients of thermal expansion, and specific heat capacities, and 

consequently they are heated differently by thermoelastic processes. The matrix 

product Kα coupling T to  can of course be represented by a single material-property 

matrix, but it is factorized it in this form so that  has the dimensionality of 1/degree and 

simple meaning of the thermal expansion coefficient at constant pressure (explained 

below). The negative sign of the last term in eq. (6.1) is selected for the same reason. 

For the case N = 1 (ordinary isotropic material without internal variables), there is 

only a single temperature T and all material properties are scalar, and the above expression 

for the free energy is  

                                 ( ) ( ) ( )2

0 0

1

2
ij ijF T F T K K T T  = +  + − −  .  (6.2) 
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Differentiating the scalar function F in eq. (6.1) at constant temperature with respect 

to ij, the elastic stress tensor is obtained: 

                                       ( )elastic

02ij ij ij ijT

ij T

F
 

 
= = + − −   

σ KΔ με Kα T T
ε

, (6.3) 

where the second term is the thermoelastic stress caused by the temperature variation, and 

the subscript ‘T’ means that the partial derivative is taken along a path with constant T (i.e., 

when deforming the body isothermally). 

To understand the meaning of the material-property matrix , consider a body with 

no external stresses applied and increase its temperature. The stress in eq. (6.3) must remain 

equal zero, and therefore the volume of the body will increase so that ( )0= −KΔ Kα T T , 

and consequently ( )0= −Δ α T T . This relation shows that matrix  (scalar for ordinary 

medium without pores or internal structure) has a meaning of dilatational deformation  

caused by a change of the temperature of each component by one degree at constant 

pressure. This matrix  is the coefficient of thermal expansion of the composite material. 

From the same considerations of generality, we can expect that the dissipation 

function can also be modified by thermal effects. Although I can offer no rigorous 

thermodynamic argument, this analogy suggests that the viscous stress should also be 

generally modified by temperature as  

                                               viscous 2ij K ij ij K ij = + −σ η Δ η ε η βT , (6.4) 

where  is another material-property matrix analogous to . However, such detail of 

description appears redundant for viscosity because: 1) viscosity matrices K and  

themselves are poorly known, 2) viscosities themselves should also vary (usually reduce) 

with temperature, and 3) in granular media like metals and rocks, the thermoelastic effect 

leads to additional, temperature-independent but scale-length dependent contributions to 

viscosity (see §34 and §35 in Landau and Lifshitz, 1986).  
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6.1 Adiabatic and isothermal elastic moduli 

The various thermodynamic types of deformation are bounded by two end-member 

types defined by preservation of either temperature or entropy. Adiabatic deformation 

occurs when there is no heat flow in or out of the volume. The change of heat is given by 

relation Q TdS = , where dS is the change of entropy, and therefore absence of heat 

generation (or absorption) means dS = 0, or constant entropy in an adiabatic process. By 

contrast, in an isothermal process, the change of temperature is kept equal zero: dT = 0, 

which usually requires a change of heat content. 

Both isothermal and adiabatic deformations (and also those under other heat-flow 

regimes) can be elastic. Production of heat at some place and part of the wave cycle does 

not mean “attenuation” of the wave. For example, assume we are maintaining a perfectly 

constant temperature T0 in a rock-physics experiment by keeping the sample in perfect 

contact with an infinitely large thermostat. The deformation of the sample will then be 

reversible and elastic, with equal amounts of heat flowing in and out of the body during a 

loading-unloading cycle. Similarly, if we provide a complete thermal  insulation of the 

body, there will be no heat exchange, and the deformation will again be elastic.   

Because of the flow of heat in and out of the body, in isothermal deformation, the 

material is “softer” than in the adiabatic one. The isothermal bulk and shear elastic moduli 

are given by the coefficients with  and ijε  in eq. (6.3) at constant temperature  
0=T T . 

These coefficients are K and , which means that the moduli in the Lagrangian functions 

(5.2) are the isothermal moduli. 

To obtain the adiabatic moduli, we need to consider the derivatives not of the free 

energy F but the internal energy E F TS= + at constant entropy S (which means zero heat 

flow). The entropy S is the derivative of the free energy with respect to temperature: 

S F T= −  , and therefore from eq. (6.1), the entropy is also a vector in the space of the 

different components of the material: 

                                         ( ) ( ) ( ) ( )0 0

T
T T T= + = +S T S T Δ Kα S T α K Δ .  (6.5) 
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where S0 is the deformation-independent part of entropy due to the microstructure of the 

material. With constant S and fixed deformation, if we increase the temperature of the 

material from T0 to T, S0(T) should change so that ( ) ( )0 0 0 0

T Td = − = −S S T S T α K Δ , and 

the amounts of heat (per unit volume) within each component increases by 

0 0 0 0

T T T Td d= = −Q T S T α K Δ . This increment of stored heat dQ0(T) is related to the specific 

heat capacity at constant volume cV, which is also a matrix for multicomponent materials: 

                                                            ( )0 0Vd = −Q c T T .  (6.6) 

From these two expressions for dq0, the change of temperature during the adiabatic 

deformation is proportional to dilatational strain : 

                                                         1

0

T T T

vd −= −T c T α K Δ .  (6.7) 

Note that the negative sign here means that then a medium is expanded, the temperatures 

of all of its components should reduce (this is how the refrigerator works). 

Substitution of the temperature variation from eq. (6.7) into eq. (6.3) gives the elastic 

stress-strain response under adiabatic conditions: 

                                       ( )1

0 2T T T

ij v ij ij−= + +σ K Kαc T α K Δ με . (6.8) 

Exercise 

Using eq. (6.7), show that as mentioned above, the adiabatic stress equals 

the derivative of the internal energy E = F + TS with respect to the strain at 

constant entropy: 

                                             ij T

ij S

E 
=    

σ
ε

.  

 

Similar to eq. (6.7), equation (6.8) represents the Hooke’s law, but with a different bulk 
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modulus: 

                                                1

adiabatic 0

T T T

v

−= +K K Kαc T α K . (6.9) 

This is the adiabatic bulk modulus of a GLS medium.  

For an ordinary isotropic medium (N = 1), all factors in this expression become scalar 

quantities. For such a medium, heat flows within the wave can only occur at the wavelength 

scale, temperature gradients are small, and consequently the thermoelastic dissipation is 

weak and the deformation regime is close to adiabatic. However, with N > 1 such as in a 

porous rock, heat flows exist on the scales of grain sizes, temperature gradients can be 

large, and therefore heat exchanges may likely occur on the characteristic time scales of 

seismic wave oscillations. In such cases, the bulk moduli would be close to isothermal ones 

at low frequencies and to adiabatic ones at high frequencies. This transition from near-

isothermal to near-adiabatic effective moduli with increasing frequencies is an example of 

what is called the (effective, or empirical) modulus dispersion. In section 1, I’ll give more 

examples of similar dispersion phenomena. 

6.2 Heat flows 

Due to the thermoelastic effects described in the preceding section, whenever the 

deformation of a body is spatially inhomogeneous, the associated temperature variations 

are also heterogeneous, and gradients of temperatures cause flows of heat. The heat flows 

go in the direction from hotter (compressed) areas toward the colder (decompressed) ones, 

which causes mechanical-energy dissipation (i.e., wave attenuation) and reduction of the 

average elastic moduli (i.e., wave dispersion). Because heat flows require time, these 

effects are frequency-dependent: stronger at low frequencies and weaker at high 

frequencies. This means that as a result of thermoelastic heat dissipation, high-frequency 

waves are faster than low-frequency waves (this relation between velocities is called 

inverse dispersion, in contrast to the normal dispersion usually observed for surface 

waves). The transition between the low-velocity and higher-velocity regimes occurs at 

characteristic frequency corresponding to the maximum average heat within the medium. 

According to the spatial scales of the causal heterogeneous deformation, there exist 
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two types of heat flows: 

1) In the first type, heat flows occur on the wavelength scale, by heat flowing 

between adjacent areas with contrasting average deformation and 

temperature. This mechanism does not involve the internal structure and is 

available for any material. This mechanism can be called the “global” heat 

flow, by analogy with Biot’s pore-fluid flows occurring on the wavelength 

scale and also often called global. However, similarly to Biot’s effect, for 

seismic waves in rocks, this thermoelastic mechanism causes weak 

attenuation which is noticeable only at very high frequencies. 

2) In addition to the above mechanism, in a medium with N ≥ 2, there always 

exist strong local temperature contrasts between the different components 

(such as rock frame and pore fluid) located at the same macroscopic point. 

These contrasts are described by the different elements of our temperature 

vector T. These temperature contrasts cause “local” heat flows, which 

similarly produce mechanical-energy loss and relaxation (reduction) of the 

observed moduli. 

In the following subsections, these two types of thermoelastic attenuation effects are 

discussed separately. 

6.2.1 Macroscopic heat flow 

The macroscopic heat flow involves the average medium, and therefore I will only 

describe it for the case N = 1 (i.e., averaging out all of the internal structure). Without 

change of deformation, the rate of heat increase per unit volume is given by divQ = − q , 

where q is the heat flux density (as above, overdots denote time derivatives, e.g. q q t  

). The heat flux is usually caused by the gradient of temperature:  T= −q grad  (this 

relation is often called the Fourier’s law), and heat density Q is related to the temperature 

as Q cT= , where c is some type of specific heat capacity. Depending on boundary 

conditions and geometry of the heat flow, in some cases (see §32 in Landau and 

Lifshitz, 1986), c can be the taken at constant volume, cv, and in some cases – at constant 

pressure, cp, or their combinations. However, the difference between cv, and cp is small for 
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solids. The equation of heat flow (“equation of continuity of heat”) then becomes a 

diffusion equation for temperature: 

                                                       ( )divT T= grad , (6.10) 

where c =  is called the thermometric conductivity (conductivity for temperature 

variations), or thermal diffusivity. In subscript form, this equation reads 
i iT T=   . This 

relation is often written as  T T=   by using the Laplacian operator 
i i    , but I refrain 

from this notation because of using symbol  for volumetric strain. 

To couple this equation with temperature variations caused by deformation, the 

adiabatic deformation relation (6.7) (for the case N = 1) is usually used: 1

0vdT c T K−= − 

. Time derivative of this equation gives the temperature increase rate due to dilatation rate: 

1

0vT c T K−= −  . Adding this rate to eq. (6.10), the final equation for temperature variation 

within a deforming body is: 

                                                     1

0v i iT c T K T −= − +   . (6.11) 

This equation for temperature variations should be added to the equations of motion for 

deformation.  

6.2.2 Internal heat exchange 

For a medium with N ≥ 2 components, equation (6.11) is naturally generalized for 

multiple temperatures T by returning to eq. (6.7) and adding two types of kinetic 

coefficients 1 and 2 for heat exchanges between the components:  

                                       ( )1 1 1

0 1 0 2

T T T

v v v i i

− − −= − − − +  T c T α K Δ c κ T T c κ T , (6.12) 

where we can also define the matrix-valued thermometric conductivities 
1

1 1v −=χ c  and 

1

2 2v −=χ c . The meaning of thermal conductivity 2 (and 2) is in describing the “global” 

heat flux into each component of the composite material from the adjacent points in the 
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medium, analogously to  and  in eq. (6.11). Similarly to the usual thermoelastic energy 

dissipation, this effect should be relatively weak at seismic frequencies. However, the 

effect of the new, local mechanism given by parameters 1 or 1 should be much stronger. 

These material properties describe the heat exchange between the components of rock 

(such as the entire average rock and its pore fluid) at the same point, i.e. across the closely 

spaced grain and fluid boundaries.  

Note that parameter 1 has units of 1/time, i.e. it can be simply estimated from the 

characteristic frequency of thermoelastic transition observed in an modulus dispersion or 

attenuation experiment. Accordingly, the units of 1 are the specific heat capacity per 

second. 

Like all other material-property matrices, the kinetic coefficient matrices 1,2 and 1,2 

must be non-negative definite and symmetric. The symmetry of kinetic coefficients can be 

explained as follows. The general meaning of kinetic equations consists in describing the 

behavior of a statistical system in the vicinity of its equilibrium. If variable x measures the 

deviation from the equilibrium at x =  0, then the kinetic equation  states that x will be 

moving toward the equilibrium with the rates of change x  proportional to the gradient of 

some function (x): 

                                                                 = − x γgrad ,  (6.13a) 

or in subscript notation with implicit summation over repeated indices: 

                                                                 
a ab

b

x
x




= −


.  (6.13b) 

In these relations, ab are the kinetic coefficients. If such a function (x) exists and has a 

minimum at x = 0, then in the vicinity of this point, (x) can be approximated by a 

quadratic form (combination of all possible pairs of coordinates): ( )
1

2
a ab bx x = x . 

Matrix ab can always be considered as symmetric because of the symmetry of the product 

a b b ax x x x= . 
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The symmetry ab ba =  of the kinetic coefficients is a very general property of eq. 

(6.13) called the Onsager principle in statistical physics. This principle states that for a 

fluctuating statistical system, averages over a trajectory of a fluctuating system equals 

averages over an ensemble of states. From this principle, the correlation function between 

two variables xa and xb taken at different times:  ( ) ( ) ( )ab a bt t x t x t  − =  has a symmetry 

property with respect to time reversal: ( ) ( )ab ab   = − . This symmetry is related to the 

time-reversal symmetry of the equations of mechanics for particles within the body. If the 

direction of velocities are reversed for all particles in the system, its movement will remain 

valid and satisfying all equations of motion (in the absence of a magnetic field!). Because 

of this symmetry, the correlation function ( ) ( )a bx t x t  is the same regardless of which of 

the quantities xa or xb are taken earlier or later in time. In addition, from its definition above, 

the correlation has a pure mathematical symmetry. From these two relations, it follows that 

the correlation functions are symmetric in two ways: ( ) ( ) ( )ab ba ab     = = − . 

Finally, it can be easily shown that if random functions xa(t) satisfy kinetic eq. (6.13), 

then their correlations also satisfy the same equations: 

                                                          ( ) ( )ab ac cb

d

d
    


= − .  (6.14) 

Therefore, since both ab and cb are symmetric matrices in this equation, we can conclude 

(not very rigorously, but this can be proved better) that ab must also be symmetric. 

For the specific case of internal thermal diffusion within a GLS solid, the equilibrium 

state can be described by the heat density vector Q0, and the deviation from the equilibrium 

can be measured by variable  0= −x Q Q  used here. At the state of equilibrium, entropy S 

attains a maximum, and therefore this state minimizes function ( ) ( )2

0 0T S S = − −x , 

where S0 is the entropy at this state, and T0 is its temperature. Gradients of entropy with 

respect to x equal temperature variations:
( )0 0

2

0 0

1 1S S T T

Q T T T

 − −
= −  −


. Therefore, for 

heat variation rate with time x , we have the kinetic equations (6.13). 



ZB01305M 6. Effects of Temperature 

160 

6.2.3 Variational principles for heat transfer 

It is interesting to see whether equations of heat transfer can be presented as 

mechanical equations, in the form of some variational principle (section 1.1). The answer 

to this question consists of two statements: 

1) For stationary heat flow (steady-state, without changes of temperature with 

time at any point), a variational principle can be found. Consequently, the 

temperature at any point can be obtained by minimizing the corresponding 

Euler functional. 

2) For nonstationary heat flow (with temperatures variable in time), there exists 

no variational principle in terms of minimizing some ordinary functional. 

However, a variational principle can be obtained after a Laplace or Fourier 

transform in time, i.e. when considering exponentially decaying or oscillating 

temperature fields. 

These two cases are briefly discussed in the following subsections.  

Stationary heat conduction 

For stationary heat conduction, the equation of heat transfer (e.g., eq. (6.11) with 

variable  and heat source f(x), but time derivatives equal zero) is 

                                                  ( ) ( )j jT f  = x      (6.15a) 

within the volume of the body V. In addition, there may be boundary conditions of several 

kinds: 

           fixed temperature at the boundary of V, denoted S1:    ( )1T T= x ,  (6.15b) 

                       fixed heat flow on some boundary S2:           ( ) ( )2j jn T q−  = x ,     (6.15c) 

    heat flow due to temperature contrast on boundary S3:  ( ) ( )( )3j jn T h T T−  = − x ,  

(6.15d) 
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where unit vector n (with components nj) is the normal to the respective boundary, directed 

outward from the volume V. 

For the equation operator with double differentiation (eq. 6.15a), the Fréchet 

derivative is symmetric (eq. 3.16), and therefore the variational principle exists. The 

corresponding Euler functional can be obtained similar to the Lagrangian for elastic field 

(section 0) – by considering the most general scalar, quadratic form dependent on gradT 

and source term Tf(x): 

                                   

( )  ( )( ) ( )

( )
2 3

2

2 3

2

,
2

j j

V

S S

T T T Tf dV

h
q TdS T T dS

 
 =   + + 

 

+ + −



 

x x

     (6.16) 

where the first integral yields eq. (6.15a), and the last two terms generate the boundary 

conditions (6.15c) and (6.15d). The first-kind boundary condition ( )1T T= x  on S1 is 

satisfied automatically by considering only functions T(x) satisfying this condition. For 

any function T(x) (even not satisfying equations (6.15) and boundary conditions), this  is 

a real number, which means that it is indeed a functional. 

Let us now illustrate how the differential equation (eq. 6.15a) with all boundary 

conditions (eq. 6.15b-d) are obtained from this Euler functional {T}. Basically, we need 

to perturb the temperature: ( ) ( ) ( )T T T→ +x x x  and express the resulting perturbation  

   T T T  =  + −  as an integral expression linear in T, of the form  

( ) ( )1 1

V S

F T TdV F T TdS   = +  . This can be done by Fréchet differentiation (eq. 314): 

                       
( ) ( )( ) ( )

( )
2 3

0

2 3 ,

j j

V

S S

T T T T Tf dV

q TdS h T T dS



    


 

=


  =  + =   + +    

+ + −



 

x

  (6.17) 

Using relation ( )( ) ( )j j j j j jT T T T T T        =   −  
 

, denoting vector 



ZB01305M 6. Effects of Temperature 

162 

( )j jE T T =  , and using for it the divergence theorem 

1

j j j j

V S

E dV E n dS =   (where  S1 

is the boundary of volume V and n is the outside normal), this expression becomes of the 

above form with T entering the integrands without derivatives: 

                                      

( )

( )

1

2

3

2

3 .

j j

V

j j

S

j j

S

j j

S

T T f dV

T n T dS

T q n T dS

T h T T n T dS

  

 

 

  

  = −   + + 

 +  + 

 + +  + 

 + − +  









x

  (6.18) 

According to the variational principle, this  must equal zero for arbitrary function T(x). 

Therefore, each of the expressions in square brackets must equal zero, giving the Poisson’s 

equation and boundary conditions in eq. (6.15).  Note that the integral over surface S1 is 

satisfied automatically because the trial function T(x) is always taken equal zero at the 

boundaries of the volume. 

Stationary heat convection 

For stationary heat convection and conduction, the source of heat comes from a flow 

of material with known velocity vi: 

                                                         
j j i iT v T  =   ,    (6.19) 

where  is the thermal diffusivity (eq. 6.10). The difference from the thermal conduction 

is the presence of the single temperature gradient iT in the right-hand side, but because of 

this term, the Fréchet derivative is non-symmetric, and there exists no variational principle 

for this equation.  
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Exercise 

For ( ) i iF u v u=  , evaluate ˆ
uF   by ( )

0

ˆ
uF F u



 
 =


 = +  

(eq. 314), 

and show that it  gives ˆ ˆ
u uF dV F dV       for arbitrary different 

function  and .  

 

Nonstationary heat conduction 

Consider the thermal diffusion equation with variable temperature: 

                                            i i

T
T

T



=  


 ,    (6.20a) 

with initial and boundary conditions  

                       0T T=   at time  t = 0   and  1T T=   on boundary S1.  (6.20b) 

Because of the lone derivative T t  , the Fréchet derivative is also non-symmetric for this 

equation, and therefore there exists no variational principle for it. However, if we take the 

Laplace transform of this equation, a variational principle will exist. 

The Laplace transform is a transformation of a function f(t) defined for t ≥ 0 into 

another function ( )f s  defined on s ≥ 0: 

                                              ( ) ( )
0

s

stf s f t e dt−=   .     (6.21) 

After applying this transformation to both sides of eq.  (6.20a), this equation becomes  

                                                 
0 i isT T T− =    .    (6.22) 

This equation contains no time derivative (it was replaced by the multiplication by s), 
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and as shown in the first example, it has a variational principle. After dividing this equation 

by s, the Euler function for this principle is: 

                               ( )  ( )( ) 2

0

1 1

2 2
j j

V

T T T T T TT dV
s s

 
 =   + − 

 
x   (6.23) 

Exercise 

Evaluate variation  =  of this function as in the preceding examples and 

show that condition  =  leads to eq. (6.20a). 

 

In addition to using the Laplace transform, other variational principles for this 

equation have been constructed using convolutional integrals in time or space. I do not 

consider them here because they imply non-local or non-instantaneous interactions. 

However, the transformation from time to Laplace variable s is in fact also an example of 

non-instantaneous transformation, and so our general conclusion is that heat diffusion or 

convection equations like (6.19) and (6.20) do not integrate well with the variational 

principles of mechanics, and therefore they should be usually considered separately.  
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7 Important Cases 

 

Key points: 

• Specific model parameterizations and boundary conditions must be utilized 

for modeling each type of experiment 

 

To solve equations from the preceding section, specific experimental environments 

needs always to be considered. These environments determine the boundary and initial 

conditions that need to be added to the equations of motion. In this section, I consider 

several key cases useful for modeling practical experiments with rock samples and waves 

in the field. These key cases are: 1) static equilibrium, 2) plane harmonic waves, and 

3) quasi-static forced oscillations of a small body, such as a subresonant attenuation 

experiment with a rock specimen. Each of these cases samples somewhat different parts of 

the general mechanical problem (section 5), and therefore the explanations of similar 

observations may be different. Thus, in the static case 1), viscous properties of the medium 

(d, K, and ) are not tested. For plane waves (case 2)), all properties are involved, but 

spatial heterogeneity of the medium is not considered. However, most problems of interest 

relate to finite bodies or heterogeneous structures. For forced oscillations, the inertial 

properties (matrix ) are typically insignificant, but the effects of the shape and size of the 

body may become very strong and complex. 

In experiments involving harmonic oscillations (cases 2) and 3) above), the key 

observations which are expected to be explained by the model are schematically shown in 

Figure 7.1. With increasing testing frequency, some type of empirical modulus M shows 

an increase by amount M. This increase occurs across a well-pronounced frequency band 

centered at frequency f0, and the attenuation factor Q-1 shows a peak at the same frequency 

(Figure 7.1). The goal of the theory consists in explaining both of the plateaus in M(f), the 

magnitude of the peak Q-1(f), the transition frequency f0, and possibly the whole shapes of 



ZB01305M 7. Important Cases 

166 

these spectra.  

Some fundamental observations about the mechanical structure can be made directly 

from the modulus dispersion curve in Figure 7.1. Insets in this Figure point out that the 

dispersion always occurs because of a transition between some quasi-elastic modes of 

deformation within the rock. For example, in a sample of porous rock, the “drained-

undrained” transition occurs from the drained regime at low frequencies to undrained 

regime at high frequencies. At low frequencies, there is enough time to equilibrate the 

variation of pore pressure to zero level (and hence the regime is called drained), and at high 

frequency, pore flows tend to zero. Similarly, for thermoelastic dispersion, the transition 

occurs between the isothermal and adiabatic heat-flow regimes. These pairs of 

complementary regimes are characterized by the difference of the moduli, M in 

Figure 7.1, which is called the “modulus defect”.  

Interestingly, for band-limited dispersion as in Figure 7.1, the Q-1(f) is not an 

independent observation. Regardless of the mechanism (but provided that it is causal, 

which is expected from mechanical testing of a rock body), the attenuation function is close 

 

FIGURE 7.1.  

Cartoons of typical observations of modulus or wave-velocity dispersion (gradual step 

in the curve by M) and the corresponding peak in the attenuation factor Q-1.  
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to a derivative of the logarithm of the modulus with respect to the logarithm of frequency:  

                                         
( )

 
1 0

ln Re1 1

2 ln 2
M

d M fM
Q

d f M f

−
   


, (7.1a) 

where f is the frequency band width of the attenuation peak, and M  is some average level 

of the measured modulus, for which the relaxed modulus ( )0RM M f= →  can be taken. 

This equation is one of the so-called nearly local Kramers-Krönig causality relations. 

Equation (7.1) shows that the peak in Q-1(f) occurs at the same frequency f0 as the 

dispersion of ReM, and the magnitude of this peak is proportional to M (Figure 7.1). For 

the standard linear solid (Zener) model (which is commonly used to model relaxation 

spectra in Figure 7.1; subsection 5.5), the peak Q-1 equals  

                                                          1

2
M

R

M
Q

M

−  . (7.1b) 

For the SLS, the notion of bandwidth f for its peak Q-1 is rather arbitrary, but it can be 

obtained by taking 0f f = , which reconciles the two equations (7.1).  

The constancy of the relaxed and unrelaxed limits (horizontal plateaus in Figure 7.1) 

and vanishing attenuation (
1 0Q− → ) in them shows that the deformations in these limits 

are predominantly elastic. In seismic applications, the only exception from this transition 

between two elastic modes is the case of P-wave dispersion in Biot’s poroelastic model. In 

this case, the increase of wave velocity at high frequencies occurs because of an effective 

reduction of inertial properties via the material property matrix d. 

Thus, despite the notation as a “quality factor”, the peak value of Q-1(f) is actually an 

elastic property. By contrast, frequency f0 of the transition is an indicator of internal friction 

within the rock. Variations of f0 can be caused by the solid and pore-fluid viscosity, 

permeability, or heat dissipation. For example, with increasing viscosity , the transition 

frequency f0 reduces so that product 0f   remains comparatively invariant. In addition, f0 

is sensitive to the elastic coupling between the different deformation modes, which is 

described by off-diagonal elements of matrices K and . 
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7.1 Static Equilibrium 

Static equilibrium is the first case one considers when studying a mechanical system. 

In this case, the deformation u is independent of time, and equation (5.7) becomes 

                                            
j ij =σ 0 ,       with      2ij ij ij= +σ λΔ με . (7.2) 

For simplicity, let us assume that material properties  and  are constant within the zone 

of interest. Then, plugging into these equations the definition of strain 

( ) 2ij i j j i=  + ε u u , we obtain the differential equation satisfied by the displacement ui 

(verify this!): 

                                                     ( ) i j j j j i+   +   =λ μ u μ u 0 . (7.3) 

Note that this is a vector equation in both the usual 3-D coordinate space (given by the free 

subscript i) and in the N-dimensional GLS space of model variables (represented by bold 

characters). 

If the force of gravity is significant but spatially uniform on the scale of the 

experiment (for example, when considering the lithostatic or hydrostatic pressure within a 

reservoir), then the first equation (7.2) is modified as 
j ij ig = −σ ρ , and consequently 

eq. (7.3) becomes 

                                                 ( ) i j j j j i ig+   +   = −λ μ u μ u ρ . (7.4) 

In addition, if the body is non-uniformly heated, then the stress tensor in eq. (7.2) 

must contain an additional term ( )0 ij− −Kα T T  (where K is the bulk modulus,  is the 

coefficient (matrix in the general GLS case) of thermal expansion, T is a vector of 

temperatures, and T0 is the temperature at the state of equilibrium; see section 0), and 

therefore equation (7.3) is 

                                        ( ) i j j j j i i ig+   +   = − + λ μ u μ u ρ Kα T . (7.5) 
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In a perfectly static case, 0i =T , and therefore there is no thermoelastic effect. However, 

thermoelastic stresses may become significant if slow, quasi-static deformations are 

considered, such as a subresonant mechanical testing of a rock sample in the laboratory or 

a seismic wave in the field (next subsections). 

7.2 Plane Waves 

For understanding and modeling seismic waves, the simplest and most important 

shape of deformation is given by plane harmonic (sinusoidal) waves in a spatially uniform 

medium. Such solutions are used in frequency-domain modeling, such as by using the 

Thomson-Haskell propagator for layered media described later. Such wave solutions take 

the form of harmonic plane waves with amplitudes exponentially decaying with distance 

due to internal friction. 

 Let us derive the frequency-dependent phase velocity and attenuation for a most 

general uniform GLS medium with N variables. In the following subsections, I will 

consider a plane P wave in some detail, and then briefly describe the modifications needed 

for modeling S waves and extensional-mode waves. The extensional-mode (longitudinal) 

waves are particularly important for modeling “Young’s modulus” laboratory experiments 

with uniaxial deformation of cylindrical rock samples.  

7.2.1 P waves 

Consider a plane P wave in which all spatial displacements are oriented in the 

direction of axis X: 1Jk J ku u = , where the upper-case subscript ‘J’ enumerates model 

variables, and the lower-case ‘k’ refers to spatial coordinates. The strain for Jth phase equals 

1 1Jik J i ku  = , where the prime denotes the spatial derivative in X. Consequently, the 

dilatation J Jii Ju  = = , and the equation of motion (5.5) then simplifies to: 

                                                  M
 = − + +ρu du Mu η u , (7.6) 

where 4 3 +M K μ  is the (matrix) P-wave modulus and 4 3M K  +η η η  is the P-wave 
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viscosity.  

eq. (7.6) shows that the complex-valued wave modes (n) and the corresponding 

eigenvalues (n) can be obtained from the following generalized eigenvector problem: 

                                                       ( ) ( ) ( )* *n n n
=ρ υ M υ . (5.10 repeated) 

In this equation, * i  +ρ ρ d  is the complex-valued effective density matrix and 

*

Mi −M M η  is the viscoelastic-type, matrix P-wave modulus. If thermoelastic effects 

are considered as described in section 7.3, they can also be included in this modulus M*.  

7.2.2 S waves 

For an S wave propagating in the direction of axis X and polarized along axis Y, the 

displacement is 2Jk J ku u = , the nonzero strain components equal 12 21 2J J Ju  = = , and

0J = . Therefore, only shear material-property contribute to the equation of motion (5.5), 

which is simply: 

                                                    


 = +ρu μu η u . (7.10) 

By solving this equation for eigenmodes as in the preceding subsection, all plane S-wave 

properties are obtained. For Biot’s model, the right-hand side of this equation contains all 

zeros, which means that the pore fluid is not involved in wave motion, and there is only 

one S-wave mode. However, if 
 η 0 , this mode will show velocity dispersion and 

attenuation. 

7.2.3 Extensional waves in an infinite rod 

Consider an axisymmetric wave (also called extensional, longitudinal) propagating 

along a rod oriented in the direction of axis X.  For simplicity (and practical applications), 

let us consider the case of Biot’s porous rock (N = 2) with the cylindrical surface of the rod 

sealed for pore fluid. This means that the transverse fluid motion is zero: 0Jku =  with J = 2 

and k = 2 or 3, and therefore the fluid displacement is described by a single variable 



ZB01305M 7. Important Cases 

171 

2x fu u=  (here, I temporarily switch to the more intuitive notation for coordinates  x2   y 

and x3  z). The nonzero components of these fields can be described by two fields 

(generalized variables, functions of x and t): a GLS vector of rock and fluid displacement 

along the rod ux, and the radial strain of the rod r (here, I temporarily switch to the more 

intuitive notation for coordinates x2   y and x3  z). Let us combine variables ux, r, and 

their derivatives with respect to x f f x =    in one vector 

                                                          

x

x

r

r





 
 
 =
 
 

 

u

u
ψ . (7.11) 

Next, we need to express the strains and the Lagrangian and dissipation functions 

through this vector . The spatial components of the GLS displacement vector (vectors in 

the 2-D space of poroelastic displacements) are given by matrix products 
i i=u U ψ , where 

            
0 0

0 0
x

 
=  

 
U I 0 ,     

0

0 0
y

y 
=  

 
U 0 0 ,    and    

0

0 0
z

z 
=  

 
U 0 0 , (7.12) 

where the boldface symbols denote 22 matrices, and I is the identity matrix. The 

components of strain equal 
ij ij=ε E ψ , with the following nonzero matrices Eij: 

                          

0 0 1 0
,                ,

0 0 0 0

0 2 0 2
,   .

0 0 0 0

xx yy zz

xy yx xz zx

y z

   
= = =   

   

   
= = = =   

   

E 0 I E E 0 0

E E 0 0 E E 0 0

    (7.13) 

The dilatation has the same form of matrix product =Δ Ωψ , where  

                                                
2 0

0 0
ii

 
= =  

 
Ω E 0 I . (7.14) 

The deviatoric strain similarly is ij ij=ε E ψ , where 3ij ij ij= −E E Ω  equal 
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2 3 0 1 3 0
2 3 ,       ,

0 0 0 0

,                          .

xx yy zz

xy yx xy xz zx xz

−   
= = =   

   

= = = =

E 0 I E E 0 0

E E E E E E

  (7.15) 

From eq. (5.6), the components of stress also have a similar matrix form elastic

ij ij=σ S ψ  

and viscous

ij ij=σ H ψ , with nonzero matrices Sij and Hij equal: 

                                          

2 ,

2     for  ,

2 ,

2      for  .

xy yx xz zx xy

ij ij

xy yx xz zx xx

ij K ij

i j

i j





= = = =

= + =

= = = =

= + =

S S S S μE

S KΩ μE

H H H H η E

H η Ω η E

      (7.16) 

Using the representations for strain (eqs. 7.14 and 7.15), the Lagrangian and 

dissipation density (eq. 5.2) can be expressed in terms of variable (x,t) and then averaged 

over the cross-section of the rod. This gives the L and D functions identical to those in 

eqs. (4.12): 

                                                

1 1
,

2 2

1
,

2

T T

T

L

D


= −


 =


ψ Mψ ψ Sψ

ψ Dψ

 (7.17) 

where matrices  
T

i i=M U ρU , 2= +S K μ ,  and  2T

i i K = + +D U dU η η  are the mass, 

stiffness, and damping matrix, respectively. In these matrices, the averaged elastic moduli 

and viscosities are 

                                          
,    ,

,    .

T T

ij ij

T T

K K ij ij 

= =

= =

K Ω KΩ μ E μE

η Ω η Ω η E η E
 (7.18) 

Side note: Homogenization 

Spatial averaging of quadratic energy forms  above is perhaps 
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the most rigorous form of a procedure of deriving effective equations for 

heterogeneous media called homogenization. To evaluate these averages, 

note that the averaged matrices have forms linear with respect to variables 

x and z, for example: 0 1

y y= +U U U , where 0
U  is all zeros in this case 

and 
1

1 0

0 0

 
=  

 
U 0 0 . Therefore, the term with i = y equals 

    
0 0 0 1 1 1 22T T T T

y y y y= + +U ρU U ρU U ρU U ρU , 

and similar with 
T

z zU ρU  containing 
2z . For an axisymmetric cross-

section of the rod, 0y z yz= = = , and the shape factor 

2 2s y z= =  is (verify these formulas!): 

•  

2

0

3

r
s =  for a rectangular cross-section of the rod, 

• 

2

0

4

r
s =  for an elliptical cross-section,  

where r0 is the radius of the rod. Therefore,  

                
0 0 1 1T T T T

y y z z s= = +U ρU U ρU U ρU U ρU , 

and the final “homogenized” mass matrix equals 

                 0 0 1 12 2T T T

x x s= + +M U ρU U ρU U ρU , 

and similar expressions hold for other material-property matrices. 

Similar calculations can also be made for other shapes of cross-

sections of the rod. For example, for a thin-walled hollow tube, 2

0s r= . 

 

From the “oscillator” functions L and D, the equation of motion for  is 

                                                 + + =Mψ Dψ Sψ 0 . (7.19a) 
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The ranks of matrices M, D, and S equal two (the number of variables in our original 

GLS model), and therefore we need four additional equations for the 6-element 

vector  Three of these equations come from the initial selection of the third, fourths, and 

sixth variable in  being spatial derivative of a preceding one (eq.  7.11): 

                                                      

1
3

2
4

5
6

0,

0,

0.

x

x

x











− =




− =




− =



 (7.19b) 

The last equation comes from the free-surface boundary condition, which requires that the 

transverse stress 
yy zz = equals zero (eqs. 7.16): 

                                                        ( )
1

0yy =S ψ , (7.19c) 

Equations (7.19) can be used for time-domain simulations of deformation of the rod, 

including its longitudinal extension, transverse strain, and longitudinal pore-fluid flow. 

When considering a harmonic wave at frequency  and complex-valued wavenumber k* 

(as in eq. (5.9)), the derivatives in these equations can be replaced by multiplications: 

*ik
x


→


, i

t



→ −


. After this replacement, eqs. (7.19) become an eigenvalue problem, 

with eigenvalue of the matrix in the left-hand side equal zero. Therefore, denoting this 

matrix , this matrix must satisfy equation 

                                                             ( )det 0=Θ .  (7.20) 

For any given , this equation gives a nonlinear (in fact, quadratic) function of k*, and 

therefore two roots can be found numerically. These roots  ( )*

1k   and ( )*

2k   give the 

velocity dispersion and attenuation relations for the primary and secondary (slow and 

dissipative) extensional waves within the porous rod (as in eqs. 5.11).  
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                                                       phase *Re
V

k


 ,  (7.21a) 

and the energy-dissipation factor, defined by ( )1 2Q k−  :  

                                                           
*

1

*

Im

2 Re

k
Q

k

− = .  (7.21b) 

7.3 Low-frequency Experiments with Rock Samples 

In low-frequency forced-oscillation laboratory measurements (Figures 1.7 and 1.8), 

a range of values for the loading frequency f is tested. At each angular frequency  = 2f, 

the stress-strain ratio Y is measured, and the magnitude ( )Y   and the 

ratio Re 2ImQ Y Y= −  is reported. In particular, in a “Young’s modulus” experiment 

(also called extensional-mode, longitudinal), this ratio is the ratio of axial strains measured 

by strain gages attached to the sample and an aluminum cylinder attached to it (Figure 1.8):   

                                                 
standard

aluminum

sample sample

Y E
 

 
= = .  (7.22) 

This ratio is scaled by the known elastic modulus of the standard (aluminum), so that Y has 

the meaning of Young’s modulus (E) of the sample. The use of the standard is needed 

because it is difficult to measure the stress  applied to the top of the rock sample, and so 

this stress is estimated as the product aluminum standardE =  (eq. 7.22). 

Another ratio measured in such experiments is the empirical Poisson’s ratio 

Figure 1.8: 

                                                  
transverse

axial

Y



= − .  (7.23) 

This ratio is used as a direct measure of the Poisson’s ratio () of the rock.  

The ratios (7.22), (7.23), and in fact any other measurement in this experiment is 
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represented by a sinusoidal function at the given loading frequency, with a certain phase 

lag  relative to the strain in the standard (Figure 1.8). This sine function can be represented 

by a complex-valued quantity 

                                                     iY Y e −= ,  (7.24) 

which is a function of frequency . Using this function, analogs of the pair of 

quantities (7.21) is obtained:  

                        The “empirical modulus” (or Poisson’s ratio) |Y|, and (7.25a) 

                        The corresponding “attenuation” for Y:    1 arctanYQ − = .  (7.25b) 

The above shows that a “modulus” and a “Q” can be defined for practically any pair of 

readings in an experiment like shown in Figures 1.7 and 1.8. Not all of these ratios are 

equally useful. For example, there exists an empirical Q (phase lag) for the Poisson’s ratio, 

although it has no physical meaning as any type of wave attenuation.  

7.3.1 Effective and empirical moduli, and White’s (1986) fallacy 

The goal of measuring the absolute values and phase lags of ratios like (7.25) consists 

in relating them to the velocity dispersion and attenuation spectra measured in the field of 

lab experiments with waves (Figure 7.1). To obtain this relation, it is necessary to have a 

sufficiently accurate theoretical model for the measured quantity. For example, if the 

quantity measured in the lab can be explained as the P-wave modulus 2M  = + , then it 

would be related to observations of P-wave velocities in the field as 2

PM V= . 

In practical laboratory work, it is usually assumed that ratio (7.22) gives the 

frequency-dependent effective Young’s modulus ( )E f  and the corresponding 

attenuation factor ( )1

EQ f− . This assumption is extremely widespread and servers as a basis 

for most data interpretations and publications. Nevertheless, this assumption represents a 

major fallacy, which was pointed out by J. E. White long ago (in 1986). The fallacy consists 

in ignoring two general observations: 
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• Porous rock contains a relatively independent pore-fluid flow, and therefore 

it cannot be described by only two effective properties like the effective 

modulus and Q. In particular, the drag (Darcy) friction by pore fluid is a body 

force, and it not included in the surface (Cauchy) stress  in eq. (7.22). 

• In reality, experimental ratios like eqs. (7.22) and (7.23) are not properties of 

the material of the rock specimen. These ratios depend on numerous other 

factors: the size and shape of the body, its heterogeneity and permeability, 

placement of the strain gauges, placement of the pore-fluid supply tube and 

properties of the “dead volume” (buffer containing pore fluids) and friction 

of the fluid within the various pipelines in the apparatus, non-uniform pattern 

of pore-fluid saturation and flows within the rock sample, and also thermal 

regime of the experiment (e.g., Figure 1.7).  

Theoretically, the above assumption is justified by the viscoelastic model and 

presenting materials as arrangements of springs and dashpots (see section 5.5). The obvious 

advantage of this approach is simplicity: one does not to study the actual mechanism of 

internal friction and to differentiate between the effects of solid viscosity, Darcy, 

thermoelastic and other types of friction. Instead of all this detail, only an empirical, 

complex-valued and frequency-dependent viscoelastic modulus is obtained. In 

experimental work, this frequency-dependent modulus is often called “elastic”, which is 

an incorrect term, an oxymoron. 

7.3.2 GLS equations with thermal effects 

Thus, to interpret results of lab experiments in terms of true physical properties of 

the samples, we need to use rigorous and sufficiently detailed continuum-mechanics 

models described above. In low-frequency forced oscillations like shown in Figures 1.7 

and 1.8, the inertial, gravity, and global thermoelastic forces are insignificant compared to 

elastic forces, but viscous and local thermoelastic stresses are significant. The resulting 

quasi-static equations can then be obtained by combining the equilibrium equations (7.2) 

with the terms for viscous and thermoelastic stress ij from eq. (5.8b), Darcy friction (drag), 

and temperature variation from eq. (6.12): 
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( )* * *

1 1 1

0 1 2

0,

,

i j j j j i i i

T T T

v j j v v j j− − −

 +   +   − −  =


= −  − +  

λ μ u μ u du Kα θ

θ c T α K u c κ θ c θ
 (7.26) 

where 
0= −θ T T  is the deviation from the equilibrium temperature, and *

t



= +


λ λ η  and 

*

t



= +


μ μ η  denote the operators combining the effects of elasticity and viscosity. 

For harmonic oscillations, time dependencies of the fields can be taken in the form 

( ) ( ), Re i t

j jt e − =  u x u x   and ( ) ( ), Re i tt e − =  θ x θ x , where uj(x) and j(x) are 

complex-valued fields satisfying boundary conditions for the given shape of the body. 

Time derivatives become multiplications by –i, and operators * and * become 

multiplications by complex-valued matrices * i = −λ λ η  and * i = −μ μ η . 

The last term in the second eq. (7.26) (“global” thermal flow) is likely insignificant 

at seismic frequencies. Dropping this term, the harmonic oscillation of temperature can be 

calculated from the variations of displacement:   

                                        

1

1 1

1 0

T T T

v v j j

i



−

− − 
= − +  

 
θ I c κ c T α K u , (7.27) 

where I is the identity matrix. This equation shows that at high frequencies  → ∞, 

adiabatic temperature variations occur (see eq. (6.7)). At low frequencies  → 0, the 

system approaches the isothermal regime ( → 0) as 1

1 0

T T T

j ji −= θ κ T α K u . Factor ‘i’ here 

shows that the low-frequency temperature variations are lagging the deformation by 90 in 

phase. These effects are the same as the deformation of the internal variable (internal 

spring) in the mechanical model for the standard linear solid. 

Substituting eq. (7.27) into the first eq. (7.26), we obtain an equation for spatial 

variation of displacement ui: 

                                         ( )* * * 0i j j j j i ii+   +   + =λ μ u μ u du , (7.28) 



ZB01305M 7. Important Cases 

179 

where the effect of thermoelastic stresses (term containing 
i j j  u ) leads to a frequency-

dependent modification of modulus :  

                                   

1

* 1 1

1 0

T T T

v v

i
i 



−

− − 
= − + + 

 
λ λ η Kα I c κ c T α K , (7.29) 

and to a similar modification of the bulk modulus. 

Equations (7.28) and (7.29) can be used to explain low-frequency laboratory 

experiments such as shown in Figure 1.7. Note three key conclusions from these equations: 

1) In permeable porous rock (with d ≠ 0), when fluid flow is allowed by 

boundary conditions, the distribution of u and the dynamic stress-strain ratio 

dynamic (at  ≠ 0) is not described by only a pair of viscoelastic moduli. 

Body-force term 
iidu (eq. 7.28) has a comparable effect, which may be 

dominant if the pore fluid is allowed to flow. 

2) Thermoelastic effects can be viewed as a frequency-dependent modification 

of the bulk modulus (eq. 7.29). 

3) At low frequencies, the thermoelastic effect simply adds bulk solid viscosity 

to the medium: *

Ti i  − −λ λ η η , where 

                                                             
1

1 0

T T T

T

−=η Kακ T α K   (7.30) 

is the additional viscosity produced by thermoelastic friction. This relation 

illustrates one likely mechanism of solid viscosity in multicomponent media. 

In an experiment like shown in Figure Figure 1.7, the deformation of the porous rock 

sample is relatively complex: 

1) Under axial compression, the side surface of the cylinder attains a barrel-like 

shape, with stronger oscillations or radius at the middle of the cylinder and 

weaker deformations at its ends (need to give a Figure …); 

2) There is an oscillatory pore fluid flow is concentrated toward the center of 

the upper end of the cylinder, where the tube controlling the pore pressure is 
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connected (Figure Figure 1.7).  

3) The fastest fluid flow occurs within the connecting tube and the “dead 

volume” to which it is connected. This pore fluid flow is difficult to avoid, 

and it violates the usual assumption of “undrained” conditions (zero pore 

fluid flow) of the sample.  In studies with variable dead volumes, it was found 

that with small dead volumes, the recorded stress-strain response (eq. 7.22) 

approaches the expected undrained case, and with larger volume and lower 

frequencies, the measured modulus in eq. (7.22) is close to the drained one 

(with zero pore pressure variations).  

4) There are also temperature contrasts between the pore fluid and rock frame, 

which produce solid viscosity (eq. 7.30).  

In the following subsections, I describe two approaches to describing the above 

phenomena. In subsection 7.3.3, I discuss an approach close to the conventional approach 

to interpreting such observations but still much more rigorous and accurate. In this 

approach, the deformation of the rock sample is considered as uniform, and only effective 

and averaged quantities are used. In subsection 7.3.4, I give a more complex but also much 

more accurate model capturing the observations listed in points 1)-4) above. 

7.3.3 Approximation of uniform deformation 

In practical laboratory work, a much simpler model than described in the preceding 

subsection is typically used. The observations above are replaced with rather drastic 

approximations: 

1) The axial and transverse strains are assumed to be constant across the whole 

volume. 

2) Pore fluid flow is also uniform. In most experiments, jacketed samples under 

undrained conditions are assumed. These conditions mean that the 

macroscopic fluid content remains constant. 

3) No temperature variations and no effects occurring outside of the sample are 

considered. 

In addition to these simplifying assumptions, conventional models focus only on 
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explaining the specific sinusoidal-pressure loading test (Figure 1.8), i.e. only on predicting 

the amplitudes and phases of the measured stress-strain ratios like (7.25). Such prediction 

is easy to do by assuming frequency-dependent effective viscoelastic moduli of the 

material. However, the effective moduli measured in a small sample may differ from those 

in a seismic wave in situ (subsection 7.3.1). Therefore, instead of the conventional 

frequency-dependent effective moduli, I will only consider rigorous physical effects 

described in section 5 and 6 in this text. 

The viscosity of fluid included in Biot’s drag (Darcy, our matrix d) and solid 

viscosity of the rock (our matrices K and ) are the principal mechanisms that should 

explain the observations, such as shown in Figures 7.1 and 1.8. As shown in subsection 0, 

at seismic frequencies, thermoelastic effects can likely always be viewed as part of solid 

viscosity. 

Another cautionary remark about using approximations for interpreting laboratory 

data is related to assuming elastic formulas for relations between moduli.  For example, it 

is usually assumed that at finite frequencies, the Poisson’s ratio  is related to the bulk 

modulus K and shear modulus  by relation 

                                                         
( )
3 2

2 3

K

K






−
=

+
 , (7.31a) 

or that modulus K or P-wave modulus M can be calculated from a measured Young’s 

modulus E by using relations 

                                       
( )3 1 2

E
K


=

−
   and     

( )

( )( )

1

1 1 2

E
M



 

−
=

+ −
. (7.31b) 

The Poisson’s ratio  is often assumed to be frequency-independent. However, none of the 

above formulas are accurate for porous rock at nonzero frequencies. There exist no 

equations like eqs. (7.31) uniquely relating the measured quantities K, , E, , etc. because 

these quantities additionally depend on the patterns of pore-fluid flows within the rock. 

These flow patterns are controlled by boundary conditions of the experiment. Thus, to 

properly examine the properties of porous rock, both drained and undrained conditions 
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must be tested, and rigorous theories used instead of ad hoc formulas like (7.31).  

Therefore, further in this section, I consider both undrained and drained cases but 

still assuming simple patterns of pore-fluid flows constant along the length of the 

cylindrical sample. 

If the sample is uniformly deformed (as in Figure 1.7, left), it is convenient to 

describe its deformation by two GLS vectors: x (axial strain) and r (radial strain). We can 

combine these vectors in one model vector of generalized coordinates: 

                                                                
x

r

 
=  

 

ε
q

ε
 . (7.32) 

Consider a point within the sample at coordinate x along the symmetry axis and 

distance r from the axis. Assuming that the base of the cylindrical sample is fixed and 

impermeable for pore-fluid flow, the axial displacement of a point within the sample equals 

ux = xxx, the radial displacement is ur = rr, dilatation 2x r= +Δ ε ε , and components of 

deviatoric strain 
2 2

3 3
x x r= −ε ε ε  and 

1

2
r x= −ε ε . The Lagrangian and dissipation functions 

(eq. 5.2) are then of the general discretized form in eq. (4.12): 

                                   

1 1
,

2 2

1
,

2

xx xrxxT T

xr rrrr

xx xrT T

xr rr

L

D

   
= −   

   


 
=  

 

S Sρ 0
q q q q

S S0 ρ

D D
q q

D D

  (7.33) 

where the nonzero blocks of the mass and stiffness matrices are  

                               

2
2 0

3
xx

r
x= =ρ ρ ρ ,      

2
2 2 0

4
rr

r
y z= + =ρ ρ ρ , (7.34a) 

                               
2

3
xx = +S K μ ,      

2
4

3
rr = +S K μ ,    

2

3
xr = −S μ , (7.34b) 

where  means averaging over the volume of the cylinder, and r0 is its radius. The 
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damping matrix consists of similar terms but applied to strain rates: 

                      

2

0 2

3 3
xx K

r
= + +D d η η ,    

2

0 2

4 3
rr

r
= +D d η ,    

2

3
xr = −D η . (7.34c) 

For forced oscillations of the cylinder at frequency  much lower than the 

frequencies of its normal oscillations (called subresonant), the deformation of the cylinder 

will be given by eq. (4.10):   

                                                            =q Jf , (7.35) 

where the compliance matrix J equals 

                                          

1

xx xr xx xr

xr rr xr rr

i

−

     
= −    

     

S S D D
J

S S D D
. (7.36) 

This solution is valid for any type of stress applied to the cylinder and any boundary 

conditions. Similar to vector q, the stress and pore pressure are constant across the cylinder. 

Let us consider a GLS rheology with N variables, so that the case N = 2 will give the Biot’s 

poroelastic model.  If we consider a Young’s-modulus (extensional) type experiment with 

free side surface of the cylinder, then the 2N-element stress vector equals 

                                                           
0

 
 
 =
 
 
 

p
f

p

, (7.37) 

where  is the arbitrary axial stress applied by the actuator and p is a vector of ( )1N −

induced variations of pore pressures (the only pore pressure in Biot’s model). This vector 

also shows that the radial stress must be zero because of the free boundary conditions on 

the sides of the cylinder, and the pore pressure must be equal in both directions. Now let 

us consider two different cases for pore flow. 

Open (drained) boundary conditions for all pore fluids. In this case, p = 0 in 

eq. (7.37), and eq. (7.35) gives the ratios of both components of strain to the applied stress: 
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:,1

1

0

x

r





 
 

   = =    
 
 

ε 0
J J

ε

0

. (7.38) 

Here and below, I use Matlab notation for selecting rows and columns of matrix J (the first 

column is used in this equation). Specifically, this solution contains 2N quantities (2N = 4 

for ordinary rock with single porosity) which are (in principle) measurable in this 

experiment: 

Table 9.1 

Properties measurable in an extensional-mode experiment with drained rock sample 

1) Empirical Young’s modulus of the sample:           

1 11

1

x

E
J




= = ; 

2) Empirical Poisson’s ratio:                                       
( )1 ,11

1 11

Nr

x

J

J






+
= − = − ; 

3) Analog of Young’s modulus for Ih pore fluid:     

1

1
fI

Ix I

E
J




= = ; 

4) Analog of Poisson’s ratio for Ih pore fluid:          
( ),1

1

N IIr
fI

Ix I

J

J






+
= − = . 

where Matlab notation 
( )1 ,1N

J
+

 is used again. Note that the pore fluid index I above starts 

counting from I = 2, as in all GLS model vectors.   

Closed (undrained) boundary conditions for all pore fluids. In this case, 

vector p is unknown, and the solution (7.35) is 

                                                       :,1 :,2:

x

N

r



 

 
= + 

 

ε p
J J

ε
. (7.39) 

where ‘f’ denotes all columns related to pore fluids matrix J. The induced pressure variation 

p must be such that it ensures zero dilatation for Ith fluid:  2 0I Ix Ir  = + = . Solving this 

equation for p/ gives: 



ZB01305M 7. Important Cases 

185 

                              ( ) ( )
1

2: ,2: ( 2):2 ,2: 2: ,1 ( 2):2 ,12 2N N N N N N N N


−

+ += − + +
p

J J J J . (7.40a) 

Let us denote this ratio by a GLS vector . With N = 2 (poroelastic case), this ratio is a 

single number:  

                                              
( )

21 41

22 42 24 44

2

2

J J

J J J J


+
= −

+ + +
. (7.40b) 

Thus, in the experiment with undrained rock cylinder, there also are 2N measurable 

quantities: 

Table 9.2 

Properties measurable in an extensional-mode experiment with an undrained rock 

sample 

1) Empirical Young’s modulus:                               

1x

E



=       from eq. (7.40); 

2) Empirical Poisson’s ratio:                                   1

1

r

x





= −     from eq. (7.40); 

3) Analog of Young’s modulus for Ith pore fluid:  
f

Ix

E



=    from eq. (7.39); 

4) Induced pore pressure ratio:                                I
I

p



=      from eq. (7.40). 

 

From the above results, note that the Youngs modulus and Poisson’s ratio for the 

cylindrical rock sample depend on the boundary conditions for pore fluid.  Also, even under 

undrained conditions, the pore flow does not equal zero (only the dilatation is zero), and 

therefore the Young’s modulus and Poisson’s ratio depend on material properties included 

in matrix d, that is on the permeability of the sample and viscosity of the fluid within 

primary pores. This dependence seems to be unnoticed in most Young’s modulus 

experiments.  
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7.3.4 Detailed modeling 

Using the Bessel and Fourier functions in subsection 0, the rock and pore-fluid 

displacement fields within the sample can be presented as a superposition of basis 

functions: 

…  

7.4 Laboratory assignments 

Several labs below use material properties of Berea sandstone given in Tables 7.1 

and 7.2. Table 7.1 shows an example of a typical poroelastic model with single porosity, 

and Table 7.2 gives a double-porosity model with relaxation within the drained frame. This 

relaxation can b caused by “wave-induced fluid flows” or thermoelastic effects discussed 

in this text. 

 

Table 7.1. Properties of Berea sandstone (from …) 

  

  

  

  

 

Table 7.2. Properties of Berea sandstone with double porosity (from …) 
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Lab 7.1: Velocity dispersion and attenuation of plane P and S waves 

In this lab, you will use Matlab to model the propagation of plane waves in an 

unbounded porous fluid-saturated medium with or without solid viscosity. 

1) Using equations of subsection 7.2, write a Matlab program to model velocity 

dispersion and attenuation of plane P and S waves in Berea sandstone. 

Properties of the sandstone are listed in Table 7.2. Use frequency range from 

10-2 to 109 Hz, sampled logarithmically.  

2) First, consider no solid viscosity (K =  = 0). Plot the attenuation (Q-1) and 

velocity dispersion curves on logarithmic scale of frequencies. Identify Biot’s 

dissipation peak and velocity dispersion for the primary and secondary P 

waves.  

3) Is there any dispersion and attenuation for S waves? Why? Is there a 

secondary S wave in this case? 

) Repeat the modeling and plotting with nonzero K and  (Table 7.2) Do 

additional transition in velocity and attenuation peak appear?  

5) Do secondary wave, velocity dispersion and attenuation peaks appear for S 

waves? 

6) Compare the frequencies of the peaks with the characteristic frequencies 

2c Mf = M η  for P waves and 2cf = μ η  for S waves, where M 

is the matrix of P-wave modulus, M is the corresponding viscosity, and ...  

denotes some norm of the matrices. For the high-frequency peak, compare its 

frequency with Biot’s frequency 2c ff  = . 

7) Save the modeled P- and S-wave dispersion-attenuation spectra for use in 

subsequent labs. 

Lab 7.2: Extensional waves in a rod  

In this lab, you will model extensional (longitudinal) waves in a solid rod of porous 
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rock and compare the results with those from Lab 1. Take the diameter of the rod 

equal 3 cm. 

1) Using equations in the last part of subsection 7.2, write Matlab function 

Theta(f,k) which will take frequency f and complex-valued 

wavenumber k* as parameters and return matrix  given by eqs. (7.19). Use 

parameters of sandstone in Table 7.2. 

2) Verify that det() is a quadratic polynomial function of k*. To do this, note 

that matrix  contains only three elements containing variable k*, in the rows 

corresponding to eqs. (7.19). For harmonic wave, these equations are: 

                                        

*

1 3

*

2 4

*

5 6

0,

0,

0,

ik

ik

ik

 

 

 

 − =


− =


− =

 

which mean that elements (3,1), (4,2), and (5,5) of matrix  equal 

ik*. Is this so? Then if exclude rows 3, 4, and 4 and columns 1, 2, 

and 5 (containing these elements). The resulting matrix should have 

zero determinant. Is this so in your matrix? This determinant equals 

plus or minus the coefficient of (ik*)3 in the polynomial expression 

for (k*) (at any selected frequency f or ). 

3) Write another function eigenmodesTheta(f), which would use function 

Theta to solve eq. (7.20) for k*, and return: 1) two solutions for k*, and 2) the 

two corresponding solutions 1 and 2 of equation =Θψ 0  (eqs. 7.19). Since 

det() is a quadratic polynomial of k*, its roots (values of k* at which 

( )det 0=Θ ) can be obtained by the following procedure: 

a. Use you program to evaluate y = det(Theta(f,k))at three trial 

points k1, k2, and k3; 

b. Derive coefficients a, b, and c of a polynomial function 

( ) 2f k ak bk c= + +  equal to the determined values of y at each of 

these points; 

c. Then determine the two roots of f(k) by the usual formula 
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2

1,2

4

2

b b ac
k

a

−  −
= . 

4) Optional task for bonus points: A better way for obtaining coefficients a, 

b, and c is to consider all matrix minors (determinants of matrices obtained 

by removing one row and one column) for the elements containing ik*. For 

example, you can do this by: 

a. Defining a recursive function polydet(A) which would take a 

square matrix A and output the polynomial coefficients of its 

determinant with respect to argument z = ik*. 

b. To implement this recursive function, use the formula for determinant 

of a matrix expressed through a sum of its minors Mij for any row i: 

                             ( )det 1
i j

ij ij

j

A M
+

= −A ,  

where Aij is an array of polynomial coefficients for element (i,j) and 

Mij is returned by the same function polydet() for a matrix 

obtained from A by dropping the row i and column j. The product 

AijMij should be evaluated using polynomial calculations; this can be 

done by function conv() in Matlab.   

5) Using the same frequency sampling as in Lab 1, use function 

eigenmodesTheta(f) to calculate the phase velocity and attenuation of 

the primary and secondary longitudinal (extensional) wave within the rod 

(eqs. 7.21). Plot graphs of velocity and Q-1. 

6) Also calculate the extensional-mode velocity and Q differently, by taking the 

complex-valued VP and VS results from Lab 1 (the primary modes only) and 

combining them using the standard formula for elastic Young’s modulus: 

( )3 4M
E

M

 



−
=

−
, where 2

PM V=  and 2

SV = are the empirical (complex 

valued and frequency-dependent) P- and S-wave moduli, and 2

EE V=  is 

accordingly the expected viscoelastic extensional-mode modulus. Therefore, 
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the predicted extensional-wave velocity will be 
1

Re
EV

E
= , and the 

expected attenuation  1 Im

Re
E

E
Q

E

− = − .  

7) Plot the above viscoelastic estimates of VE(f) and ( )1

EQ f−  and compare them 

to the results of rigorous modeling using matrix . 

 

Lab 7.3:     Modeling Young’s modulus experiment with rock cylinder 

In this lab, you will model laboratory rock-physics experiments with a porous rock 

sample under different boundary conditions.  

In laboratory experiments, the measured Young’s moduli are defined as complex-

valued stress-strain ratios given in eqs. (7.22) and (7.23). Using Matlab, model these ratios 

for a cylindrical sample of double-porosity sandstone described in Table 7.2, with length 8 

cm and diameter 3 cm. 

1) Implement function compliance(f) (or use another name of your 

choice) taking an arbitrary frequency and returning the compliance matrix J 

for the cylinder (eq. (7.36) on page 183). 

2) Using this function, for a range of seismic frequencies, calculate the four  

properties measurable for drained and undrained sample (Tables 9.1 and 9.2 

on page 184). 

3) Plot the calculated quantities on separate plots. For each quantity Y, plot its 

absolute value |Y| and the corresponding 1 Im

Re

Y
Q

Y

− = − . 

4) Discuss the similarities and differences between the drained and undrained 

cases.  

Lab 7.4:     Poisson’s ratios for poroelasticity 

In this lab, you will examine the Poisson’s and related ratios for poroelastic model 

and other similar ratios of observable strains modeled in the preceding labs. Our goal is to 
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determine whether the Poisson’s ratio can be considered as elastic and/or independent of 

the boundary conditions for pore flow. 

1) Modify your program from Lab 3 to use the poroelastic model of Berea 

sandstone (set N = 2 and use material properties from Table 7.1). Note that in 

this case, there is only one pore fluid, and matrix inverses become simple 

divisions (eq. 7.40b). 

2) Model the cases of drained and undrained rock at frequencies from 1 

to 1000 Hz. Plot absolute values and the corresponding Q-1 of the resulting 

Poisson’s ratios  and additional ratios shown in Tables 9.1 and 9.2 

(page 184). 

3) In the plots of ||, also plot the elastic Poisson’s ratios (constant with 

frequency) calculated by using the usual formula 
( )
3 2

2 3

K

K






−
=

+
 (eq. 7.31a) 

for drained and undrained moduli K. 

4) Discuss the frequency dependencies of the modeled || and the 

corresponding Q-1. Are they close to the drained or undrained elastic ? Is the 

accuracy of ( ) elasticf  good enough for measuring an inverse Q-1 of 

about 0.03 (corresponding to Q  30)?  
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